Path Invariants

Dirk Beyer Thomas A. Henzinger
Rupak Majumdar Andrey Rybalchenko

Technical Report No. MTC-REPORT-2006-003
December 22, 2006

.(l {\. Ecole Polytechnique Fédérale de Lausanne

ECOLE POLYTECHNIQUE Faculté Informatique & Communications
FEDERALE DE LAUSANNE CH-1015 Lausanne, Switzerland

Path Invariants

Dirk Beyer Thomas A. Henzinger Rupak Majumdar Andrey Rybalchenko
SFU EPFL UCLA EPFL and MPI

Abstract correct [21, 28], the available techniques for automaiical
proving useful assertions are still rather limited.

The success of software verification depends on the abil- We can broadly classify the techniques for proving asser-
ity to find a suitable abstraction of a program automatically tions into two categories. The first class of methods relies
We propose a new method for automated abstraction refine-on the user to set up a verification framework —i.e.aln
ment, which overcomes the inherent limitations of predicat stract interpretatiof14]— within which algorithms, often
discovery schemes. In such schemes, the cause of a faldeased on constraint solving, can efficiently search for pro-
positive is identified as an infeasible error path, and the ab gram invariants. Examples of such verification frameworks
straction is refined in order to remove that path. By con- include abstract domains (e.g., numerical [14], shap€e3 [42
trast, we view the cause of a false positive —the “spuri- and invariant templates (e.g., linear arithmetic [46] ntiesi-
ous counterexample”™— as a full-fledged program, whose preted functions [3]). With these methods, much care must
control-flow graph may contain loops of the original pro- be spent on choosing, for a given program, a suitable frame-
gram and represent unbounded computations. The advanwork which is both sufficiently expressive to limit the num-
tages of using suchath programss counterexamples for ber of false alarms and sufficiently inexpensive to compute
abstraction refinement are twofold. First, we can bring the invariants efficiently.
whole machinery of program analysis to bear on path pro- More recently, an ambitious approach that originated
grams: specifically, we use abstract interpretation in the within model checking [8] has been transferred to program
form of constrained-based invariant generation to autemat verification [2, 27]. This approach, calledunterexample-
ically infer invariants of path programs —so-calledth in- guided abstraction refineme(EGAR), attempts to auto-
variants Second, we use path invariants for abstraction re- matically tune the verification framework to the necessary
finement in order to remove not one infeasibility at a time, degree of precision. In CEGAR, a false alarm —called a
but to remove at once all infeasible error computations that counterexample- is analyzed for information how to re-
are represented by a path program. Unlike predicate discov- fine the abstract interpretation in order to remove the false
ery schemes, our method handles loops without unrolling alarm. This process is iterated until either a proof or a Bug i
them; it infers abstractions that involve universal quéinti found. The persuasive simplicity of CEGAR has also been
cation and naturally incorporates disjunctive invariants its main limitation: a counterexample is an infeasible pro-

gram path, and to remove that path one adds a predicate
Keywords: Formal Verification, Software Model Check- on program variables [9, 25] to be tracked by the abstract
ing, Predicate Abstraction, Abstraction Refinement, liavar interpretation. However, a verification framework that-con
ant Synthesis sists solely of tracking predicates —i.e.,pgedicate ab-
straction[23]— is woefully inadequate for many applica-
tions. For example, loops are often unrolled iteration by it
eration, only to find and remove longer and longer coun-
terexamples. Common loops over arrays cannot be handled

Even the most experienced programmers make mistakesit all, as the invariant requires universal quantifiersh@at
while programming, and they spend much time on test- than quantifier-free predicates).
ing their programs and fixing bugs. Although mature syn- We overcome these limitations of CEGAR by generaliz-
tax and type checkers are available today, automatic proof-ing the notion of counterexample. For us, a counterexam-
and bug-finding tools on the semantic level are required tople is not just a single infeasible program path, but a full-
produce robust and reliable code. Program verification hasfledged program, namely, the smallest syntactic subprogram
been a central topic of research since the early days of com-of the original program which produced the infeasibility.
puter science. While it has long been known thaser- Such a program is calledmath program Since a path pro-
tions(program invariants) are the key to proving a program gram may contain loops, it often represents not a single in-

1. Introduction

feasibility, but a whole family of infeasibilities —all thes we construct invariants, which in turn are used to refine
obtained from unrolling the loops. Hence, by refining the the analysis of the original program. The resulting invari-
abstraction in order to remove the counterexample, we re-ants eliminate all infeasible error paths that remain withi
move many (potentially infinitely many) false alarms in one the control-flow structure of the path program, e.g., by-arbi
step. However, such a refinement may require more thantrary unwinding of loops. Furthermore, by considering un-
the addition of a single predicate: in general, it requires t bounded computations of path programs, unlike previous
addition of a precise invariant for the path program —the CEGAR-based methods, we can infer universally quanti-
so-calledpath invariant Thus, instead of relying on heuris- fied invariants.
tics for discovering relevant information about counterex The invariant generation for path programs becomes the
amples, we can bring to bear the entire well-developed ma-central task within our approach. Note that a path program
chinery for synthesizing program invariants. exhibits only a small portion of the original program, which
Our method scales, because path programs —beings controlled by the property of interest. Hence, invariant
small fragments of the original program— pose compara- generation for path programs is easier than for the origi-
tively simple verification problems. In particular, sincatip nal program. We can apply existing methods and tools, e.g.,
programs contain no branching behavior, the explosive costabstract interpreters based on widening, or constraisgdba
of disjunctive reasoning about invariants is avoided. heot invariant generation methods. The use of path programs as
words, our approach can be viewed as decomposing a proeounterexamples shifts the focus from heuristics for disco
gram verification problem into a series of simpler, nondis- ering relevant information, to heuristics for efficientlisd
junctive problems about fragments of the original program. covering information (relevance is guaranteed).
Each false alarm gives rise to a new counterexample in the Qur approach combines the strengths of predicate ab-
form of a path program, and thus, to a new verification sub- straction and invariant generation. Predicate abstrapo-
problem. These new subproblems are generated until eitheforms well for disjunctive reasoning, e.g., case analysis d
a bug or a proof for the original program is found. pending on aliasing between pointer variables, or boolean
While we are free to apply any program analysis to path flags that control the program flow. Invariant generation,
programs, we use template-based invariant generation folby contrast, is strong in arithmetic reasoning and capable
the combined theories of linear arithmetic and unintegatet of quantified reasoning. The method is modular, in that it
functions [3] to derive invariants of path programs. This can be easily integrated into existing CEGAR-based soft-
allows us to overcome two major limitations of previous ware model checkers. We simply need to replace the pred-
CEGAR-based schemes. First, by synthesizing invariantsicate discovery module by a call to an invariant synthesizer
for path programs with loops, we avoid the iterative un- for path programs.

W|nB(;j|ng olea%op_f_hsuffered by CEGAE too.Is I”;,GL_SM [ZL Related Work. Our work is a synthesis of two approaches
or BLAST [].I €se approaches, by US'EQ ";'te paths as program analysis: counterexample-guided abstraction r
counterexamples, can never.guarante.e t at the next coung e ment and invariant synthesis. Our work unifies these ap-
terexample would not be a simple variation of the current roaches by generalizing counterexamples from paths (as
one, where some of the Ioop_s are traversed. SOme MOrG oy, are usually formulated in CEGAR) to program frag-
times. Path program-based refinement solve this problem. ments path programy on which we apply invariant syn-

~ Second, by synthesizing universally quantified asser-egijs techniques. As a result, we obtain a program analysis
tions, we can handle a considerably larger class of pro-ihat can automatically generate richer relationships @mon

grams, such as programs whose correctness depends on thg,qram variables without paying the high cost of search-
contents of arrays. Again, by using finite paths as counterex ing through the space of program invariants.

amples, which look only at finite numbers of array cells, it There has been a lot of recent interespiedicate ab-

s fun?grgentally impoisibrlle l:jofmake justifieg L&niversbally fstractionbased software model checking [23, 17], where the
quant! 1e¢ statements that hold for an un ounded NUMDEr Olgay o predicates is extended as the analysis proceeds by an-
array indices. Path programs solve also this problem. We il-

I h : d the benefits of disi _alyzing spurious counterexamples [8, 2, 26, 7, 25, 40]. The
ustratgt ese two points, and the benefits o nhon ,'SJLE]C“V incompleteness of usual implementations of CEGAR-based
reasoning about path programs, by three motivating exam-

. ; predicate abstraction is well-known [11, 15], and thereshav
ples in Section 2. been several attempts to suggest procedures that in the limi
Summary. We propose a fundamentally new approach to gain completeness: through carefully chosen widening op-
counterexample-guided abstraction refinement, which doeserations [1], or through carefully orchestrating the proof
not consider finite program paths, but path programs assearch in the underlying decision procedures [31]. In con-
counterexamples. Path programs are full-fledged programstrast, our technique of path invariant generation is parame
performing possibly unbounded (looping) computations, terized by the invariant templates used: they are sound and
but with a simple branching structure. From path programs complete modulo the template language, but the required

invariants to prove a program may not exist within the tem- The second example is a programtCHECK that ma-
plate language. nipulates arrays. The automatic discovery of relevant-pred
The second ingredient of our work iisvariant synthe- icates that contain universal quantification for its correc
sis There are several techniques for invariant synthesis,ness proof has been posed as a challenge in previous work
most notably by abstract fixpoint computation on a suit- on predicate abstraction and discovery [31, 40]. Path invar
ably constructed abstract domain [14, 16, 22, 42], or by a ants discover relevant universally quantified predicates t
constraint based analysis that instantiates the parasngfter gether with predicates over the loop counter.
an invariant template [3, 10, 32, 44]. While in our concrete The third example programARTITION addresses the
instantiation of path invariants, we have chosen thisiatte difficulty of dealing with global invariants. Since path pro
algorithm, our framework can equally well be instantiated grams capture only parts of the computations of the orig-
with an algorithm based on abstract interpretation. Iavari inal program, the corresponding path invariants may be
ants for arithmetic abstract domains have been studied exsmaller. Then, they represent parts of the set of reachable
tensively in both styles of analysis: notably by [34, 16, 41] states given by “global” invariants, which are captured by
in the abstract interpretation style, and by [5, 10, 13]gsin some combination of the individual pieces. Thus, path in-
constraint-based methods. For quantified invariants ¥avol variants allows one to implement lazy handling of disjunc-
ing arrays, [12, 22] give algorithms that computes fixpoints tion, which is guided by counterexample traces.
using a carefully constructed array domain. However, the
corresponding invariant synthesis problem using constrai 2 1. Example ForwaRrD: Capture Arbitrary Loop

solving and template instantiation has not, to the best bf ou Unwinding
knowledge, been studied before.
The need founiversally quantifiedssertions in the anal- Our first example is the programoRWARD from Fig-

ysis of programs manipulating unbounded data structuresyre 1(a), whose correctness argument depends on the inter-
such as arrays is well-known, and several approaches havg|ay hetween values of counter and data variables during
been suggested to infer quantified predicates for predicatgne |oop execution. The program executes a lagjmes,
abstraction [20, 37, 6]. However, while these techniques an in each iteration, depending on some (unmodeled) con-
either require specifying the actual predicates (ofterhwit dition, either increments the variabieby 1 andb by 2, or
Skolem constants for the quantified variables) [20, 6], or jncrementss by 2 andb by 1. At the end of the loop, we

use heuristics to generalize to quantifiers from finite exam- yant to assert the claim that the sum- b must be equal
ples [37]. In contrast, we provide a sound and complete in-y, 3,

variant generation technique for a class of invariant tem- . i : . .
plates (whose correctness depends on recent work in deci'-A‘bStraCt'on Refinement.First, let us briefly describe how

sion procedures [6] and invariant generation [3]). For tem- current techniques attempt to prove the assertion, and thus

plates not within our language, we can still apply our algo- set up a t_)ackground for Qemonstrat|ng the advantages of
path invariants w.r.t. the existing methods.

rithm and generate sound invariants, however, as expected, A standard N | ided abstracti f
there is no completeness guarantee. standard counterexampie-guidec: abstraction retine-
ment (CEGAR) algorithm implemented in a tool based on

Treatment of disjunction can be incorporated into the ab- dicate abstract it s b th F
stract interpretation framework by suitable manipulatén predicate abstraction attempts fo prove the program-
WARD in the following way. The initial abstraction discards

the control-flow graph of the program [39, 43]. Path invari- all data relationships (that is, no predicates are tragked)
ants implement such a manipulation in a property-guided and the initial reachability analysis checks if there is thpa

way- in the control-flow graph (CFG) that leads to the assertion
being violated. There are such paths in the CFG, and Fig-
2. Examples ure 1(b) shows one such abstract counterexample which tra-
verses thavhi | e-loop once, takes thehen-branch in the
We illustrate our path invariants-based method for auto- body of the loop, and then fails the assertion after leaving
matic refinement on three examples. The formal expositionthe loop. Notice that while this is a syntactic path in the
of the method shall be given in the subsequent sections. CFG, the counterexample $purious that is, cannot be ex-
The first example is a programoRWARD, whose cor- ecuted by the concrete program.
rectness argument depends on the interplay between values The second phase of the CEGAR algorithm is to check
of counter and data variables during the loop execution. Theif the counterexample produced in the reachability phase is
example shows that path invariants discover relevant predi genuine or spurious, and if spurious, to find additional pred
cates that eliminate not only the given counterexample, buticates that rule out the counterexample. The first step & thi
also all possible counterexamples that can be obtained byanalysis is to translate the counterexample into a logaral f
loop unwinding. mula called thepath formulathat is satisfiable iff the coun-

void forward(int n) {
int i, n, a, b;
LO: (n >0 bos (n > 0]
assume(n >= 0); e s
i =0, a=0; b=0; bi=0 bi=0
R ’ ’ L L 12
L1: while (i <n) {
i f () { [i < n] [i < n]
L2: a = a+l; U .Zzz 12 Uy
b = b+2; a::a+1 ' a:=a+1 . .
} else { bi=b42 bim b2
L3: a = at2; las
b = b+1; ;
} ii=i4 1
L4: i =0+l
)
L5: assert(atb == 3*n); T
) P >
[a + b # 3n] [a + b # 3n]
les
(b) (€) (d)
(@)
Figure 1. Program FORWARD illustrates discovery of relevant predicates that prevent loop unw inding by path in-
variants: (@) - the program, (b) - a counterexample, (C) - a path program that corresponds to the counterexam-
ple, and (d) - a potential counterexample resulting from loop unrolling (when pat h invariants are not applied). In
path and control-flow graph representation, we use [-] to denote assumptions that represent conditional con-
trol statements of the program. As usual, updates are denoted by :=. Doubled circles denote locations at exit

points of nested blocks of the programs, i.e. exit points of loops.

terexample can be executed in the concrete program [35]way to do this is to extract all atomic predicates that appear
The path formula is the conjunction of constraints derived in a proof of unsatisfiability of the path formula. (In prac-
from the operations along the path when the path is writ- tice, tools implement a more complicated scheme based on
ten in static single assignment form, that is, where each as-nterpolants, but that does not change our argument below.)
signment to a variable is given a fresh name. The path for- For this counterexample, a possible set of such predicates i
mula for the counterexample in Figuré) is the following

conjunction, where each line corresponds to a transitien be {i=0i=1,a=0,a=1b=0,b=2},

tween the control locations: . . .
which tracks the variables a, andb along the path. While

ng >0 A this set of predicates eliminates the counterexample, the
i1=0Aa; =0Ab =0A ly — 04 next round of reachability encounters a longer counterex-
i1 <o A 0 — 0y ample obtained by unwinding the loop one more time, for
as=a1+1ANby=0b;+1A by — {y example the counterexample in Figu(e)L This new coun-

o =a; +1A 0y — b terexample is eliminated by tracking in addition the predi-
’ig 2 no AN El — 85 cates

az + by # 3no b — e (i=2a=20b=4}.

It is unsatisfiable, since there is no initial valuation obpr
gram variables that leads to a program computation along
the counterexample. From an unsatisfiable path formula,
predicates are extracted that ensure that if the abstnactio {i=k,a=kb=2k},
tracks the predicates, then the current counterexample wil

be eliminated in subsequent abstract reachability steps. O and the method does not terminate.

In general, in thek-th refinement step, we find the predi-
cates

Path Invariants. Our refinement approach is basedpath Furthermore, any spurious counterexample that is ob-
invariants which we use instead of path formulas. We infer tained by traversing the path program is eliminated by track
path invariants for speciglath program which construc- ing these formulas. For example, consider a potential un-
tion is guided by the statements that appear in the coun-winding of the given counterexample that traverses the loop
terexample. The path program for the counterexample fromtwice, i.e., see the path shown in Figu(e)L When follow-
Figure Xb) is shown in Figure (c). ing this path and reaching the control locatigrfor the first

We observe that the path program contains several copiegime, a program analysis tracking the formulas from the in-
of the control location that are traversed by the counterex-variant map computes an over-approximation of the reach-
ample. Its statements are taken from the counterexamplegble states that is at least as strong as the assertion defined
and the control-flow graph captures the counterexampleby the invariant map at;. Since the path-invariant map is
path as well as its arbitrary unwindings. We shall define for- inductive and safe, we conclude that the over-approximatio
mally how path programs are constructed in Section 3. computed for the second visit to the locatibry is again

The counterexample passes two times through the con-as strong as the assertionfat,. This means that the path
trol location ¢;, which labels the loop entry. So the path shown in Figure (d) cannot appear as a spurious counterex-
program has a loop, — ¢o — ¢4 — ¢; inits CFG at lo- ample.
cation ¢;. Additionally it has copies of the locations that We can use similar reasoning to show that any un-
are traversed before exiting the structured block, i.eotgef ~ winding of the given counterexample within the CFG of
leaving the loop. the path program will not produce a counterexample. This

To refine the analysis so that ti@mily of counterex- means that any path whose sequence of visited control lo-
amples represented by the path program are all refuted atations is in the language defined by the regular expres-
once, we use invariant generation techniques. Since theresion ¢yl (¢204¢1)¢50s can never be reported as a spu-
are loops in the program, we can no longer construct a pathrious counterexample, once the formulas from the path-
formula that is linear in the counterexample length. Ingtea invariant map determine the abstraction. The formal justi-
we look forinvariant mapsA path-invariant maps amap- fication of this statement, which characterizes the relegan
ping from locations of the path program to formulas such of the predicates obtained from path invariants, reliesen t
that the following two conditions hold: (Initiation) theiin ~ completeness of abstract interpretation [11].
tial location of the program is mapped to the predicate:,
and (Consecution) for each pair of locatiof)s’” with an 2.2, Example IniTCHECk: Universally Quantified
edge(?, p, ¢') in the path program, we have that the succes- Predicates
sor of the predicate d@twith respect to the program opera-
tion p implies the predicate a. An invariant map isafe
if further the error location (i.e., where the assertiorsjai
is mapped tgfalse. Notice that an invariant map of the path
program needs not be an invariant map of the original pro-
gram (when the domain is suitably extended).

In this example we can generate invariants in arithmetic
domains, e.g. by applying methods described in [10, 46],
and obtain the following invariant map:

The previous example showed how path programs can
be used to refute a family of counterexamples arising from
unrolling a loop. The next example shows how the same
technique may be used to infquantifiedinvariants about
the program state. Reasoning about many programs that
manipulate unbounded data, e.g., stored in container data
structures like arrays, requires universally quantifiesbas
tions. Usually, these assertions contain universal qficanti
tion over indices, positions, or keys, which provide refer-

loo)= ¢ .
nEKO’Og -~ arieb _ 3 ence to data values stored in the data structure. There ex-
" 6171 . ; b— 3 ist a fundamental obstacle that prevents the systematic dis
77(;*2) — lsnha + . ! covery of universally quantified predicates based on (finite
n(la3) = t<nAe+b=3i+3 counterexamples. Namely, they can only expose a bounded
”(€1=4) = i<nha+b=3i number of data items that are stored in the data structure.
nlas)= i<nAa+b=3i Thus, it is difficult to derive and formally justify univerisa
n(A4’4) = ji<nAa+b=3i+3 guantification in the discovered predicates. The next exam-
n(lss) = a-+b=23n ple demonstrates our second technical contribution: in ad-
n(ggg) = false. dition to using path invariants in the abstraction refinemen

phase, we provide an invariant synthesis algorithm that can
The map is safe aé is mapped tofalse. A subsequent infer quantified invariant maps for programs that manipu-
analysis that tracks these formulas at the corresponding lo late arrays.
cations is guaranteed to eliminate the original counterexa Consider the progranNiTCHECK in Figure Za), which
ple. initializes an array t® and then checks that all the elements

void init_check(int *a,

int n) {

LO I nt I ; [i > n] j[i :1;:+01
: i:=0
L1: for (i =0; i <n; i++) { ‘ .
L2: a[i] = 0; li < nl
}
L3: for (i =0; i <n; i++4) [[]70]
L4: assert(a[i] == 0); g |
)
} [i < n]
lali] # 0]
a
@
(b) (©)
Figure 2. Program INITCHECK illustrates discovery of relevant universally quantified predicates for the chal-

lenge example from [31, 40]: (@) - an example program, (b) - a counterexample, (C) - path program that corre-
sponds to the counterexample.

in the array ar®. We wish to prove that all the assertions in program to represent this family of paths. We show the path
the second array pass. program for the given counterexample in Figufe)2

Abstraction Refinement. The path shown in Figure(B)
represents a spurious counterexample that would be found Given the path program, we can provide systematic jus-
by a verification tool that does not track the array contents tification of universal quantification using path invarigint
precisely. The path contains a statement that corresponds t The technical complication is that we have to infer induc-
the assertion violation, which appears after traversirpea tive invariant maps that map certain locations to univéysal
of the loops once. In particular, from the traversal of the gquantified assertions.

first loop we can conclude that the first element in the ar-
ray is initialized by zeroa[0] = 0. Then, by considering
this fact in the second loop, where the equalify} = 0 is
checked fori = 0, we conclude that the predicaié®)] = 0

An inductive invariant map, say, for our path program
needs to assert that at locatibnthe content ofi[¢] is zero.
) . o) Note that the transition to the error locatiégn, which is
is sufficient to eliminate the given counterexample. o -
taken from/, if a[i] = 0 does not hold, appears within a

However, the fact(0] = 0 eliminates only this particular op that iteratively increments the valueioHence, the as-
counterexample. It does not eliminate the next counterex-gertion assigned byto the locatior?, must implya[i] = 0

ample that traverses each loop twice (and requires trackingq, g1 values ofi reachable at,, which lie in the inter-
the facta[l] = 0). In fact, counterexample-based refine- 5| from 0 ton — 1. We observe that the first loop assigns
ment s likely to generate an infinite family of faetf] = 0 zero to an array celi[i] for each value of that is subse-
fori=0,1,... quently checked in the second loop.

We observe that since the number of array elements be-
ing initialized and subsequently checked byTCHECK is
determined by the variable, and hence is arbitrary, no fi- I
nite number of predicates obtained from finite counterex- 12€S the above reasons for the non-reachability of the error
amples created by on-going loop unwinding will ever suf- location in the path program. (See Section 4 for an algo-

fice to prove the program correct. We need a universally rithm computing invariants that contain universal quantifi
quantified predicatek : 0 < k < n — a[k] = 0 to effec- cation.) The assertions iprestrict the valuation of counter

variablei as well as universally quantified statements about
the content of the initialized cells in the array Asser-
Path Invariants. Justification of the universal quantifica- tions for the locations in the first loop only refer to the ar-
tion for the discovered predicates requires consideratfon ray content up to the positioi whereas the assertions for
all possible paths that traverse the initialization andckhe the second loop refer to each array cell starting betwleen
ing loops, located at; and/s, respectively. We use a path andn — 1. The cella[0] is not taken into account since the

We compute the inductive invariant mapthat formal-

tively perform verification of NITCHECK.

void partition(int xa, int n) {
int i, gelen, Itlen;
int ge[n], It[n];
L1: gelen = 0; Itlen = 0;
L2: for (i =0; i <n; i++) {
L3: if (a[i] >=0) {
L4: ge[gelen] = a[i];
gel en++;
} else {
L5: lt[ltlen] = ali];
It en++;
}
}
L6: for (i =0; i < gelen; i++) {
assert(ge[i] >= 0);
}
L7: for (i =0; i <lItlen; i++) {
assert(It[i] < 0);
}
}

Figure 3. Program PARTITION illustrates combin-
ing disjunctive reasoning over paths with univer-
sally quantified path invariants.

counterexample implicitly assumes thé6] = 0 holds by
passing the assertion first time.

n(£o.0) true

n(lia) = 0<i

nla2)= 0<iAi<n

nli3)= 1<iNi<nAVk:1<k<i—alk]=0
nlys) = 1<iNi<nAVk:1<k<i—alk]=0
nlsa) = 0<iAVk:1<k<n—alk]=0
Nlas)= 0<iNi<nAVE:1<k<n—alk]=0
nlze)= 1<iNi<nAVE:1<k<n—alk]=0
nlae) = 1<iNi<nAVk:1<k<n—alk]=0
nla7)= 1<iNi<nAVE:1<k<n—alk]=0
n(les) = false

By tracking the assertions in the range of the path-invarian

path to the assertion violation. We now illustrate how a path
invariant-based approach within a CEGAR framework can
lazily instantiate these different paths, using the path pr
gram derived from each counterexample to learn additional
facts.

Consider the programARTITION in Figure 3 that par-
titions the elements of an input arrayinto two arraysge
andt that contain respectively the non-negative and nega-
tive elements ofi. In order to prove the assertions, we need
the loop invariants

Vk:0 <k < gelen — ge[k] >0 Q)

Vk:0 <k <lelen — It[k] <0 2

at the control locatioh. 3.

Instead of applying invariant generation on the entire
program at once, CEGAR with path invariants will find the
two conjuncts of the invariant one at a time. For example,
consider first a spurious counterexample that goes through
thet hen branch of the conditional in theor loop. The
corresponding path program looks almost identical to the
path program for ExampleNiTCHECK from Figure Zc)
(except that instead of a direct write ge[i], the counterex-
ample contains the operatioassume(a[i] == 0); ge[i] =
ali];). Performing invariant synthesis on this path program
leads to a path-invariant map as in ExampleTICHECK.

In particular, at the locatioh3, we get the invariant from
Equation (1).

These invariants, however, are not enough to prove the
assertions, and a second counterexample is found. This
counterexample goes through thlese branch of the con-
ditional in thef or loop. Again, the path program is sim-
ilar to the path program for Examplenit CHECK. This
time, the path-invariant map generates the second conjunct
of the loop invariant. Together, these assertions are énoug
to prove the correctness of the program.

The key optimization is that the CEGAR algorithm
breaks the search for global program invariants (as is usual
in invariant synthesis techniques) into searching foniiatdi
ual components of the invariant, thus restricting the searc
to a much smaller space.

map, we are guaranteed that all potential counterexamples>- Deéfinitions

that visit a sequence of control locations from the set de-
fined by the regular expressidply ((2f1) T l3(Lels) T lale
are eliminated.

2.3. ExampleParTiTION: Disjunctive Reasoning

Path invariants findocal reasons that refute a family
of counterexamples. To prove an assertion in the program

Control-Flow Graphs (CFGs). We assume an abstract rep-
resentation of programs by transition systems [38pré-
gram P = (X, locs, ¢y, 7T, {¢) consists of a seX of vari-
ables, a sdbcs of control locations an initial locationé, €
locs, a set7 of transitions and an error locatiofe € locs.
Each transitionr € 7 is a tuple(?, p, ¢'), wherel, ¢’ € locs
are control locations, angd is a constraint over free vari-

though, an analysis may have to iterate through several dif-ables fromX U X’, where the variables froft’ denote the
ferent path programs, each of which presents a differentvalues of the variables froi¥ in the next state.

A state of a programP is a valuation of the vari-
ables fromX. The set of all states is writteval. X. We
shall represent sets of states using constraints. For a con-
straintp over X U X’ and a valuatior(s,s’) € val.X x
val. X', we write (s,s’) = p if the valuation satisfies the
constraintp. A computationof the programP is a se-
quence(myg, so){m1,s1) ... {(mg, sk) € (locs x val.X)*,
wheremg = /g is the initial location and for each
{0,...,k — 1}, there is a transitio{m;,p,m;11) € T
such thaf(s;, s;+1) = p. A location? is reachable if¢, s)
appears in some computation for some statA program
is unsafef /¢ is reachable.

A path of a programP is a sequence of transitions
™ = (Eo,po,fl), (61,p1,€2)7 ey (fkfl, pkfl,gk), where
{y is the initial location. The pathr is feasibleif there
is a computation(¢y, so), ..., (¢x, si) such that for each
i € {0,...,k — 1}, we have(s;, s;+1) = pi; andinfea-
sible otherwise. We writdocs. for the set{(y, ..., ¢;} of
locations in the pathr, and 7. for the set of transitions
{(%o, po, 1)y, (lr—1,pr—1,Lr)} in the path. For a pro-
gram P, we write Paths. P for the (possibly infinite) set of
paths ofP.

Invariants. An invariant at a location/ € locs of P is a
set of states containing the states reachabfe A&nh invari-
ant mapis a mappingy from locs to LI+UIF constraints o) = (£o,0)
(i.e., the combined theories of linear inequalities andhuni 0 = R0, H
terpreted functions) such that the following condition&iho e For each positioni € [0..k — 1] of the pathr, the path
o) program contains the transitiqii¢;, <), pi, (¢iy1,7 +
(o '”ljt'at";”) for the entry locatiorfo, we have 1)). Moreover, if there is a nested bloék € Blocks.
l-to = true. such that’; € B and/;,; ¢ B, andB; is the max-
(11: Inductiveness)for each?, £’ locs such that imal such block, then the path program contains also

(€,p,0") € T, we haven.L \p [= n.U'. Here, the following transitions:
n.¢ is the constraint obtained by substituting

Figure 4. Counterexample and corresponding path
program.

variables fromz’ for the variables from: in ((4,1), X' = X, (£3,));
776 ((637%107 (élvl)) for all (67 P E/) € T
(12: Safety) n.lg = false. _with £, 0" € B;;

The invariant synthesigproblem is to construct an invari-

ant map for a given program. For ease of exposition, we as- ® {e = ({e, k).
sume that an invariant map assigns an invariant to each pro]ntuitively,
gram location. For efficiency, one can require invariants to g oy pathr, and in addition all paths that result from
be defined only over a progracutseti.e., a set of program . staving within some nested blocks offor some addi-
locations such that every syntactic cycle in the CFG passes;onal transitions. Hence the path progrdfir] may tra-
through some location in the cutset. verse some loops that are traversedryore often, but it
Path Programs and Path Invariants. Consider a pro- contains no transition that does not occurrin

gram P = (X, locs, ¢y, 7,0s) with an error path Consider, for example, the error path

T = (go,po,gl),...,(Zk_l,pk_l,ég). Let 7.r =

{(o,p0,21), -, (lk—1,pr—1,%k)} be the set of transitions (€0, po, £1),
in 7. Let Blocks.m = {Bjy,..., B,,} be the set of nested (£1, p1, L2),
blocks of the control-flow graph of. Given P andw, we (€2, p2, 4r),
(€1, p3,40),
(
(
(

the paths of the path prograf{r] include the

0:

construct thepath programP[r] = (X, locs’, ¢}, 7", (%) ' i)
over the same variables as follows: 0, P05 £1),
01, p3,4o),

Lo, pa,le).

oahrwnE

e locs' = {£,0| ¢ €locs} x {0,... k}.

The nested blocks of this path afy = {¢y, 41,42} and The CEGAR algorithm has conceptually three phases
By = {¢1, 05}, with B, being a subblock of3;. The path [8, 2, 26]: abstract reachability, counterexample analysi
programP[7] may stay within the inner blocB. after the and abstraction refinement. Thbstract reachabilityphase
third transition, and within the outer block after the fifth tries to construct a proof of safety for the program, by gen-
transition ofr. The complete set of transitions Bfr]| is: erating an unwinding of the CFG where each node of the
unwinding is annotated with an abstract state. The abstract

%0’ (1);’ ﬁo’ Eﬁl’ ;g; state is a boolean combination of the current predicates be-
((el’ 2)’ pl’ (627 3))’ ing tracked, and represents an over-approximation of the se
((;’ 3)’ > (/1’ 4))’ of reachable states of the program when it executes the path
1), £3, 150, %/ A from the root of the tree to the current node. If a proof is
((41,3), X" = X, (£1,3)), found, that is, if the unwinding does not hit the error loca-
((@17 3), p1, (ég, 3)), tion, the algorithm stops. Otherwise the algorithm moves to
((EQ, 3), p2, (él, 3)), the counterexample analysgghase where it picks a coun-
((01,3), X" = X, (£4,3)), terexample from the tree (i.e., a path from the root to the
(£, 4) (01,5)) error location), and checks if this path is realiz_able in th_e
((60’ 5)’p0’ (617 6)), concrete program. The counterexample analysis phase first
él’ 6 135 607 7 ' constructs a logical formula from the counterexample that i
((£0,6), pa (€2, 7)), A satisfiable iff the counterexample is concretely execetabl
((£9,6), X" = X, (¢, 6)), If the counterexample is feasible, a bug is found and the al-
((o,6), po, (¢1,6)), gorithm stops. Otherwise, the algorithm proceeds with the
((€1,6), p1, (£2,6)), abstraction refinemerphase. However, instead of discov-
((@27 6), pa. (gl, 6)), ering predicates from the path, as in interpolation-baged a
((£1,6), p3, (o, 6)), proaches [25, 18, 40], we construct a path program from the
((

00,6), X' = X, (£o,6)) counterexample, and use a constraint-based invariant syn-
0,) - 5 \t0>»

thesis algorithm (outlined in the next section) to produce a
By viewing P[] instead ofr as a counterexample, we will - path-invariant map;. This invariant map is used to refine
simultaneously handle an unbounded number of error pathsthe predicate abstraction by adding the predicates appear-
namely, all error paths that extendand loop within the ing in 7.¢ to the locatior?. After this phase, the overall al-
blocks By and B, for an arbitrary number of iterations. We gorithm again proceeds with the abstract reachability @has
illustrate the example by drawings for the counterexample The three steps are repeated until either there is a proof or
and the corresponding path program in Figure 4; the transi-there is a bug (or, since the problem is undecidable, the loop
tions withp = X’ = X are omitted in the figure. does not terminate).

An invariant map for a path program is calledpath The key property of the refinement step using path in-
invariant Since a path progran?[z] may contain several ygriants is that the predicates that appear in the pathiinvar
different locationg, 1), (¢, 2), . .. which correspond to the ants rule outll abstract counterexamples arising from ar-
same locatiort of the original program?, these locations pjtrary unwindings of loops in the path program. This is in
may be mapped to different invariants. This corresponds tocontrast to existing implementations of CEGAR where each

unrolling of loops. refinement step is guaranteed to remove only the current ab-
stract counterexample, and hence may get stuck in remov-
4. Algorithms ing potentially infinitely many counterexamples involving

loop unwindings. LeReach.Il denote the set of all paths
We now instantiate path invariant based abstraction re_in the abstract reachability tree constructed in the abistra

finement in a predicate abstraction based CEGAR frame-féachability phase under abstractidn
work. Then, we present an algorithm to synthesinever-

sally quantifiednvariants over a combination of theories. Theorem 1 Let P be a programyr a spurious counterex-

ample, andp the invariant map for path progran®|x].
Then for any predicate majd such thatn.¢ € I1.¢ for all
¢ € 7, there exists no counterexampleReach.II that is

. . also inPaths. P[x].
While path programs are a general technique for program

analysis that automatically adjust their precision, we now As a corollary, if there is a proof of correctness of a
instantiate the framework in a predicate abstractiondbase program in a fixed template language, then CEGAR with
CEGAR loop, where path-invariant maps are used to sug-path invariants is guaranteed to produce this proof in a fi-
gest additional predicates. nite number of steps.

4.1. CEGAR with Path Invariants

4.2. Generation of Path Invariants Constraints on Template ParametersWe define a set of
constraints over the parameters of the templatesnd v

The crucial component in our path invariant-based CE- that encode the inductiveness and safety conditions. We
GAR algorithm is automatic invariant generation. We can Present one interesting case, which ensures consecution fo
rely on successful existing methods for the generation-of in the program statement that writes into the array. We use the
variants via reduction to constraint solving (cf. [10, 12,3 eXpressiora{i := 0} to denote the array obtained from
44, 45, 46)). Alternatively, we can also exploit the praatic ~ bY setting to zero its-th cell.
applicability of specialized abstract domains developed i . . ; g /
the framework of abstract interpretation (cf. [4, 16, 34)41 PAL <AL= itlAR =nnal =afi=0F = ¢ (3)

The above mentioned methods target numerical do- The proof of validity of the implication (3) can be de-
mains. Practical software verification requires more gainer composed into three sub-proofs, one for each conjungtin
predicate domains, including the combination of arithmeti Again, we consider one particular case, namely when the
with uninterpreted function symbols and universal quantifi conjunct of¢’ containing universal quantification appears
cation [2, 19, 20, 24, 26]. We can exploit recent advances inon the right-hand side of the implication. We define auxil-
reasoning about hierarchic combination of theories and a re iary symbolsr andp as
sulting algorithm for invariant generation [6, 33, 47, 3].

Next, we illustrate how we can generate path invariants
that contain universal quantification by applying the hiera
chical style of reasoning. We consider the path program for 5,4 consider the case below.
the example NITCHECK, which is shown in Figure Zc). . , , '

We observe that it is sufficient to concentrate on the cut-TAPAL =i+ 1An =nAa’ =a{i:=0}

points in the CFG, and to replace statements between thel= Vk : p'(i’,0') <k Ak < p?(i’,n') — a'[k] = p*(i',n)
cutpoints by composed ones. In our example, we shall com-
pute an inductive invariant map that assigns assertions
only to the control locationg, and/s.

T =Vk:p'(i,n) <k Ak <p?(i,n) — alk] = p*(i,n),
p=p*(i,n) SOAP°(i,n) SOAi<nm,

Let k* be a fresh variable, which we may treat as an aux-
iliary program variable. Next, we rewrite the universally
guantified assertion

Invariant Templates. We follow the template-based ap- . , ,)
proach to the generation of invariants (cf. [5, 10]). We as- 7/AP/AL =i+1An =nAia = a{i =0}

sume that for each control location in the domain of the = p'(i’,n') <k Ak* <p*(i',n') — a'[k*] = p*(i’,0'),
mapn we have a so-called invariant template, which is a

. : . and eliminate the implication from the right-hand side
parametric assertion over program variables. An example

for a simple template ip;i + p,n < p, wherep;, p,, and TApAi =i+1An =nAad =a{i:=0}A
p are parameters. This template denotes a set of assertions p!(i’.n') < k* Ak* < p?(i,n)
that can be obtained by giving values to parameters, e.g., £ a/[k*] = p3(i',0') .

2i —3n < 5. The crux of the template-based approach con-
sists of defining and solving a system of constraints over Primed Program Variables and Array Symbols.Now, we
the template’s parameters such that the resulting valstio can eliminate primed variables, which requires a case dis-

yield an inductive invariant map. tinction for the elimination of the primed array symhol
We assume an auxiliary notation wheie,n) denotes We need to distinguish two cases. In the first case, the write
the linear expressiof;i + t,n + ¢t. We usei , n, andk into the arraya takes place at the same position that is read

to denote the program variables and the index variable un-in the right-hand side, and hence we can directly use the

der universal quantification. Parameter-related varsabie written value. This means that if = k* then we have

p andgq. For our example, at the locatidn we assume the a’[k*] = 0. In the second case, the value of the cell at posi-

template tion x* in the arraya does not change after the update, i.e.,
we havea’[k*] = a[k*]. Thus, the implication (3) is valid if

¢ = (Vk:p'(i,n) <k Ak <p*(i,n) — alk] = p*(i,n)) A and only if the following two implications are valid:

4. S5
i,n) <0 A i,n) <0.
p(i,n) < p’(i,m) < TApAP (i+1,n) <k*AK* <p’(i+1,n)A

Note that the first conjunct of the template contains univer- i =%k" =0=p*(i + 1,n) (42)
sal quantification. The templatefor the location/s is de- TApApt(i+1,n) <k*Ak* <p*(i+1,n)A

fined in terms of;!, . .., ¢° in an analogous way. We write i#4k" Ealk*] =p°(i+1,n). (4b)
¢’ andy’ to denote the next-step versions of the templates,

which are obtained by replacing the program variahles Universal Quantification. At the next step we replace the
and the array symbeal by i’, n’, anda’ respectively. conjunctr containing the universally quantified implication

10

by the quantifier free instances of the implication that are Implication Encoding. The sequence of previously de-
obtained for appropriate valuations of the quantified vari- scribed steps transforms the condition (3), which ensures
ablek. We find the appropriate valuations feiby analyz- that the template> yields an assertion satisfying the induc-
ing the structure of (4a) and (4b). tiveness constraint at the control locatignto the conjunc-

We collect all occurrences of array read expressions, i.e. tion of conditions (5), (6), and (8). They contain arithroeti
of termsa[-] indexed by positions other than universally expressions that are linear w.r.t. the program variabkesd
guantified indexk. We observe that the implication (4a) n, and auxiliary variable*, v, andw. Thus, we can ap-
does not have any such occurrences. Hence, we concludely the classical approach for encoding the validity of such

that the validity of (4a) does not rely on its conjunctWe implications by arithmetic constraints over the template p
can replace the condition (4a) by the condition rameter®;, p,, andp. We omit details of this construction,
see, e.g., [5, 10, 48] for detailed exposition.

pAP (i+1n) <K*AK <p*(i+1,n)A

5 We proceed in the similar way with the remaining condi-
i=Xk|=0=pi+1,n). () b y 9

tions on the invariant templates, and translate them inéb a s
In the implication (4b), the set of occurrences is the sin- of arithmetic constraints. We compute a valuation of tem-

gleton set{k*}. Since the array read expressigjx*| ap- plate parameters, which yields an inductive invariant map
pears only on the right-hand side of the implication (4b), defining a path invariant, by applying specialized constrai
its validity depends omr. The conjunctr can yield a con- solving techniques on the resulting constraint (cf. [1J) 44
straint onalk*], via the universal quantification, ¥* satis- We obtain the following valuation of the template param-
fies the premises of the implication in That is, we have eters for the control locatiofy
alk*] = p*(i,n) and require the condition | p'(i,n) | p2(4,n) | p*(i,0) | p*(i,n) | p°(i,m) |

| 0 | i-1] 0 | —-i | i-n |
which yields the invariant

pAP'(i+1,n) <k*Ak*<p*(i+1,n)A 6
i # k" = p'(i,n) < k" Ak* < p?(i,n). ©
Under assumption that the template parameters satisfy thgvk : 0 <kAk <i—1 — afk] = 0)A—i <0Ai—n<0.
condition (6), we can drop the implication (4b) and use the) _)))
following one instead, wherglk*] = p(i,n) is an instance Thgoretlcal Fou_ndauon_s.WhlIe we have outlined the in-

of = which we add to the left-hand side of the implication: ~variant synthesis algorithm through an example, we can
. - . e o, prove that our algorithm is sound and complete for invari-
i<nAp(i+Ln) <K AK <p°(i+Ln)A (7) ant generation for invariant templates from the following
i# K Aalk'] =p’(i,n) | ak*] = p*(i + 1,n). language. A template is a conjunction of linear inequaitie
over the program variables whose coefficients may be pa-
rameters that may be conjoined with a universally quanti-
fied template

Array Reads as Function Applications. So far, we re-
duced the condition (3) containing universal quantifiaatio
and an array update expression to a conjunction of condi-
tions that require reasoning over arithmetic and array readyy, .. vk, : /\pi(X) < kink; < Gi(X) — (X, kq, ..., k),
expressions. We observe that due to the absence of array up- i
dates, we can treat array read expressions as applicafions o .
uninterpreted function gymbols. F'I)'his means thiﬁ we only wherep;(X), ¢(X), andT(X’ k- k) are I|_near terms

. .) . over the program variableX with parameterized coeffi-
assgmethefunctlonallty axiom, which states tha_\t_aread Op'cients, and the linear expressioncan additionally have
eration from the same array from the same position alwaysterms where the variables appear as indices in array reads

roduces the same value. . . .
P We consider the condition (7). We replace each occur- (!.e., as terma k] for an array varlablg). T_hat 'S, ouralgo- .
S : rithm is guaranteed to construct an invariant map for invari

rence of the array read expressigin*] by a fresh variable

: . . ant templates in the language of array properties iff an in-

and record its origin. Let the first occurrence be replaced by __ . . . o ,
: . variant m Xi nd is expressible in the lan . Thi
the variablev and second one by. Then, we introduce an ariant map exists and is expressible in the language S

. X : . follows from several rvations: first, th idabib
equality constraint over the fresh variables. The congtrai ollows from several observations: first, the decidabiby

encodes the functionality axiom, as described above, an he array property fragment [6], second, the reduction of

states that andw are equal if the corresponding array read he invariant synthesis problem for linear arithmetic and u
. v q resp 9 y ._interpreted functions to linear arithmetic using hieracch
expressions refer to the same position in the array. In this

. o . combination of theories [3], and third, the soundness and
particular case, the premise is vacuously true, sineed : : : : : :
. : completeness of invariant generation for linear arithmeti
w replace the same expression. Finally, we can replace tth . . ; . . .
condition (7) by the following: 'e omit the technical details. We can still run our invari-

y g ant synthesis algorithm in case the template does not con-

pAp i+ 1,n) <k*AK* <p*(i+1,n)A form to the above form, but then completeness is no longer

i#k" Av= pg(i7n) AV=ulw= p3(i +1,n). guaranteed (results are sound, however).

)

11

The complexity of the procedure is influenced by the Example INITCHECK. The path program shown in Fig-
number of array reads involving quantified variables, since ure Zc) contains an assertion statement that refers to the
each array read on the r.h.s. involves a case split. In our ex-content of the arrays and is accessible inside a loop.
periments, we have therefore always tried to find invariants Thus, our heuristic proposes the following map contain-
of the tractable form: ing universally quantified templates for the cut-point loca
tions ¢; 3 and /3 ¢ (wherec’(i,n) denotes the expression

Vi p(X) <k Ak < g(X) — alk] = r(X), cli+cin + ¢/, andd’ is defined similarly):

wherep(X), ¢(X), andr(X) are linear terms over the pro- VE : el(i,n) < k < 2(i,n) — alk]
gram variablesY with parameterized coefficients, aads RO
an array symbol in the program.

A(i,n)
Yk d'(i,n) < k < d*(i,n) — alk] = d*(i,n).

This template reflects the intuition that the assertiordtyli
5. Experiments depends on the content of a range of array cells.
The tool instantiates the template in 3 s as follows:

We have implemented the instantiation of our technique
using predicate abstraction-based CEGAR and template-
based invariant generation as outlined in Section 4. This
gives an automatic software verification tool that can rea-
son about universally quantified assertions.

The invariant generation tool is implemented using
the Constraint Logic Programming system SK.S Pro-
log [36], which contains a constraint solver for linear larit
metic [29]. The tool takes as input a path program together . .
with an invariant template map. The template map ranges,Example PARTITION . The experimental data for this ex-
over cut-points. Invariants for non-cut-point locations a ample is similar to the example/IT CHECK. Again, no tem-
obtained by computing strongest postconditions from cut- Plate refinement is required.
points in a standard way. The path programs are constructed
from error paths as generated by theaBT model checker. 6. Discussion

We have applied our algorithm to examples involving
array reasoning, including the examples in Section 2. We
present some experimental data collected while applying PO
the tool (on a 1.6 GHz laptop).

Vk:0<k<n—1—alk]=0
Vk:i<k<n-—1-a[k] =0.

Note that, compared to the manually created invariant map
shown in Section 2, no additional conjuncts are required.
We observe that at locatiofy ¢, the universally quantified
indexk ranges from ton — 1, thus, there is no need for any
additional constraints on the value of variable

We make two contributions in this paper. First, we pro-
se an abstraction refinement technique that considers pro
gram fragments rather than finite paths as counterexamples.
Example FORWARD. In order to compute a path invariant Path invariants decouple the problem of synthesizing possi
for the path program shown in Figuréc), we first try an ply disjunctive invariants into an efficient search over-pro
invariant template map that assigns the template gram paths performed by the CEGAR loop, and a search
for program relationships that rule oatl possible path
unwindings of the path program through strong invariant
generation techniques. By considering program fragments
rather than paths, our refinement algorithms can find expres-
sive assertions on the program state.

Our second contribution is an instantiation of our scheme
with path invariant generation based on constraint-based i
variant synthesis. In particular, we provide a templateeda
scheme for synthesizingniversally quantifiednvariants
(e.g., toreason about array elements) that is sound and com-
plete for our template language.

citl+con+cqa+cepb+c=0

to the control locatior?; 4 (which is the only cut-point),
where¢;, ¢, cq, ¢, and ¢ are unknown parameters to be
instantiated. We choose this template following a simple
heuristic that obtains a template by replacing the coeffi-
cients of the target assertion by parameters.

Our tool fails to instantiate the above template, and re-
ports the failure in 40 ms. We heuristically refine the tem-
plate by conjoining an inequality, and obtain the new tem-

late
P The initial experiences with the tool are promising. We
Cit + cpn 4+ coa 4+ b+ ¢ =0 A believe the combination of abstract interpretation based p
dii + dpyn + dya + dyb +d < 0. gram analysis and abstraction refinement via path invariant

generation will provide scalable and precise techniques fo

This template is instantiated in 130 ms, and yields the asser proving program assertions. For example, in initial exper-
tion iments, we could automatically prove a suite of programs
a+b=3iNa+b<3n. (including the ones in Section 2) none of which could be

12

proved by BAST, a state-of-the-art software verification
tool.

However, path programs are not a panacea for all pro-
gram verification problems. In particular, we assume sim- [11]
ple invariant templates heuristically. It may happen that t
program is safe, but the templates guessed by the tool aré'?]
not strong enough to capture the invariants required for a
proof of safety. Also, our technigque is geared towards prov-
ing safety of systems. Consider a buggy version of Example
INITCHECK:

[10]

[13]

0; i

for (i ;
1;

ali]

assert (a[0] ==0);

< 100; i++) {

[14]

In this case, the CEGAR analysis will generate longer and [15]
longer counterexample traces, however, the path program

is useless since there is no path-invariant map that eshibit
the infeasibility of the error path for all unwindings of the
loop (there is, in fact, an error trace). We are investigatin
how our techniques can be combined with techniques that
are geared towards falsification.

[16]

[17]

References

[18]
[1] T. Ball, A. Podelski, and S. K. Rajamani. Relative complete-
ness of abstraction refinement for software model check-
ing. InProc. TACASLNCS 2280, pages 158-172. Springer,

2002.

T. Ball and S. K. Rajamani. TheL3M project: Debugging

system software via static analysis. Pmoc. POPL pages

1-3. ACM, 2002.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Ry-

balchenko. Invariant synthesis for combined theories.

Proc. VMCAI LNCS 4349. Springer, 2007.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Ming, D. Monniaux, and X. Rival. A static analyzer for

large safety-critical software. IRroc. PLD|, pages 196—207.

ACM, 2003.

[5] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking
with reachability. InProc. CAV LNCS 3576, pages 491-504.
Springer, 2005.

[6] A.R.Bradley, Z. Manna, and H. B. Sipma. What'’s decidable
about arrays? IProc. VMCAI LNCS 3855, pages 427-442.
Springer, 2006.

[7] S.Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Mod- [25)

ular verification of software components in GEEE Trans.

Software Eng.30(6):388-402, 2004.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-guided abstraction refinement. Ptoc.

CAV, LNCS 1855, pages 154-169. Springer, 2000.

E. M. Clarke, A. Gupta, J. H. Kukula, and O. Strichman. SAT

based abstraction-refinement using ILP and machine learn-

ing techniques. IProc. CAV LNCS 2404, pages 265-279.

Springer, 2002.

[19]
(2]

[20]
[3]
In

[21]
[4]

[22]

(23]

[24]

(8] [26]

[27]
(9]

[28]

13

M. Colbn, S. Sankaranarayanan, and H. B. Sipma. Linear
invariant generation using non-linear constraint solving. In
Proc. CAV LNCS 2725, pages 420-432. Springer, 2003.

P. Cousot. Partial completeness of abstract fixpoint checking.
In Proc. SARALNCS 1864, pages 1-15. Springer, 2000.

P. Cousot. Verification by abstract interpretation. \ri-
fication: Theory and PracticdLNCS 2772, pages 243—-268.
Springer, 2003.

P. Cousot. Proving program invariance and termination by
parametric abstraction, Lagrangian relaxation and semidefi-
nite programming. IrProc. VMCAI LNCS 3385. Springer,
2005.

P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by construc-
tion or approximation of fixpoints. IfProc. POPL pages
238-252. ACM, 1977.

P. Cousot and R. Cousot. Comparing the Galois connec-
tion and widening/narrowing approaches to abstract interpre-
tation. InProc. PLILP, LNCS 631, pages 269-295. Springer,
1992.

P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a programPioc. POPL,
pages 84-96, 1978.

S. Das, D. L. Dill, and S. Park. Experience with predi-
cate abstraction. IRroc. CAV LNCS 1633, pages 160-171.
Springer, 1999.

J. Esparza, S. Kiefer, and S. Schwoon. Abstraction re-
finement with Craig interpolation and symbolic pushdown
systems. InProc. TACAS LNCS 3920, pages 489-503.
Springer, 2006.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
Proc. PLDI, pages 234-245. ACM, 2002.

C. Flanagan and S. Qadeer. Predicate abstraction for soft-
ware verification. InPOPL'2002 pages 191-202. ACM,
2002.

R. W. Floyd. Assighing meanings to programs. Niath-
ematical Aspects of Computer Scienpages 19-32. AMS,
1967.

D. Gopan, T. W. Reps, and M. Sagiv. A framework for nu-
meric analysis of array operations. Rroc. POPL pages
338-350. ACM, 2005.

S. Graf and H. S@i. Construction of abstract state graphs
with PVS. InProc. CAV LNCS 1254, pages 72-83. Springer,
1997.

S. Gulwani and A. Tiwari. Combining abstract interpreters.
In Proc. PLDI, pages 376-386. ACM, 2006.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMil-
lan. Abstractions from proofs. IRroc. POPL, pages 232—
244. ACM, 2004.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. IrProc. POPL, pages 58—70. ACM, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with BAST. In Proc. SPIN LNCS 2648,
pages 235-239. Springer, 2003.

C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM12(10):576-580, 1969.

[29] C. Holzbaur.OFAI clp(qg,r) Manual, Edition 1.3.3Austrian [40] K.L.McMillan. Lazy abstraction with interpolants. Proc.

Research Institute for Artificial Intelligence, Vienna, 1995. CAV, LNCS 4144, pages 123-136. Springer, 2006.

TR-95-09. [41] A. Miné. The octagon abstract domaiHigher-Order and
[30] R. Jhala and R. Majumdar. Path slicing. Pmoc. PLDI, Symbolic Computatiqr2006. to appear.

pages 38-47. ACM, 2005. _ [42] M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape
[31] R. Jhala and K. L. McMillan. ~ A practical and com- analysis via 3-valued logic.ACM Trans. Program. Lang.

plete approach to predicate refinement. Aroc. TACAS Syst. (TOPLASP4(3):217-298, 2002.

LNCS 3920, pages 459-473. Springer, 2006. _ [43] S.Sankaranarayanan, F. lvancic, I. Shlyakhter, and At&up
[32] D. Kapur. Automatically generating loop invariants using Static analysis in disjunctive numerical domains. Aroc.

quantifier elimination. IrProc. Deduction and Applications SASLNCS 4134, pages 3-17. Springer, 2006.

volume 05431. IBFI Schloss Dagstuhl, 2006.

[33] D. Kapur and C. Zarba. A reduction approach to decision
procedures. Technical Report TR-CS-2005-44, University of
New Mexico, 2005.

[34] M. Karr. Affine relationships among variables of a program.
Acta Inf, 6:133-151, 1976.

[35] J. C. King. Symbolic execution and program testi@pm-

[44] S. Sankaranarayanan, H. B. Sipma, and Z. Manna.
Constraint-based linear-relations analysis. Aroc. SAS
LNCS 3148, pages 53—-68. Springer, 2004.

[45] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-
linear loop invariant generation using @mer bases. In
Proc. POPL pages 318-329. ACM, 2004.

mun. ACM 19(7):385-394, 1976 [46] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable
') ! , , analysis of linear systems using mathematical programming.

[36] T. I. S. Laboratory. SIC8Us PROLOG User's Manual .

Swedish Institute of Computer Science, PO Box 1263 SE- In Proc. V_MCAl LNCS 3385’_ pages_ 25-41. S_prlr.lger, 2005.

164 29 Kista. Sweden. October 2001. Release 3.8.7. [47] V. Sofronie-Stokkermans. Hierarchic reasoning in local the-
[37] S. K. Lahiri and R. E. Bryant. Indexed predicate dis- ory extensions. I®roc. CADE LNCS 3632, pages 219-234.

covery for unbounded system verification. Mmoc. CAV Springer, 2005. o o]

LNCS 3114, pages 135-147. Springer, 2004. [48] K. Sohn and A. V. Gelder. Termination detection in |Og|C pro-
[38] Z. Manna and A. PnueliTemporal verification of reactive grams using argument sizes.Rroc. PODSpages 216-226.

systems: SafetySpringer, 1995. ACM, 1991.

[39] L. Mauborgne and X. Rival. Trace partitioning in ab-
stract interpretation based static analyzersPioc. ESOR
LNCS 3444, pages 5-20. Springer, 2005.

14

