
The BLAST Query Language
for Software Verification�

Dirk Beyer1, Adam J. Chlipala2, Thomas A. Henzinger1,2,
Ranjit Jhala2, and Rupak Majumdar3

1 EPFL, Switzerland
2 University of California, Berkeley

3 University of California, Los Angeles

Abstract. Blast is an automatic verification tool for checking tem-
poral safety properties of C programs. Blast is based on lazy predicate
abstraction driven by interpolation-based predicate discovery. In this pa-
per, we present the Blast specification language. The language specifies
program properties at two levels of precision. At the lower level, monitor
automata are used to specify temporal safety properties of program exe-
cutions (traces). At the higher level, relational reachability queries over
program locations are used to combine lower-level trace properties. The
two-level specification language can be used to break down a verification
task into several independent calls of the model-checking engine. In this
way, each call to the model checker may have to analyze only part of
the program, or part of the specification, and may thus succeed in a re-
duction of the number of predicates needed for the analysis. In addition,
the two-level specification language provides a means for structuring and
maintaining specifications.

1 Introduction

Blast, the Berkeley Lazy Abstraction Software verification Tool, is a fully au-
tomatic engine for software model checking [11]. Blast uses counterexample-
guided predicate abstraction refinement to verify temporal safety properties of
C programs. The tool incrementally constructs an abstract reachability tree
(ART) whose nodes are labeled with program locations and truth values of
predicates. If a path that violates the desired safety property is found in the
ART, but is not a feasible path of the program, then new predicate information
is added to the ART in order to rule out the spurious error path. The new pred-
icate information is added on-demand and locally, following the twin paradigms
of lazy abstraction [11] and interpolation-based predicate discovery [8]. The pro-
cedure stops when either a genuine error path is found, or the current ART
represents a proof of program correctness [9].

In this paper we present the Blast input language for specifying program-
verification tasks. The Blast specification language consists of two levels. On
� This research was supported in part by the NSF grants CCR-0085949, CCR-0234690,

and ITR-0326577.

R. Giacobazzi (Ed.): SAS 2004, LNCS 3148, pp. 2–18, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Blast Query Language for Software Verification 3

the lower level, observer automata are defined to monitor the program execution
and decide whether a safety property is violated. Observer automata can be
infinite-state and can track the program state, including the values of program
variables and type-state information associated with individual data objects. On
the higher level, relational queries over program locations are defined which may
specify both structural program properties (e.g., the existence of a syntactic path
between two locations) and semantic program properties (e.g., the existence of
a feasible path between two locations). The evaluation of a semantic property
invokes the Blast model-checking engine. A semantic property may also refer
to an observer automaton, thus combining the two levels of specification.

Consider the following example. If we change the definition of a variable in a
program, we have to review all subsequent read accesses to that variable. Using
static analysis we can find all statements that use the variable, but the resulting
set is often imprecise (e.g., it may include dead code) because of the path-
insensitive nature of the analysis. Model checking can avoid this imprecision.
In addition, using an observer automaton, we can ensure that we compute only
those statements subsequent to the variable definition which (1) use the variable
and (2) are not preceded by a redefinition of the variable. The two specification
levels allow the natural expression of such a query: on the higher level, we specify
the location-based reachability property between definition and use locations,
and at the lower level, we specify the desired temporal property by a monitor
automaton that watches out for redefinitions of the variable. The resulting query
asks the model checker for the set of definition-use pairs of program locations
that are connected by feasible paths along which no redefinitions occur.

The Blast specification language provides a convenient user interface: it
keeps specifications separate from the program code and makes the model checker
easier to use for non-experts, as no manual program annotations with specifica-
tion code (such as assertions) are required. On one hand it is useful to orthog-
onalize concerns by separating program properties from the source code, and
keeping them separated during development, in order to make it easier to un-
derstand and maintain both the program and the specification [13]. On the other
hand it is preferable for the programmer to specify program properties in a lan-
guage that is similar to the programming language. We therefore use as much
as possible C-like syntax in the specification language. The states of observer
automata are defined using C type and variable declarations, and the automa-
ton transitions are defined using C code. The query language is an imperative
scripting language whose expressions specify first-order relational constraints on
program locations.

The two-level specification structure provides two further benefits. First, such
structured specifications are easy to read, compose, and revise. The relational
query language allows the programmer to treat the program as a database of
facts, which can be queried by the analysis engine. Moreover, individual parts
of a composite query can be checked incrementally when the program changes,
as in regression testing [10]. Second, the high-level query language can be used
to break down a verification task into several independent model-checking prob-

4 Dirk Beyer et al.

lems, each checking a low-level trace property. Since the number of predicates
in the ART is the main source of complexity for the model-checking procedure,
the decomposition of a verification task into several independent subtasks, each
involving only a part of the program and/or a part of the specification, can
greatly contribute to the scalability of the verification process [14, 17]. A sim-
ple instance of this occurs if a specification consists of a conjunction of several
properties that can be model checked independently. The relational query engine
allows the compact definition of such proof-decomposition strategies.

For a more instructive example, suppose that we wish to check that there
is no feasible path from a program location �0 to a program location �2, and
that all syntactic paths from �0 to �2 go through location �1. Then we may
decompose the verification task by guessing an intermediate predicate p1 and
checking, independently, the following two simpler properties: (1) there is no
feasible path from �0 to �1 such that p1 is false at the end of the path (at �1),
and (2) there is no feasible path from �1 to �2 such that p1 is true at the beginning
of the path (at �1). Both proof obligations (1) and (2) may be much simpler to
model check, with fewer predicates needed, than the original verification task.
Moreover, each of the two proof obligations can be specified as a reachability
query over locations together with an observer automaton that specifies the final
(resp. initial) condition p1.

The paper is organized as follows. In Section 2, we define the (lower-level)
language for specifying trace properties through observer automata. In Section 3,
we define the (higher-level) language for specifying location properties through
relational queries. In Section 4, we give several sample specifications, and in
Section 5, we briefly describe how the query processing is implemented in Blast.
Related Work. Automata are often used to specify temporal safety proper-
ties, because they provide a convenient, succinct notation and are often easier
to understand than formulas of temporal logic. For example, SLIC [2] specifica-
tions are used in the SLAM project [1] to generate C code for model checking.
However, SLIC does not support type-state properties and is limited to the
specification of interfaces, because it monitors only function calls and returns.
Metal [7] and MOPS [4] allow more general pattern languages, but the (finite)
state of the automaton must be explicitly enumerated. Temporal-logic specifica-
tions, often enriched with syntactic sugar (“patterns”), are used in Bandera [5]
and Feaver [12]. Type-state verification [16] is an important concept for ensuring
the reliability of software, but the generally used assumption in this field is to
consider all paths of a program as feasible. Relational algebra has been applied
to analyze the structure of large programs [3] and in dynamic analysis [6]. Also
the decomposition of verification tasks has been recognized as a key issue and
strategy-definition languages have been proposed [14, 17]. However, the use of a
relational query language to group queries and decompose proof obligations in
a model-checking environment seems novel.

The Blast Query Language for Software Verification 5

2 Trace Properties: Observer Automata

Trace properties are expressed using observer automata. These provide a way
to specify temporal safety properties of C programs based on syntactic pattern
matching of C code. An observer automaton consists of a collection of syntactic
patterns that, when matched against the current execution point of the observed
program, trigger transitions in the observer. Rather than being limited to a
finite number of states, the observer may have global variables of any C type,
and it may track type-state information associated with the program variables.
The observer transitions are also specified in C syntax; they may read program
variables and both read and write observer variables.

2.1 Syntax

The definition of an observer automaton consists of a set of declarations, each
defining an observer variable, a type state, an initial condition, a final condition,
or an event. Figure 1 gives the grammar for specifying observer automata.

Observer: DeclSeq

DeclSeq: Declaration | DeclSeq Declaration

Declaration: ’GLOBAL’ CVarDef

| ’SHADOW’ CTypeName ’{’ CFieldSeq ’}’

| ’INITIAL’ ’{’ CExpression ’}’

| ’FINAL’ ’{’ CExpression ’}’

| ’EVENT’ ’{’

Temporal

’PATTERN’ ’{’ Pattern ’}’

Assertion

Action

’}’

Temporal: ’BEFORE’ | ’AFTER’ | empty

Pattern: ParamCStmt | ParamCStmt ’AT’ LocDesc

Assertion: ’ASSERT’ ’{’ CExpression ’}’ | empty

Action: ’ACTION’ ’{’ CStatementSeq ’}’ | empty

Fig. 1. The grammar for the observer specification language.

Observer Variables. The control state of an observer automaton consists of
a global part and a per-object part. The global part of the observer state is
determined by a set of typed, global observer variables. Each observer variable
may have any C type, and is declared following the keyword GLOBAL, where the
nonterminal CVarDef stands for any C variable declaration. For example, in the
case of a specification that restricts the number of calls to a certain function, an
observer variable numCalls of type int might be used to track the number of
calls made: “GLOBAL int numCalls;”.

6 Dirk Beyer et al.

Type States. The keyword SHADOW allows the programmer to define additional
control state of the observer automaton on a per-object basis. For this purpose,
each distinct C type CTypeName which occurs in the program may have a type
state declared in the specification. The type-state information is declared by
the nonterminal CFieldSeq, which stands for any sequence of field definitions
for a C structure. These fields are then added as type state to every program
variable of type CTypeName. For example, in the case that the program uses
a type stack to declare stacks, the following type state may be used to track
the size of each program variable of type stack: “SHADOW stack {int size;}”.
Then, during verification, the type stack is replaced by a new structure type
with the additional field size.

Initial and Final Conditions. The initial states of the observer automaton
are defined by initial conditions. Each initial condition is declared following the
keyword INITIAL as a boolean expression. The nonterminal CExpression is a
(side-effect free) C expression that may refer to observer variables, but also to
global program variables and associated type-state information. This allows us
to encode a precondition when starting the verification process. We call the
conjunction of all initial conditions the precondition of the observer automaton.
If no initial condition is specified, then the precondition is true. Final conditions
are just like initial conditions, and their conjunction is called the postcondition
of the observer automaton. The postcondition is used to check the program and
observer states after any finite trace.

Events. The transitions of the observer automaton are defined by events. Each
event observes all program steps and, if a match is obtained, specifies how the
state of the observer (global variables and type states) changes. The keyword
EVENT is followed by up to four parts: a temporal qualifier, a pattern, an assertion,
and an action. Intuitively, at each point in the program execution, the observer
checks the current program statement (i.e., AST node) being executed against
the pattern of each event. If more than one pattern matches, then Blast declares
the specification to be invalid for the given program. If only one pattern matches,
then the corresponding assertion is checked. If the assertion is violated, then the
observer rejects the trace; otherwise it executes the corresponding action. The
Temporal qualifier is either BEFORE or AFTER. It specifies whether the observer
transition is executed before or after the source-code AST node that matches
the pattern. If a temporal qualifier is omitted, it is assumed to be BEFORE.

The keyword PATTERN is followed by a statement that is matched against the
program source code. The pattern is defined by the nonterminal ParamCStmt,
followed by an optional program-location descriptor. A pattern is either a C as-
signment statement or a C function call that involves side-effect free expressions.
The pattern may refer to variables named $i, for i ≥ 1, which are matched
against arbitrary C expressions in the program. Each such pattern variable may
appear at most once in a pattern. There is also a pattern variable named $?,
which plays the role of a wild-card. It may occur multiple times in a pattern,
and different occurrences may match the empty string, a C expression, or an ar-
bitrary number of actual parameters in a function call. The location descriptor

The Blast Query Language for Software Verification 7

LocDesc is either a C label, or a string that concatenates the source file name
with a line number; e.g., the string “file 19” refers to line number 19 of the
source file file. If a location descriptor is specified, then the pattern is matched
only against program locations that match the descriptor.

The keyword ASSERT is followed by a program invariant that must hold every
time the corresponding pattern matches. Here, CExpression is a boolean con-
dition expressed as a C expression that may refer to global program variables,
observer variables, numbered pattern variables $i that occur in the corresponding
pattern (which may match local program variables), and type-state information
associated with any of these. Numbered pattern variables in an assertion refer
to the expressions with which they are unified by the pattern matching that
triggers the event. If an assertion is omitted, it is assumed to be always true.
If during program execution the pattern of an event matches, but the current
state violates the assertion, then the observer is said to reject the trace.

The keyword ACTION is followed by a sequence of C statements that are exe-
cuted every time the corresponding pattern matches. The code in CStatementSeq
has the following restrictions. First, as in assertions, the only read variables are
global program variables, observer variables, numbered pattern variables, and
associated type states. Second, the action code may write only to observer vari-
ables and to type-state information. In particular, an observer action must not
change the program state. If an action is omitted, it is assumed to be the empty
sequence of statements.

Example 1. [Locking] Consider the informal specification that a program must
acquire and release locks in strict alternation. The observer automaton defined in
Figure 2(a) specifies the correct usage of locking functions. An observer variable
locked is created to track the status of the (only) global lock. Simple events
match calls to the relevant functions. The event for init initializes the observer
variable to 0, indicating that the lock is not in use. The other two events ensure
that the lock is not in use with each call of the function lock, and is in use
with each call of unlock. When these assertions succeed, the observer variable
is updated and execution proceeds; when an assertion fails, an error is signaled.
The wild-cards $?’s match either a variable to which the result of a function
call is assigned, or the absence of such an assignment, thus making the patterns
cover all possible calls to the functions lock and unlock.

Figure 2(b) shows the same specification, but now the program contains
several locks, and the functions lock and unlock take a lock as a parameter. A
lock is assumed to be an object of type lock t. The observer introduces a type
state locked with each lock of the program, and checks and updates the type
state whenever one of the functions init, lock, and unlock is called. ��

2.2 Semantics

The semantics of a trace property is given by running the observer automaton
in parallel with the program. The automaton accepts a program trace if along
the trace, every time an observer event matches, the corresponding assertion is

8 Dirk Beyer et al.

GLOBAL int locked;

EVENT {

PATTERN { $? = init(); }

ACTION { locked = 0; }

}

EVENT {

PATTERN { $? = lock(); }

ASSERT { locked == 0 }

ACTION { locked = 1; }

}

EVENT {

PATTERN { $? = unlock(); }

ASSERT { locked == 1 }

ACTION { locked = 0; }

}

SHADOW lock_t { int locked; }

EVENT {

PATTERN { init($1); }

ACTION { $1->locked = 0; }

}

EVENT {

PATTERN { lock($1); }

ASSERT { $1->locked == 0 }

ACTION { $1->locked = 1; }

}

EVENT {

PATTERN { unlock($1); }

ASSERT { $1->locked == 1 }

ACTION { $1->locked = 0; }

}

Fig. 2. (a) Specification for a global lock. (b) Specification for several locks.

true, and moreover, if the trace is finite, then the values of the variables at the
end of the trace satisfy the postcondition of the observer automaton. Dually,
the automaton rejects the trace if either some assertion or the postcondition
fails. We give the semantics of the composition of a program and an observer
automaton by instrumenting the program source code with C code for the ob-
server variable, type-state, and event declarations, i.e., the original program is
transformed into a new program by a sequence of simple steps. This transforma-
tion is performed statically on the program before starting the model-checking
engine on the transformed program.

Syntactic pattern matching on literal C code must deal with code structuring
issues. Blast performs pattern matching against a simplified subset of C state-
ments. In our implementation, first a sound transformation from C programs
to the simplified statement language is performed by CIL [15]. These simplified
statements consist only of variable assignments and function calls involving side-
effect free expressions. Second, Blast’s instrumentation of the program with the
observer is performed on the simplified language. Third, Blast performs model
checking on the instrumented program, which is represented by a graph whose
nodes correspond to program locations and whose edges are labeled with se-
quences of simplified statements [11]. The model checker takes as input also the
pre- and postconditions of the observer automaton, as described in the next
section.

Instrumenting Programs. In the following we define the program instrumen-
tation with the observer automaton by describing a transformation rule for each
construct of the observer specification.

Observer Variables. Declarations of observer variables are inserted as global dec-
larations in the C program.

The Blast Query Language for Software Verification 9

Type State. The type-state fields declared by the observer automaton are in-
serted into the declarations section of the C program by replacing the original
declarations of the corresponding types. The actual transformation depends on
the “shadowed” type. If the shadowed type is abstract, then the type itself is
replaced. In this case, the fields of the original type cannot be analyzed, because
their definition is not available. If the shadowed type is not abstract, then the
original type becomes one field of the new type, with the other fields holding the
type-state information. All type accesses in the program are modified accord-
ingly. For the example in Figure 2(b), first assume that lock t is an abstract
type for the locking data structure. Then the type-state declaration

SHADOW lock_t { int locked; }

is transformed and inserted as follows in the declarations section of the program:

struct __shadow0__ { int locked; };
typedef struct __shadow0__ *lock_t;

If, on the other hand, the type lock t is defined as

struct lock_t_struct { int lock_info; }
typedef struct lock_t_struct *lock_t;

then the type name is changed to lock t orig and the type-state declaration is
transformed and inserted as follows:

struct __shadow0__ { lock_t_orig shadowed; int locked; };
typedef struct __shadow0__ *lock_t;

Additionally, in this case, for every instance mylock of type lock t, each occur-
rence of mylock->lock info is replaced by mylock->shadowed->lock info.
Events. For every event declaration of the observer automaton an if-statement
is generated. The condition of that if-statement is a copy of the assertion, where
the pattern variables $i are replaced by the matching C expressions. The then-
branch contains a copy of the action code, again with the place holders substi-
tuted accordingly. The else-branch contains a transition to the rejecting state of
the automaton. Then the original program is traversed to find every matching
statement for the pattern of the event. The pattern is matched if the place hold-
ers ($i and $?) in the pattern can be replaced by code fragments such that the
pattern becomes identical to the examined statement. If two or more patterns
match the same statement, then Blast stops and signals that the specification
is invalid (ambiguous) for the given program. As specified by the temporal qual-
ifier BEFORE or AFTER, the generated if-statement is inserted before or after each
matching program statement. Consider, for example, the second event declara-
tion from Figure 2(a). For this event, every occurrence of the code fragment
lock(); matches the pattern, whether or not the return value is assigned to
a variable (because of the wild-card $? on the left-hand side of the pattern).
The instrumentation adds the following code before every call to lock in the
program:

10 Dirk Beyer et al.

if (locked == 0) {
locked = 1;

} else {
{ __reject = 1; } // transition to rejecting state

}

Note that the rejecting state of the observer automaton is modeled by the im-
plicitly defined observer variable reject. This variable must not occur in the
program nor in the observer declaration.
Observer Semantics. A state of a program P is a pair (�, v) consisting of a
program location � and a memory valuation v. Let � and �′ be two program
locations, and let p and p′ be two predicates over the program variables. The
pair (�′, p′) is reachable in P from the pair (�, p) if there exists an executable
state sequence (finite trace) of P from a state (�, v) to a state (�′, v′), for some
memory valuation v that satisfies p and some valuation v′ that satisfies p′.

We can now define the semantics of an observer automaton A over a program
P in terms of the traces of the instrumented program PA. Let pre be the predicate
preA ∧ (reject = 0), where preA is the precondition of A, and let post be the
predicate postA ∧ (reject = 0), where postA is the postcondition of A. The
location �′ is A-accept-reachable in P from � if (�′, post) is reachable in PA from
(�, pre). The location �′ is A-reject-reachable in P from � if (�′,¬post) is reachable
in PA from (�, pre). Note that both accept- and reject-reachability postulate the
existence of a feasible path in P from � to �′; the difference depends only on
whether the observer automaton accepts or rejects. In particular, it may be that
�′ is both A-accept- and A-reject-reachable in P from �.

3 Location Properties: Relational Queries

Every observer automaton encodes a trace property. At a higher level, observer
automata can be combined by relational queries. The queries operate on pro-
gram locations and specify properties using sets and relations over program lo-
cations. The query language is an imperative scripting language that extends the
predicate calculus: it provides first-order relational expressions (but no function
symbols) as well as statements for variable assignment and control flow.

3.1 Syntax

A simple query is a sequence of statements, where each statement is either an
assignment or a print statement. There are three types of variables: string, prop-
erty, and relation variables. A string variable may express a program location, a
function name, or a code fragment. The property variables range over observer
automata (i.e., trace properties), as defined in the previous section. The relation
variables range over sets of tuples of strings. There is no need to declare the
type of a variable; it is determined by the value of the first assignment to the
variable. For the convenient and structured expression of more complex queries,
the language also has constructs (IF, WHILE, FOR) for the conditional execution
and iteration of statements.

The Blast Query Language for Software Verification 11

Statement: PropVar ’:=’ ’[’ Observer ’]’ ’;’

| RelVar ’(’ StrExp ’,’ StrExp ’)’ ’:=’ BoolExp ’;’

| ’PRINT’ StrExp ’;’ | ’PRINT’ BoolExp ’;’

BoolExp: RelVar ’(’ StrExp ’,’ StrExp ’)’

| ’TRUE’ ’(’ StrVar ’)’ | ’FALSE’ ’(’ StrVar ’)’

| BoolExp ’&’ BoolExp // conjunction

| BoolExp ’|’ BoolExp // disjunction

| ’!’ BoolExp // negation

| ’EXISTS’ ’(’ StrVar ’,’ BoolExp ’)’

| ’MATCH’ ’(’ RegExp ’,’ StrVar ’)’

| ’A-REACH’ ’(’ BoolExp ’,’ BoolExp ’,’ PropVar ’)’

| ’R-REACH’ ’(’ BoolExp ’,’ BoolExp ’,’ PropVar ’)’

StrExp: StrLit | StrVar

Fig. 3. Partial syntax of the query language.

The expression language permits first-order quantification over string vari-
ables. In the right-hand side expression of an assignment, every variable must
either be a relation variable and have been previously assigned a value, or it
must be a string variable that is quantified or occurs free. The implemented
query language allows relations of arbitrary arity, but for simplicity, let us re-
strict this discussion to binary relation variables. Also, let us write x and y for
the values of the string variables x and y, and R for the set of pairs denoted
by the binary relation variable R. Then the boolean expression R(x,y) evaluates
to true iff (x, y) ∈ R. To assign a new value to the relation variable R we write
“R(x,y) := e” short for “for all x,y let R(x,y) := e,” where e is a boolean
expression that may contain free occurrences of x and y.

Each print statement has as argument a boolean expression, with possibly
some free occurrences of string variables. The result is a print-out of all value
assignments to the free variables which make the expression true. For example,
“PRINT R(x,y)” outputs the header (x, y) followed by all pairs (x, y) of strings
such that (x, y) ∈ R.

The grammar for queries without control-flow constructs is shown in Figure 3.
The nonterminals StrVar, PropVar, and RelVar refer to any C identifier; StrLit
is a string literal; Observer is a specification of an observer automaton, as defined
in Section 2; and RegExp is a Unix regular expression.

3.2 Semantics

The first-order constructs (conjunction, disjunction, negation, existential quan-
tification) as well as the imperative constructs (assignments, control flow, out-
put) have the usual meaning. The boolean expression MATCH(e,x) evaluates to
true iff the value of the string variable x matches the regular expression e.

12 Dirk Beyer et al.

Reachability Queries. Consider an input program P , and a property variable
A denoting an observer automaton A. Let source and target be two boolean
expressions each with a single free string variable, say loc s and loc t. The
boolean expression A-REACH(source, target, A) evaluates to true for given values
� for loc s and �′ for loc t iff source and target evaluate to true for � and �′,
respectively, and �′ is A-accept-reachable in P from �. The boolean expression
R-REACH(source, target, A) evaluates to true for given values � for loc s and �′

for loc t iff source and target evaluate to true for � and �′, respectively, and �′

is A-reject-reachable in P from �. These relations are evaluated by invoking the
Blast model checker on the instrumented program.

Syntactic Sugar. Using the above primitives, we can define some other use-
ful queries as follows. The property variable Empty denotes the empty observer
automaton, which has no events and pre- and postconditions that are always
true. The macro REACH(source, target) is short-hand for A-REACH(source, tar-
get, Empty); it evaluates to true for given values � for loc s and �′ for loc t iff
both source and target evaluate to true and there is a feasible path in P from �
to �′. The macro SAFE(source, A) is short-hand for

source & !EXISTS(loc t, R-REACH(source, TRUE(loc t), A))

This boolean expression evaluates to true for a given value � for loc s iff source
evaluates to true and there is no feasible path in P from � which makes the
observer A enter a rejecting state.

Syntactic Relations. There are a number of useful predefined syntactic relation
variables. These are restricted to relations that can be extracted from the AST of
the program. The following relations are automatically initialized after starting
the query interpreter to access information about the syntactic structure of the
program:

– LOC FUNC(loc,fname) evaluates to true iff the program location loc is con-
tained in the body of the C function fname.

– LOC FUNC INIT(loc,fname) evaluates to true iff the program location loc
is the initial location of the C function fname.

– LOC LABEL(loc,lname) evaluates to true iff the location loc contains the
C label lname.

– LOC LHSVAR(loc,vname) evaluates to true iff the location loc contains the
variable vname on the left-hand side of an assignment.

– LOC RHSVAR(loc,vname) evaluates to true iff the location loc contains the
variable vname on the right-hand side of an assignment.

– LOC TEXT(loc,sourcecode) evaluates to true iff the C code at the location
loc is identical to sourcecode.

– CALL(fname,funcname callee) evaluates to true iff the function fname
(syntactically) calls the function funcname callee.

Other relations that reflect the syntactic structure of the program can be added
as needed.

The Blast Query Language for Software Verification 13

Example 2. [Reachability Analysis] The following query computes all reach-
able lines that contain the program code abort:

source(loc) := LOC_FUNC_INIT(loc,"main");
target(loc) :=

EXISTS(text, LOC_TEXT(loc,text) & MATCH("abort",text));
result(loc1,loc2) := REACH(source(loc1),target(loc2));
PRINT result(loc1,_);

The first statement of the query assigns a set of program locations to the relation
variable source. The set contains all locations that are contained in the body
of function main. The second statement constructs the set of program locations
that contain the code abort. The third statement computes a set of pairs of
program locations. A pair of locations is contained in the set result iff there is
an executable program trace from some location in source to some location in
target. The last statement prints out a list of all source locations with a feasible
path to an abort statement. The symbol “ ” is used as an abbreviation for an
existentially quantified string variable which is not used elsewhere. ��
Example 3. [Dead-Code Analysis] The following query computes the set of
locations of the function main that are not reachable by any program execution
(the “dead” locations):

live(loc1,loc2) :=
REACH(LOC_FUNC_INIT(loc1,"main"),LOC_FUNC(loc2,_));

reached(loc) := live(_,loc);
PRINT "Following locations within ’main’ are not reachable:";
PRINT !reached(loc) & LOC_FUNC(loc,"main");

We first compute the set of all program locations that are reachable from the
initial location of the function main. We print the complement of this set, which
represents dead code, restricted to the set of locations of the function main. ��

Both of the above examples are simple reachability queries. Examples of more
advanced queries, which combine location and trace properties, are presented in
the next section.

4 Examples

Impact Analysis. Consider the C program displayed in Figure 4(a). At the
label START, the variable j is assigned a value. We wish to find the locations that
are affected by this assignment, i.e., the reachable locations that use the variable
j before it is redefined. Consider the observer automaton A shown in Figure 4(b).
Along a trace, every assignment to j increments the variable gDefined. Thus,
gDefined is equal to 1 only when there has been exactly one definition of j. The
final condition ensures that along a finite trace, no redefinition of j has occurred.
Hence, the desired set of locations is computed by the following query:

14 Dirk Beyer et al.

1 int j;

2 void f(int j){};

3 int compute() {

4 int i;

5 START: j = 1;

6 i = 1;

7 if (i==0) {

8 f(j); // affected if i==0

9 }

10 if (i==0) {

11 j = 2;

12 }

13 if (j==2) { // affected if i==1

14 f(j); // not affected if i==0

15 }

16 return 0;

17 }

18 int main() {

19 compute();

20 return 0;

21 }

GLOBAL int gDefined ;

INITIAL { gDefined == 0 }

EVENT {

PATTERN { j = $1; }

ACTION { gDefined ++ ; }

}

FINAL { gDefined == 1 }

Fig. 4. (a) C program. (b) Impact automaton A.

GLOBAL int __E;

INITIAL (__E == 0);

EVENT {

PATTERN { $? = seteuid($1); }

ACTION { __E = $1; }

}

EVENT {

PATTERN { $? = system($?); }

ASSERT { __E != 0 }

}

Fig. 5. (a) Effective UID automaton. (b) Syscall privilege automaton.

affected(l1,l2) :=
A-REACH(LOC_LABEL(l1,"START"), LOC_RHSVAR(l2,"j"), A);

PRINT affected(_,l2);

For our example, Blast reports that the definition of the variable j at line 5
has impact on line 13. It has no impact on line 8, as that line is not reachable
because of line 6. On the other hand, if line 6 is changed to “i=0;”, then line 8 is
reachable and affected. Now, line 11 is reachable and therefore a redefinition of j
takes place. Thus, line 13 is not affected. To compute the effect of each definition
of j, we can change the first argument of A-REACH to LOC LHSVAR(l1,"j").

Security Analysis. Consider a simplified specification for the manipulation of
privileges in setuid programs [4]. Unix processes can execute at several privi-
lege levels; higher privilege levels may be required to access restricted system
resources. Privilege levels are based on user id’s. The seteuid system call is
used to set the effective user id of a process, and hence its privilege level. The
effective user id 0 (or root) allows a process full privileges to access all system
resources. The system call runs a program as a new process with the privilege
level of the current effective user id. The observer automaton B in Figure 5(a)

The Blast Query Language for Software Verification 15

tracks the status of the effective user id by maintaining an observer variable
E, which denotes the current effective user id. Initially, E is set to 0. The $1

pattern variable in the seteuid pattern matches the actual parameter. Every
time seteuid is called, the value of E is updated to be equal to the parameter
passed to seteuid in the program.

Suppose we want to check that the function system is never called while
holding root privileges. This can be done by adding the event in Figure 5(b)
to the automaton B (call the resulting automaton B’) and computing the query
“SAFE(LOC FUNC INIT(loc, "main"), B’)”. The $? wild-card in the system
pattern is used to match all remaining parameters. As long as the assertion is
satisfied, the observer does nothing, because the action is empty; however, if the
assertion is not satisfied, the trace is rejected.

Now suppose we want to know which locations of the program can be run
with root privileges, i.e., with E = 0. This can be accomplished by the following
query:

target(loc) := LOC_FUNC(loc,_);
rootPriv(loc1,loc2) :=

A-REACH(LOC_FUNC_INIT(loc1, "main"), target(loc2), B");
PRINT rootPriv(_,loc);

where automaton B" is automaton B with the final condition “FINAL (E==0);”.
Decomposing Verification Tasks. We now show how the relational query
language and observer automata can be combined to decompose the verification
process [14]. Consider an event e of an observer automaton A with the postcon-
dition postA. We say that e extends A if (1) the assertion of e is always true, and
(2) the action of e writes only to variables not read by A. Let A.e be the observer
automaton obtained by adding to A (1) a fresh observer variable x e, (2) the
initial condition x e == 0, and (3) the code x e = 1 as the first instruction in
the body of the action of e. Define RSplit.A.e to be the pair of observer automata
(A.e+

r , A.e−r) which are A.e with the postconditions changed to x e = 1 ⇒ postA

and x e �= 1 ⇒ postA, respectively. Define ASplit.A.e to be the pair of automata
(A.e+

a , A.e−a) which are A.e with the postconditions changed to x e = 1 ∧ postA

and xe �= 1 ∧ postA, respectively.

Lemma 1. Let P be a program, let A be an observer automaton, and let e be an
event that extends A. Let (A1, A2) = RSplit.A.e (resp. (A1, A2) = ASplit.A.e).
A location �′ is A-reject-reachable (resp. A-accept-reachable) in P from � iff
either �′ is A1-reject-reachable (resp. A1-accept-reachable) in P from �, or �′ is
A2-reject-reachable (resp. A2-accept-reachable) in P from �.

The split partitions the program traces into those where the event e occurs
and those where it doesn’t occur. We can now extend our query language to
allow for boolean macro expressions of the following kind: b SPLIT e, where b is
a boolean expression and e is an event. This macro stands for b with each occur-
rence of a subexpression of the form R-REACH(·, ·,A), where e extends A, re-
placed by R-REACH(·, ·,A1) | R-REACH(·, ·,A2), where (A1, A2) = RSplit.A.e,

16 Dirk Beyer et al.

and each occurrence of a subexpression of the form A-REACH(·, ·, A) replaced
with A-REACH(·, ·,A1) | A-REACH(·, ·,A2), where (A1, A2) = ASplit.A.e. By
Lemma 1, the boolean expression b SPLIT e is equivalent to b. With a judicious
choice of events, we can therefore break down the evaluation of a complex query
into multiple simpler queries.

We illustrate this using the example of a Windows device driver for a floppy
disk1, and concentrate the Plug and Play (PNP) manager, which communi-
cates requests to devices via I/O request packets. For example, the request
IRP MN START DEVICE instructs the driver to do all necessary hardware and soft-
ware initialization so that the device can function. Figure 6 shows the code for
the PNP manager. The code does some set-up work and then branches to handle
each PNP request. We wish to verify a property of the driver that specifies the
way I/O request packets must be handled2. Let A be the observer automaton for
the property.

1 NTSTATUS FloppyPnp(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) {

2 ...

3 PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation(Irp);

4 ...

5 switch (irpSp->MinorFunction) {

6 L_1: case IRP_MN_START_DEVICE:

7 ntStatus = FloppyStart(DeviceObject, Irp);

8 break;

9 L_2: case IRP_MN_QUERY_STOP_DEVICE:

10 ...

11 break;

12 // several other cases

13 L_k: default:

14 ...

15 }

16 ...

17 return ntStatus;

18 }

Fig. 6. A floppy driver.

Intuitively, the verification can be broken into each kind of request sent by
the PNP manager, that is, if we can prove the absence of error for each case in
the switch statement, we have proved the program correct with respect to the
property. Let e 1, . . . , e k be the events that denote the reaching of the program
labels L 1, . . . , L k, which correspond to each case in the switch statement. The
following relational query encodes the proof decomposition:

(... (SAFE(LOC_FUNC_INIT(loc,"FloppyPnp"), A) SPLIT e_1)
... SPLIT e_k)

This query breaks the safety property specified by A into several simpler queries,
one for each combination of possible branches of the switch statement. While this
1 Available with the Microsoft Windows DDK.
2 Personal communication with T. Ball and S. Rajamani.

The Blast Query Language for Software Verification 17

Fig. 7. Architecture of the verification toolkit.

results in exponentially many subqueries, all but k of these subqueries (where
more than one, or none of the events happens) are evaluated very efficiently by
exploiting the syntactic control-flow structure of the program, by noting that a
violation of the subproperty is syntactically impossible. The remaining k cases,
which are syntactically possible, are then model checked independently, leading
to a more efficient check, because independent abstractions can be maintained.

5 Tool Architecture

The overall architecture of the implementation is shown in Figure 7. CIL [15]
parses the input program and produces the AST used by the program trans-
former. The query parser parses the specification file and extracts program-
transformation rules to later guide the program instrumentation. It also prepares
the data structures for the relational computations. The program transformer
takes as input the representation of the original program and the transforma-
tion rules. When required by the query interpreter, it takes one particular set
of transformation rules at a time (corresponding to one observer automaton)
and performs the instrumentation. The result is the AST of the instrumented
code. The query interpreter is the central controlling unit in this architecture. It
dispatches the current query from the query queue to the relational-algebra en-
gine for execution. If the next statement is a REACH expression, it first requests
the instrumented version of the program from the transformer, then requests
the relational-manipulation engine to transfer the input relations to the model-
checking engine, and then starts the model checker Blast. When the model
checking is completed, the relational-manipulation engine stores the results of
the query and gives the control back to the query interpreter.

18 Dirk Beyer et al.

The relational-algebra engine is a calculator for relational expressions. It
uses a highly optimized BDD-based library for querying and manipulating re-
lations [3]. This library deals with relations on the level of predicate calculus.
There is no need to encode variables and values to bit representations, because
the library provides automatic value encoding and efficient high-level operations
to abstract from the core BDD algorithms.

References

1. T. Ball and S.K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

2. T. Ball and S.K. Rajamani. SLIC: A specification language for interface checking
(of C). Technical Report MSR-TR-2001-21, Microsoft Research, 2002.

3. D. Beyer, A. Noack, and C. Lewerentz. Simple and efficient relational querying of
software structures. In Proc. WCRE, pages 216–225. IEEE, 2003.

4. H. Chen and D. Wagner. MOPS: An infrastructure for examining security proper-
ties of software. In Proc. CCS, pages 235–244. ACM, 2002.

5. J.C. Corbett, M.B. Dwyer, J. Hatcliff, and Robby. A language framework for ex-
pressing checkable properties of dynamic software. In Proc. SPIN, LNCS 1885,
pages 205–223. Springer, 2000.

6. S. Goldsmith, R. O’Callahan, and A. Aiken. Lightweight instrumentation from
relational queries on program traces. Technical Report CSD-04-1315, UC Berkeley,
2004.

7. S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building
system-specific static analyses. In Proc. PLDI, pages 69–82. ACM, 2002.

8. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from
proofs. In Proc. POPL, pages 232–244. ACM, 2004.

9. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In Proc. CAV, LNCS 2404, pages 526–
538. Springer, 2002.

10. T.A. Henzinger, R. Jhala, R. Majumdar, and M.A.A. Sanvido. Extreme model
checking. In International Symposium on Verification: Theory and Practice,
LNCS 2772, pages 332–358. Springer, 2003.

11. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

12. G.J. Holzmann. Logic verification of ANSI-C code with SPIN. In Proc. SPIN,
LNCS 1885, pages 131–147. Springer, 2000.

13. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proc. ECOOP, LNCS 1241, pages
220–242. Springer, 1997.

14. K.L. McMillan. A methodology for hardware verification using compositional
model checking. Science of Computer Programming, 37(1–3):279–309, 2000.

15. G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In Proc. CC, LNCS 2304,
pages 213–228. Springer, 2002.

16. R.E. Strom and S. Yemini. Typestate: A programming language concept for en-
hancing software reliability. IEEE Trans. Software Engineering, 12(1):157–171,
1986.

17. E. Yahav and G. Ramalingam. Verifying safety properties using separation and
heterogeneous abstractions. In Proc. PLDI, pages 25–34. ACM, 2004.

	1 Introduction
	2 Trace Properties: Observer Automata
	2.1 Syntax
	2.2 Semantics

	3 Location Properties: Relational Queries
	3.1 Syntax
	3.2 Semantics

	4 Examples
	5 Tool Architecture
	References

