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Abstract

The success of software verification depends on the abil-
ity to find a suitable abstraction of a program automatically.
We propose a new method for automated abstraction refine-
ment, which overcomes the inherent limitations of predicate
discovery schemes. In such schemes, the cause of a false
positive is identified as an infeasible error path, and the ab-
straction is refined in order to remove that path. By con-
trast, we view the cause of a false positive —the “spuri-
ous counterexample”— as a full-fledged program, whose
control-flow graph may contain loops of the original pro-
gram and represent unbounded computations. The advan-
tages of using suchpath programsas counterexamples for
abstraction refinement are twofold. First, we can bring the
whole machinery of program analysis to bear on path pro-
grams: specifically, we use abstract interpretation in the
form of constrained-based invariant generation to automat-
ically infer invariants of path programs —so-calledpath in-
variants. Second, we use path invariants for abstraction re-
finement in order to remove not one infeasibility at a time,
but to remove at once all infeasible error computations that
are represented by a path program. Unlike predicate discov-
ery schemes, our method handles loops without unrolling
them; it infers abstractions that involve universal quantifi-
cation and naturally incorporates disjunctive invariants.

Keywords: Formal Verification, Software Model Check-
ing, Predicate Abstraction, Abstraction Refinement, Invari-
ant Synthesis

1. Introduction

Even the most experienced programmers make mistakes
while programming, and they spend much time on test-
ing their programs and fixing bugs. Although mature syn-
tax and type checkers are available today, automatic proof-
and bug-finding tools on the semantic level are required to
produce robust and reliable code. Program verification has
been a central topic of research since the early days of com-
puter science. While it has long been known thatasser-
tions(program invariants) are the key to proving a program

correct [21, 28], the available techniques for automatically
proving useful assertions are still rather limited.

We can broadly classify the techniques for proving asser-
tions into two categories. The first class of methods relies
on the user to set up a verification framework —i.e., anab-
stract interpretation[14]— within which algorithms, often
based on constraint solving, can efficiently search for pro-
gram invariants. Examples of such verification frameworks
include abstract domains (e.g., numerical [14], shapes [42])
and invariant templates (e.g., linear arithmetic [46], uninter-
preted functions [3]). With these methods, much care must
be spent on choosing, for a given program, a suitable frame-
work which is both sufficiently expressive to limit the num-
ber of false alarms and sufficiently inexpensive to compute
invariants efficiently.

More recently, an ambitious approach that originated
within model checking [8] has been transferred to program
verification [2, 27]. This approach, calledcounterexample-
guided abstraction refinement(CEGAR), attempts to auto-
matically tune the verification framework to the necessary
degree of precision. In CEGAR, a false alarm —called a
counterexample— is analyzed for information how to re-
fine the abstract interpretation in order to remove the false
alarm. This process is iterated until either a proof or a bug is
found. The persuasive simplicity of CEGAR has also been
its main limitation: a counterexample is an infeasible pro-
gram path, and to remove that path one adds a predicate
on program variables [9, 25] to be tracked by the abstract
interpretation. However, a verification framework that con-
sists solely of tracking predicates —i.e., apredicate ab-
straction [23]— is woefully inadequate for many applica-
tions. For example, loops are often unrolled iteration by it-
eration, only to find and remove longer and longer coun-
terexamples. Common loops over arrays cannot be handled
at all, as the invariant requires universal quantifiers (rather
than quantifier-free predicates).

We overcome these limitations of CEGAR by generaliz-
ing the notion of counterexample. For us, a counterexam-
ple is not just a single infeasible program path, but a full-
fledged program, namely, the smallest syntactic subprogram
of the original program which produced the infeasibility.
Such a program is called apath program. Since a path pro-
gram may contain loops, it often represents not a single in-



feasibility, but a whole family of infeasibilities —all those
obtained from unrolling the loops. Hence, by refining the
abstraction in order to remove the counterexample, we re-
move many (potentially infinitely many) false alarms in one
step. However, such a refinement may require more than
the addition of a single predicate: in general, it requires the
addition of a precise invariant for the path program —the
so-calledpath invariant. Thus, instead of relying on heuris-
tics for discovering relevant information about counterex-
amples, we can bring to bear the entire well-developed ma-
chinery for synthesizing program invariants.

Our method scales, because path programs —being
small fragments of the original program— pose compara-
tively simple verification problems. In particular, since path
programs contain no branching behavior, the explosive cost
of disjunctive reasoning about invariants is avoided. In other
words, our approach can be viewed as decomposing a pro-
gram verification problem into a series of simpler, nondis-
junctive problems about fragments of the original program.
Each false alarm gives rise to a new counterexample in the
form of a path program, and thus, to a new verification sub-
problem. These new subproblems are generated until either
a bug or a proof for the original program is found.

While we are free to apply any program analysis to path
programs, we use template-based invariant generation for
the combined theories of linear arithmetic and uninterpreted
functions [3] to derive invariants of path programs. This
allows us to overcome two major limitations of previous
CEGAR-based schemes. First, by synthesizing invariants
for path programs with loops, we avoid the iterative un-
winding of loops suffered by CEGAR tools like SLAM [2]
or BLAST [30]. These approaches, by using finite paths as
counterexamples, can never guarantee that the next coun-
terexample would not be a simple variation of the current
one, where some of the loops are traversed some more
times. Path program-based refinement solve this problem.

Second, by synthesizing universally quantified asser-
tions, we can handle a considerably larger class of pro-
grams, such as programs whose correctness depends on the
contents of arrays. Again, by using finite paths as counterex-
amples, which look only at finite numbers of array cells, it
is fundamentally impossible to make justified universally
quantified statements that hold for an unbounded number of
array indices. Path programs solve also this problem. We il-
lustrate these two points, and the benefits of nondisjunctive
reasoning about path programs, by three motivating exam-
ples in Section 2.

Summary. We propose a fundamentally new approach to
counterexample-guided abstraction refinement, which does
not consider finite program paths, but path programs as
counterexamples. Path programs are full-fledged programs,
performing possibly unbounded (looping) computations,
but with a simple branching structure. From path programs

we construct invariants, which in turn are used to refine
the analysis of the original program. The resulting invari-
ants eliminate all infeasible error paths that remain within
the control-flow structure of the path program, e.g., by arbi-
trary unwinding of loops. Furthermore, by considering un-
bounded computations of path programs, unlike previous
CEGAR-based methods, we can infer universally quanti-
fied invariants.

The invariant generation for path programs becomes the
central task within our approach. Note that a path program
exhibits only a small portion of the original program, which
is controlled by the property of interest. Hence, invariant
generation for path programs is easier than for the origi-
nal program. We can apply existing methods and tools, e.g.,
abstract interpreters based on widening, or constraint-based
invariant generation methods. The use of path programs as
counterexamples shifts the focus from heuristics for discov-
ering relevant information, to heuristics for efficiently dis-
covering information (relevance is guaranteed).

Our approach combines the strengths of predicate ab-
straction and invariant generation. Predicate abstraction per-
forms well for disjunctive reasoning, e.g., case analysis de-
pending on aliasing between pointer variables, or boolean
flags that control the program flow. Invariant generation,
by contrast, is strong in arithmetic reasoning and capable
of quantified reasoning. The method is modular, in that it
can be easily integrated into existing CEGAR-based soft-
ware model checkers. We simply need to replace the pred-
icate discovery module by a call to an invariant synthesizer
for path programs.

Related Work. Our work is a synthesis of two approaches
to program analysis: counterexample-guided abstraction re-
finement and invariant synthesis. Our work unifies these ap-
proaches by generalizing counterexamples from paths (as
they are usually formulated in CEGAR) to program frag-
ments (path programs) on which we apply invariant syn-
thesis techniques. As a result, we obtain a program analysis
that can automatically generate richer relationships among
program variables without paying the high cost of search-
ing through the space of program invariants.

There has been a lot of recent interest inpredicate ab-
stractionbased software model checking [23, 17], where the
set of predicates is extended as the analysis proceeds by an-
alyzing spurious counterexamples [8, 2, 26, 7, 25, 40]. The
incompleteness of usual implementations of CEGAR-based
predicate abstraction is well-known [11, 15], and there have
been several attempts to suggest procedures that in the limit
gain completeness: through carefully chosen widening op-
erations [1], or through carefully orchestrating the proof
search in the underlying decision procedures [31]. In con-
trast, our technique of path invariant generation is parame-
terized by the invariant templates used: they are sound and
complete modulo the template language, but the required
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invariants to prove a program may not exist within the tem-
plate language.

The second ingredient of our work isinvariant synthe-
sis. There are several techniques for invariant synthesis,
most notably by abstract fixpoint computation on a suit-
ably constructed abstract domain [14, 16, 22, 42], or by a
constraint based analysis that instantiates the parameters of
an invariant template [3, 10, 32, 44]. While in our concrete
instantiation of path invariants, we have chosen this latter
algorithm, our framework can equally well be instantiated
with an algorithm based on abstract interpretation. Invari-
ants for arithmetic abstract domains have been studied ex-
tensively in both styles of analysis: notably by [34, 16, 41]
in the abstract interpretation style, and by [5, 10, 13] using
constraint-based methods. For quantified invariants involv-
ing arrays, [12, 22] give algorithms that computes fixpoints
using a carefully constructed array domain. However, the
corresponding invariant synthesis problem using constraint
solving and template instantiation has not, to the best of our
knowledge, been studied before.

The need foruniversally quantifiedassertions in the anal-
ysis of programs manipulating unbounded data structures
such as arrays is well-known, and several approaches have
been suggested to infer quantified predicates for predicate
abstraction [20, 37, 6]. However, while these techniques
either require specifying the actual predicates (often with
Skolem constants for the quantified variables) [20, 6], or
use heuristics to generalize to quantifiers from finite exam-
ples [37]. In contrast, we provide a sound and complete in-
variant generation technique for a class of invariant tem-
plates (whose correctness depends on recent work in deci-
sion procedures [6] and invariant generation [3]). For tem-
plates not within our language, we can still apply our algo-
rithm and generate sound invariants, however, as expected,
there is no completeness guarantee.

Treatment of disjunction can be incorporated into the ab-
stract interpretation framework by suitable manipulationof
the control-flow graph of the program [39, 43]. Path invari-
ants implement such a manipulation in a property-guided
way.

2. Examples

We illustrate our path invariants-based method for auto-
matic refinement on three examples. The formal exposition
of the method shall be given in the subsequent sections.

The first example is a program FORWARD, whose cor-
rectness argument depends on the interplay between values
of counter and data variables during the loop execution. The
example shows that path invariants discover relevant predi-
cates that eliminate not only the given counterexample, but
also all possible counterexamples that can be obtained by
loop unwinding.

The second example is a program INITCHECK that ma-
nipulates arrays. The automatic discovery of relevant pred-
icates that contain universal quantification for its correct-
ness proof has been posed as a challenge in previous work
on predicate abstraction and discovery [31, 40]. Path invari-
ants discover relevant universally quantified predicates to-
gether with predicates over the loop counter.

The third example program PARTITION addresses the
difficulty of dealing with global invariants. Since path pro-
grams capture only parts of the computations of the orig-
inal program, the corresponding path invariants may be
smaller. Then, they represent parts of the set of reachable
states given by “global” invariants, which are captured by
some combination of the individual pieces. Thus, path in-
variants allows one to implement lazy handling of disjunc-
tion, which is guided by counterexample traces.

2.1. ExampleFORWARD: Capture Arbitrary Loop
Unwinding

Our first example is the program FORWARD from Fig-
ure 1(a), whose correctness argument depends on the inter-
play between values of counter and data variables during
the loop execution. The program executes a loopn times,
and in each iteration, depending on some (unmodeled) con-
dition, either increments the variablea by 1 andb by 2, or
incrementsa by 2 andb by 1. At the end of the loop, we
want to assert the claim that the suma + b must be equal
to 3n.

Abstraction Refinement.First, let us briefly describe how
current techniques attempt to prove the assertion, and thus
set up a background for demonstrating the advantages of
path invariants w.r.t. the existing methods.

A standard counterexample-guided abstraction refine-
ment (CEGAR) algorithm implemented in a tool based on
predicate abstraction attempts to prove the program FOR-
WARD in the following way. The initial abstraction discards
all data relationships (that is, no predicates are tracked),
and the initial reachability analysis checks if there is a path
in the control-flow graph (CFG) that leads to the assertion
being violated. There are such paths in the CFG, and Fig-
ure 1(b) shows one such abstract counterexample which tra-
verses thewhile-loop once, takes thethen-branch in the
body of the loop, and then fails the assertion after leaving
the loop. Notice that while this is a syntactic path in the
CFG, the counterexample isspurious, that is, cannot be ex-
ecuted by the concrete program.

The second phase of the CEGAR algorithm is to check
if the counterexample produced in the reachability phase is
genuine or spurious, and if spurious, to find additional pred-
icates that rule out the counterexample. The first step in this
analysis is to translate the counterexample into a logical for-
mula called thepath formulathat is satisfiable iff the coun-
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void forward(int n) {
int i, n, a, b;

L0:
assume( n >= 0 );
i = 0; a = 0; b = 0;

L1: while ( i < n ) {
if ( ... ) {

L2: a = a+1;
b = b+2;

} else {
L3: a = a+2;

b = b+1;
}

L4: i = i+1;
}

L5: assert( a+b == 3*n );
}

(a)

`0

`1

`2

`4

`1

`5

`E

[n ≥ 0]
i := 0
a := 0
b := 0

[i < n]

a := a+1
b := b + 2

i := i + 1

[i ≥ n]

[a + b 6= 3n]

(b)

`0,0

`1,1

`2,2

`4,3

`1,4

ˆ̀
2,4

ˆ̀
4,4

`5,5

`E, 6

[n ≥ 0]
i := 0
a := 0
b := 0

[i < n]

a := a+1
b := b + 2

i := i + 1

[i < n]

a := a+1
b := b + 1

i := i + 1
[i ≥ n]

[a + b 6= 3n]

(c)

`0 `1

`2

`4`1

`2

`4 `1

`5

`E

(d)

Figure 1. Program FORWARD illustrates discovery of relevant predicates that prevent loop unw inding by path in-
variants: (a) - the program, (b) - a counterexample, (c) - a path program that corresponds to the counterexam-
ple, and (d) - a potential counterexample resulting from loop unrolling (when pat h invariants are not applied). In
path and control-flow graph representation, we use [·] to denote assumptions that represent conditional con-
trol statements of the program. As usual, updates are denoted by :=. Doubled circles denote locations at exit
points of nested blocks of the programs, i.e. exit points of loops.

terexample can be executed in the concrete program [35].
The path formula is the conjunction of constraints derived
from the operations along the path when the path is writ-
ten in static single assignment form, that is, where each as-
signment to a variable is given a fresh name. The path for-
mula for the counterexample in Figure 1(b) is the following
conjunction, where each line corresponds to a transition be-
tween the control locations:

n0 ≥ 0 ∧

i1 = 0 ∧ a1 = 0 ∧ b1 = 0 ∧ `0 → `1
i1 < n0 ∧ `1 → `2
a2 = a1 + 1 ∧ b2 = b1 + 1 ∧ `2 → `4
i2 = a1 + 1 ∧ `4 → `1
i2 ≥ n0 ∧ `1 → `5
a2 + b2 6= 3n0 `5 → `E

It is unsatisfiable, since there is no initial valuation of pro-
gram variables that leads to a program computation along
the counterexample. From an unsatisfiable path formula,
predicates are extracted that ensure that if the abstraction
tracks the predicates, then the current counterexample will
be eliminated in subsequent abstract reachability steps. One

way to do this is to extract all atomic predicates that appear
in a proof of unsatisfiability of the path formula. (In prac-
tice, tools implement a more complicated scheme based on
interpolants, but that does not change our argument below.)
For this counterexample, a possible set of such predicates is

{i = 0, i = 1, a = 0, a = 1, b = 0, b = 2},

which tracks the variablesi, a, andb along the path. While
this set of predicates eliminates the counterexample, the
next round of reachability encounters a longer counterex-
ample obtained by unwinding the loop one more time, for
example the counterexample in Figure 1(d). This new coun-
terexample is eliminated by tracking in addition the predi-
cates

{i = 2, a = 2, b = 4}.

In general, in thek-th refinement step, we find the predi-
cates

{i = k, a = k, b = 2k},

and the method does not terminate.
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Path Invariants. Our refinement approach is based onpath
invariants, which we use instead of path formulas. We infer
path invariants for specialpath program, which construc-
tion is guided by the statements that appear in the coun-
terexample. The path program for the counterexample from
Figure 1(b) is shown in Figure 1(c).

We observe that the path program contains several copies
of the control location that are traversed by the counterex-
ample. Its statements are taken from the counterexample,
and the control-flow graph captures the counterexample
path as well as its arbitrary unwindings. We shall define for-
mally how path programs are constructed in Section 3.

The counterexample passes two times through the con-
trol location `1, which labels the loop entry. So the path
program has a loop̀1 → `2 → `4 → `1 in its CFG at lo-
cation `1. Additionally it has copies of the locations that
are traversed before exiting the structured block, i.e. before
leaving the loop.

To refine the analysis so that thefamily of counterex-
amples represented by the path program are all refuted at
once, we use invariant generation techniques. Since there
are loops in the program, we can no longer construct a path
formula that is linear in the counterexample length. Instead,
we look forinvariant maps. A path-invariant mapis a map-
ping from locations of the path program to formulas such
that the following two conditions hold: (Initiation) the ini-
tial location of the program is mapped to the predicatetrue,
and (Consecution) for each pair of locations`, `′ with an
edge(`, ρ, `′) in the path program, we have that the succes-
sor of the predicate at̀with respect to the program opera-
tion ρ implies the predicate at̀′. An invariant map issafe
if further the error location (i.e., where the assertion fails)
is mapped tofalse. Notice that an invariant map of the path
program needs not be an invariant map of the original pro-
gram (when the domain is suitably extended).

In this example we can generate invariants in arithmetic
domains, e.g. by applying methods described in [10, 46],
and obtain the following invariant map:

η(`0,0) = true

η(`1,1) = a+ b = 3i

η(`2,2) = i < n ∧ a+ b = 3i

η(`4,3) = i < n ∧ a+ b = 3i+ 3

η(`1,4) = i ≤ n ∧ a+ b = 3i

η(ˆ̀2,4) = i < n ∧ a+ b = 3i

η(ˆ̀4,4) = i < n ∧ a+ b = 3i+ 3

η(`5,5) = a+ b = 3n

η(`E,6) = false.

The map is safe as̀E is mapped tofalse. A subsequent
analysis that tracks these formulas at the corresponding lo-
cations is guaranteed to eliminate the original counterexam-
ple.

Furthermore, any spurious counterexample that is ob-
tained by traversing the path program is eliminated by track-
ing these formulas. For example, consider a potential un-
winding of the given counterexample that traverses the loop
twice, i.e., see the path shown in Figure 1(d). When follow-
ing this path and reaching the control location`1 for the first
time, a program analysis tracking the formulas from the in-
variant map computes an over-approximation of the reach-
able states that is at least as strong as the assertion defined
by the invariant map at̀1. Since the path-invariant map is
inductive and safe, we conclude that the over-approximation
computed for the second visit to the location`1,4 is again
as strong as the assertion at`1,4. This means that the path
shown in Figure 1(d) cannot appear as a spurious counterex-
ample.

We can use similar reasoning to show that any un-
winding of the given counterexample within the CFG of
the path program will not produce a counterexample. This
means that any path whose sequence of visited control lo-
cations is in the language defined by the regular expres-
sion `0`1(`2`4`1)+`5`E can never be reported as a spu-
rious counterexample, once the formulas from the path-
invariant map determine the abstraction. The formal justi-
fication of this statement, which characterizes the relevance
of the predicates obtained from path invariants, relies on the
completeness of abstract interpretation [11].

2.2. Example INITCHECK: Universally Quantified
Predicates

The previous example showed how path programs can
be used to refute a family of counterexamples arising from
unrolling a loop. The next example shows how the same
technique may be used to inferquantifiedinvariants about
the program state. Reasoning about many programs that
manipulate unbounded data, e.g., stored in container data
structures like arrays, requires universally quantified asser-
tions. Usually, these assertions contain universal quantifica-
tion over indices, positions, or keys, which provide refer-
ence to data values stored in the data structure. There ex-
ist a fundamental obstacle that prevents the systematic dis-
covery of universally quantified predicates based on (finite)
counterexamples. Namely, they can only expose a bounded
number of data items that are stored in the data structure.
Thus, it is difficult to derive and formally justify universal
quantification in the discovered predicates. The next exam-
ple demonstrates our second technical contribution: in ad-
dition to using path invariants in the abstraction refinement
phase, we provide an invariant synthesis algorithm that can
infer quantified invariant maps for programs that manipu-
late arrays.

Consider the program INITCHECK in Figure 2(a), which
initializes an array to0 and then checks that all the elements

5



void init_check(int *a,
int n) {

int i;
L0:
L1: for (i = 0; i < n; i++) {
L2: a[i] = 0;

}
L3: for (i = 0; i < n; i++) {
L4: assert( a[i] == 0 );

}
}

(a)

`0 `1

`2

`1`3

`4

`3 `4

`E

i := 0

[i < n]

a[i] := 0
i := i+1[i ≥ n]

i := 0

[i < n]

[a[i] = 0]
i := i + 1

[i < n]

[a[i] 6= 0]

(b)

`0,0 `1,1

`2,2

`1,3
ˆ̀
2,3

`3,4

`4,5

`3,6
ˆ̀
4,6

`4,7

`E,8

i := 0

[i < n]

a[i] := 0
i := i+1[i < n]

a[i] := 0
i := i + 1

[i ≥ n]
i := 0

[i < n]

[a[i] = 0]
i := i + 1

[i < n]

[a[i] = 0]
i := i + 1

[i < n]

[a[i] 6= 0]

(c)

Figure 2. Program INITCHECK illustrates discovery of relevant universally quantified predicates for the chal-
lenge example from [31, 40]: (a) - an example program, (b) - a counterexample, (c) - path program that corre-
sponds to the counterexample.

in the array are0. We wish to prove that all the assertions in
the second array pass.

Abstraction Refinement. The path shown in Figure 2(b)
represents a spurious counterexample that would be found
by a verification tool that does not track the array contents
precisely. The path contains a statement that corresponds to
the assertion violation, which appears after traversing each
of the loops once. In particular, from the traversal of the
first loop we can conclude that the first element in the ar-
ray is initialized by zero,a[0] = 0. Then, by considering
this fact in the second loop, where the equalitya[i] = 0 is
checked fori = 0, we conclude that the predicatea[0] = 0
is sufficient to eliminate the given counterexample.

However, the facta[0] = 0 eliminates only this particular
counterexample. It does not eliminate the next counterex-
ample that traverses each loop twice (and requires tracking
the facta[1] = 0). In fact, counterexample-based refine-
ment is likely to generate an infinite family of factsa[i] = 0
for i = 0, 1, . . .

We observe that since the number of array elements be-
ing initialized and subsequently checked by INITCHECK is
determined by the variablen, and hence is arbitrary, no fi-
nite number of predicates obtained from finite counterex-
amples created by on-going loop unwinding will ever suf-
fice to prove the program correct. We need a universally
quantified predicate∀k : 0 ≤ k < n → a[k] = 0 to effec-
tively perform verification of INITCHECK.

Path Invariants. Justification of the universal quantifica-
tion for the discovered predicates requires considerationof
all possible paths that traverse the initialization and check-
ing loops, located at̀1 and`3, respectively. We use a path

program to represent this family of paths. We show the path
program for the given counterexample in Figure 2(c).

Given the path program, we can provide systematic jus-
tification of universal quantification using path invariants.
The technical complication is that we have to infer induc-
tive invariant maps that map certain locations to universally
quantified assertions.

An inductive invariant map, sayη, for our path program
needs to assert that at location`4 the content ofa[i] is zero.
Note that the transition to the error location`E , which is
taken from`4 if a[i] = 0 does not hold, appears within a
loop that iteratively increments the value ofi. Hence, the as-
sertion assigned byη to the locatioǹ 4 must implya[i] = 0
for all values ofi reachable at̀ 4, which lie in the inter-
val from 0 to n − 1. We observe that the first loop assigns
zero to an array cella[i] for each value ofi that is subse-
quently checked in the second loop.

We compute the inductive invariant mapη that formal-
izes the above reasons for the non-reachability of the error
location in the path program. (See Section 4 for an algo-
rithm computing invariants that contain universal quantifi-
cation.) The assertions inη restrict the valuation of counter
variablei as well as universally quantified statements about
the content of the initialized cells in the arraya. Asser-
tions for the locations in the first loop only refer to the ar-
ray content up to the positioni, whereas the assertions for
the second loop refer to each array cell starting between1
andn − 1. The cella[0] is not taken into account since the
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void partition(int *a, int n) {
int i, gelen, ltlen;
int ge[n], lt[n];

L1: gelen = 0; ltlen = 0;
L2: for (i = 0; i < n; i++) {
L3: if (a[i] >= 0) {
L4: ge[gelen] = a[i];

gelen++;
} else {

L5: lt[ltlen] = a[i];
ltlen++;

}
}

L6: for (i = 0; i < gelen; i++) {
assert(ge[i] >= 0);

}
L7: for (i = 0; i < ltlen; i++) {

assert(lt[i] < 0);
}

}

Figure 3. Program PARTITION illustrates combin-
ing disjunctive reasoning over paths with univer-
sally quantified path invariants.

counterexample implicitly assumes thata[0] = 0 holds by
passing the assertion first time.

η(`0,0) = true

η(`1,1) = 0 ≤ i

η(`2,2) = 0 ≤ i ∧ i < n

η(`1,3) = 1 ≤ i ∧ i ≤ n ∧ ∀k : 1 ≤ k < i→ a[k] = 0

η(ˆ̀2,3) = 1 ≤ i ∧ i < n ∧ ∀k : 1 ≤ k < i→ a[k] = 0

η(`3,4) = 0 ≤ i ∧ ∀k : 1 ≤ k < n→ a[k] = 0

η(`4,5) = 0 ≤ i ∧ i < n ∧ ∀k : 1 ≤ k < n→ a[k] = 0

η(`3,6) = 1 ≤ i ∧ i ≤ n ∧ ∀k : 1 ≤ k < n→ a[k] = 0

η(ˆ̀4,6) = 1 ≤ i ∧ i < n ∧ ∀k : 1 ≤ k < n→ a[k] = 0

η(`4,7) = 1 ≤ i ∧ i < n ∧ ∀k : 1 ≤ k < n→ a[k] = 0

η(`E,8) = false

By tracking the assertions in the range of the path-invariant
map, we are guaranteed that all potential counterexamples
that visit a sequence of control locations from the set de-
fined by the regular expression`0`1(`2`1)+`3(`4`3)+`4`E
are eliminated.

2.3. ExamplePARTITION: Disjunctive Reasoning

Path invariants findlocal reasons that refute a family
of counterexamples. To prove an assertion in the program,
though, an analysis may have to iterate through several dif-
ferent path programs, each of which presents a different

path to the assertion violation. We now illustrate how a path
invariant-based approach within a CEGAR framework can
lazily instantiate these different paths, using the path pro-
gram derived from each counterexample to learn additional
facts.

Consider the program PARTITION in Figure 3 that par-
titions the elements of an input arraya into two arraysge
andlt that contain respectively the non-negative and nega-
tive elements ofa. In order to prove the assertions, we need
the loop invariants

∀k : 0 ≤ k < gelen → ge[k] ≥ 0 (1)

∀k : 0 ≤ k < lelen → lt [k] < 0 (2)

at the control locationL3.
Instead of applying invariant generation on the entire

program at once, CEGAR with path invariants will find the
two conjuncts of the invariant one at a time. For example,
consider first a spurious counterexample that goes through
thethen branch of the conditional in thefor loop. The
corresponding path program looks almost identical to the
path program for Example INITCHECK from Figure 2(c)
(except that instead of a direct write toge[i], the counterex-
ample contains the operationsassume(a[i] == 0); ge[i] =
a[i];). Performing invariant synthesis on this path program
leads to a path-invariant map as in Example INITCHECK.
In particular, at the locationL3, we get the invariant from
Equation (1).

These invariants, however, are not enough to prove the
assertions, and a second counterexample is found. This
counterexample goes through theelse branch of the con-
ditional in thefor loop. Again, the path program is sim-
ilar to the path program for Example INITCHECK. This
time, the path-invariant map generates the second conjunct
of the loop invariant. Together, these assertions are enough
to prove the correctness of the program.

The key optimization is that the CEGAR algorithm
breaks the search for global program invariants (as is usual
in invariant synthesis techniques) into searching for individ-
ual components of the invariant, thus restricting the search
to a much smaller space.

3. Definitions

Control-Flow Graphs (CFGs).We assume an abstract rep-
resentation of programs by transition systems [38]. Apro-
gramP = (X, locs, `0, T , `E) consists of a setX of vari-
ables, a setlocs of control locations, an initial locatioǹ 0 ∈
locs, a setT of transitions, and an error locatioǹE ∈ locs.
Each transitionτ ∈ T is a tuple(`, ρ, `′), where`, `′ ∈ locs

are control locations, andρ is a constraint over free vari-
ables fromX ∪X ′, where the variables fromX ′ denote the
values of the variables fromX in the next state.
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A state of a programP is a valuation of the vari-
ables fromX. The set of all states is writtenval.X. We
shall represent sets of states using constraints. For a con-
straintρ overX ∪ X ′ and a valuation(s, s′) ∈ val.X ×
val.X ′, we write (s, s′) |= ρ if the valuation satisfies the
constraintρ. A computationof the programP is a se-
quence〈m0, s0〉〈m1, s1〉 . . . 〈mk, sk〉 ∈ (locs × val.X)∗,
wherem0 = `0 is the initial location and for eachi ∈
{0, . . . , k − 1}, there is a transition(mi, ρ,mi+1) ∈ T
such that(si, si+1) |= ρ. A location` is reachable if〈`, s〉
appears in some computation for some states. A program
is unsafeif `E is reachable.

A path of a programP is a sequence of transitions
π = (`0, ρ0, `1), (`1, ρ1, `2), . . . , (`k−1, ρk−1, `k), where
`0 is the initial location. The pathπ is feasible if there
is a computation〈`0, s0〉, . . . , 〈`k, sk〉 such that for each
i ∈ {0, . . . , k − 1}, we have(si, si+1) |= ρi; and infea-
sibleotherwise. We writelocs.π for the set{`0, . . . , `k} of
locations in the pathπ, andτ.π for the set of transitions
{(`0, ρ0, `1), . . . , (`k−1, ρk−1, `k)} in the path. For a pro-
gramP , we writePaths.P for the (possibly infinite) set of
paths ofP .

Invariants. An invariant at a locatioǹ ∈ locs of P is a
set of states containing the states reachable at`. An invari-
ant mapis a mappingη from locs to LI+UIF constraints
(i.e., the combined theories of linear inequalities and unin-
terpreted functions) such that the following conditions hold:

(I0: Initiation) for the entry locatioǹ0, we have
η.`0 = true.

(I1: Inductiveness)for each̀ , `′ ∈ locs such that
(`, ρ, `′) ∈ T , we haveη.` ∧ ρ |= η.`′. Here,
η.`′ is the constraint obtained by substituting
variables fromx′ for the variables fromx in
η.`.

(I2: Safety) η.`E = false.

The invariant synthesisproblem is to construct an invari-
ant map for a given program. For ease of exposition, we as-
sume that an invariant map assigns an invariant to each pro-
gram location. For efficiency, one can require invariants to
be defined only over a programcutset, i.e., a set of program
locations such that every syntactic cycle in the CFG passes
through some location in the cutset.

Path Programs and Path Invariants. Consider a pro-
gram P = (X, locs, `0, T , `E) with an error path
π = (`0, ρ0, `1), . . . , (`k−1, ρk−1, `E). Let T .π =
{(`0, ρ0, `1), . . . , (`k−1, ρk−1, `k)} be the set of transitions
in π. Let Blocks.π = {B1, . . . , Bm} be the set of nested
blocks of the control-flow graph ofπ. GivenP andπ, we
construct thepath programP [π] = (X, locs

′, `′0, T
′, `′

E
)

over the same variables as follows:

• locs
′ = {`, ˆ̀ | ` ∈ locs} × {0, . . . , k}.

`0

`1

`2

`1

`0

`1

`0

`E

ρ0

ρ1

ρ2

ρ3

ρ0

ρ3

ρ4

(a)

`0,0

`1,1

`2,2

`1,3
ˆ̀
2,3

`0,4

`1,5

`0,6
ˆ̀
1,6

ˆ̀
2,6

`E,7

ρ0

ρ1

ρ2

ρ3

ρ0

ρ3

ρ4

ρ1

ρ2

ρ0

ρ3

ρ1

ρ2

(b)

Figure 4. Counterexample and corresponding path
program.

• `′0 = (`0, 0).

• For each positioni ∈ [0..k − 1] of the pathπ, the path
program contains the transition((`i, i), ρi, (`i+1, i +
1)). Moreover, if there is a nested blockB ∈ Blocks.π

such that̀ i ∈ B and`i+1 6∈ B, andBi is the max-
imal such block, then the path program contains also
the following transitions:

((`i, i),X
′ = X, (ˆ̀i, i));

((ˆ̀, i), ρ, (ˆ̀′, i)) for all (`, ρ, `′) ∈ T .π
with `, `′ ∈ Bi;

((ˆ̀i, i),X
′ = X, (`i, i)).

• `′
E

= (`E , k).

Intuitively, the paths of the path programP [π] include the
error pathπ, and in addition all paths that result fromπ
by staying within some nested blocks ofπ for some addi-
tional transitions. Hence the path programP [π] may tra-
verse some loops that are traversed byπ more often, but it
contains no transition that does not occur inπ.

Consider, for example, the error pathπ

0: (`0, ρ0, `1),
1: (`1, ρ1, `2),
2: (`2, ρ2, `1),
3: (`1, ρ3, `0),
4: (`0, ρ0, `1),
5: (`1, ρ3, `0),
6: (`0, ρ4, `E).
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The nested blocks of this path areB1 = {`0, `1, `2} and
B2 = {`1, `2}, with B2 being a subblock ofB1. The path
programP [π] may stay within the inner blockB2 after the
third transition, and within the outer block after the fifth
transition ofπ. The complete set of transitions ofP [π] is:

((`0, 0), ρ0, (`1, 1)),
((`1, 1), ρ1, (`2, 2)),
((`2, 2), ρ2, (`1, 3)),
((`1, 3), ρ3, (`0, 4)),

((`1, 3),X ′ = X, (ˆ̀1, 3)),
((ˆ̀1, 3), ρ1, (ˆ̀2, 3)),
((ˆ̀2, 3), ρ2, (ˆ̀1, 3)),
((ˆ̀1, 3),X ′ = X, (`1, 3)),

((`0, 4), ρ0, (`1, 5)),
((`1, 5), ρ3, (`0, 6)),
((`0, 6), ρ4, (`E , 7)),

((`0, 6),X ′ = X, (ˆ̀0, 6)),
((ˆ̀0, 6), ρ0, (ˆ̀1, 6)),
((ˆ̀1, 6), ρ1, (ˆ̀2, 6)),
((ˆ̀2, 6), ρ2, (ˆ̀1, 6)),
((ˆ̀1, 6), ρ3, (ˆ̀0, 6)),
((ˆ̀0, 6),X ′ = X, (`0, 6)).

By viewingP [π] instead ofπ as a counterexample, we will
simultaneously handle an unbounded number of error paths,
namely, all error paths that extendπ and loop within the
blocksB1 andB2 for an arbitrary number of iterations. We
illustrate the example by drawings for the counterexample
and the corresponding path program in Figure 4; the transi-
tions withρ ≡ X ′ = X are omitted in the figure.

An invariant map for a path program is called apath
invariant. Since a path programP [π] may contain several
different locations(`, 1), (`, 2), . . . which correspond to the
same locatioǹ of the original programP , these locations
may be mapped to different invariants. This corresponds to
unrolling of loops.

4. Algorithms

We now instantiate path invariant based abstraction re-
finement in a predicate abstraction based CEGAR frame-
work. Then, we present an algorithm to synthesizeuniver-
sally quantifiedinvariants over a combination of theories.

4.1. CEGAR with Path Invariants

While path programs are a general technique for program
analysis that automatically adjust their precision, we now
instantiate the framework in a predicate abstraction-based
CEGAR loop, where path-invariant maps are used to sug-
gest additional predicates.

The CEGAR algorithm has conceptually three phases
[8, 2, 26]: abstract reachability, counterexample analysis,
and abstraction refinement. Theabstract reachabilityphase
tries to construct a proof of safety for the program, by gen-
erating an unwinding of the CFG where each node of the
unwinding is annotated with an abstract state. The abstract
state is a boolean combination of the current predicates be-
ing tracked, and represents an over-approximation of the set
of reachable states of the program when it executes the path
from the root of the tree to the current node. If a proof is
found, that is, if the unwinding does not hit the error loca-
tion, the algorithm stops. Otherwise the algorithm moves to
the counterexample analysisphase where it picks a coun-
terexample from the tree (i.e., a path from the root to the
error location), and checks if this path is realizable in the
concrete program. The counterexample analysis phase first
constructs a logical formula from the counterexample that is
satisfiable iff the counterexample is concretely executable.
If the counterexample is feasible, a bug is found and the al-
gorithm stops. Otherwise, the algorithm proceeds with the
abstraction refinementphase. However, instead of discov-
ering predicates from the path, as in interpolation-based ap-
proaches [25, 18, 40], we construct a path program from the
counterexample, and use a constraint-based invariant syn-
thesis algorithm (outlined in the next section) to produce a
path-invariant mapη. This invariant map is used to refine
the predicate abstraction by adding the predicates appear-
ing in η.` to the locatioǹ . After this phase, the overall al-
gorithm again proceeds with the abstract reachability phase.
The three steps are repeated until either there is a proof or
there is a bug (or, since the problem is undecidable, the loop
does not terminate).

The key property of the refinement step using path in-
variants is that the predicates that appear in the path invari-
ants rule outall abstract counterexamples arising from ar-
bitrary unwindings of loops in the path program. This is in
contrast to existing implementations of CEGAR where each
refinement step is guaranteed to remove only the current ab-
stract counterexample, and hence may get stuck in remov-
ing potentially infinitely many counterexamples involving
loop unwindings. LetReach.Π denote the set of all paths
in the abstract reachability tree constructed in the abstract
reachability phase under abstractionΠ.

Theorem 1 Let P be a program,π a spurious counterex-
ample, andη the invariant map for path programP [π].
Then for any predicate mapΠ such thatη.` ∈ Π.` for all
` ∈ π, there exists no counterexample inReach.Π that is
also inPaths.P [π].

As a corollary, if there is a proof of correctness of a
program in a fixed template language, then CEGAR with
path invariants is guaranteed to produce this proof in a fi-
nite number of steps.
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4.2. Generation of Path Invariants

The crucial component in our path invariant-based CE-
GAR algorithm is automatic invariant generation. We can
rely on successful existing methods for the generation of in-
variants via reduction to constraint solving (cf. [10, 13, 32,
44, 45, 46]). Alternatively, we can also exploit the practical
applicability of specialized abstract domains developed in
the framework of abstract interpretation (cf. [4, 16, 34, 41]).

The above mentioned methods target numerical do-
mains. Practical software verification requires more general
predicate domains, including the combination of arithmetic
with uninterpreted function symbols and universal quantifi-
cation [2, 19, 20, 24, 26]. We can exploit recent advances in
reasoning about hierarchic combination of theories and a re-
sulting algorithm for invariant generation [6, 33, 47, 3].

Next, we illustrate how we can generate path invariants
that contain universal quantification by applying the hierar-
chical style of reasoning. We consider the path program for
the example INITCHECK, which is shown in Figure 2(c).
We observe that it is sufficient to concentrate on the cut-
points in the CFG, and to replace statements between the
cutpoints by composed ones. In our example, we shall com-
pute an inductive invariant mapη that assigns assertions
only to the control locations̀1 and`3.

Invariant Templates. We follow the template-based ap-
proach to the generation of invariants (cf. [5, 10]). We as-
sume that for each control location in the domain of the
mapη we have a so-called invariant template, which is a
parametric assertion over program variables. An example
for a simple template ispii + pnn ≤ p, wherepi, pn, and
p are parameters. This template denotes a set of assertions
that can be obtained by giving values to parameters, e.g.,
2i− 3n ≤ 5. The crux of the template-based approach con-
sists of defining and solving a system of constraints over
the template’s parameters such that the resulting valuations
yield an inductive invariant map.

We assume an auxiliary notation wheret(i, n) denotes
the linear expressiontii + tnn + t. We usei, n, andk
to denote the program variables and the index variable un-
der universal quantification. Parameter-related variables are
p andq. For our example, at the location`1 we assume the
template

ϕ = (∀k : p1(i, n) ≤ k ∧ k ≤ p2(i, n) → a[k] = p3(i, n)) ∧

p4(i, n) ≤ 0 ∧ p5(i, n) ≤ 0 .

Note that the first conjunct of the template contains univer-
sal quantification. The templateψ for the locatioǹ 2 is de-
fined in terms ofq1, . . . , q5 in an analogous way. We write
ϕ′ andψ′ to denote the next-step versions of the templates,
which are obtained by replacing the program variablesi, n,
and the array symbola by i′, n′, anda′ respectively.

Constraints on Template Parameters.We define a set of
constraints over the parameters of the templatesϕ andψ
that encode the inductiveness and safety conditions. We
present one interesting case, which ensures consecution for
the program statement that writes into the array. We use the
expressiona{i := 0} to denote the array obtained froma
by setting to zero itsi-th cell.

ϕ∧i < n∧i′ = i+1∧n′ = n∧a′ = a{i := 0} |= ϕ′ (3)

The proof of validity of the implication (3) can be de-
composed into three sub-proofs, one for each conjunct inϕ′.
Again, we consider one particular case, namely when the
conjunct ofϕ′ containing universal quantification appears
on the right-hand side of the implication. We define auxil-
iary symbolsπ andρ as

π = ∀k : p1(i, n) ≤ k ∧ k ≤ p2(i, n) → a[k] = p3(i, n) ,

ρ = p4(i, n) ≤ 0 ∧ p5(i, n) ≤ 0 ∧ i < n ,

and consider the case below.

π ∧ ρ ∧ i
′ = i + 1 ∧ n

′ = n ∧ a
′ = a{i := 0}

|= ∀k : p1(i′, n′) ≤ k ∧ k ≤ p2(i′, n′) → a
′[k] = p3(i′, n′)

Let k∗ be a fresh variable, which we may treat as an aux-
iliary program variable. Next, we rewrite the universally
quantified assertion

π ∧ ρ ∧ i
′ = i + 1 ∧ n

′ = n ∧ a
′ = a{i := 0}

|= p1(i′, n′) ≤ k
∗ ∧ k

∗ ≤ p2(i′, n′) → a
′[k∗] = p3(i′, n′) ,

and eliminate the implication from the right-hand side

π ∧ ρ ∧ i
′ = i + 1 ∧ n

′ = n ∧ a
′ = a{i := 0} ∧

p1(i′, n′) ≤ k
∗ ∧ k

∗ ≤ p2(i′, n′)

|= a
′[k∗] = p3(i′, n′) .

Primed Program Variables and Array Symbols.Now, we
can eliminate primed variables, which requires a case dis-
tinction for the elimination of the primed array symbola

′.
We need to distinguish two cases. In the first case, the write
into the arraya takes place at the same position that is read
in the right-hand side, and hence we can directly use the
written value. This means that ifi = k

∗ then we have
a
′[k∗] = 0. In the second case, the value of the cell at posi-

tion k
∗ in the arraya does not change after the update, i.e.,

we havea′[k∗] = a[k∗]. Thus, the implication (3) is valid if
and only if the following two implications are valid:

π ∧ ρ ∧ p1(i + 1, n) ≤ k
∗ ∧ k

∗ ≤ p2(i + 1, n) ∧

i = k
∗ |= 0 = p3(i + 1, n)

(4a)

π ∧ ρ ∧ p1(i + 1, n) ≤ k
∗ ∧ k

∗ ≤ p2(i + 1, n) ∧

i 6= k
∗ |= a[k∗] = p3(i + 1, n).

(4b)

Universal Quantification. At the next step we replace the
conjunctπ containing the universally quantified implication
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by the quantifier free instances of the implication that are
obtained for appropriate valuations of the quantified vari-
ablek. We find the appropriate valuations fork by analyz-
ing the structure of (4a) and (4b).

We collect all occurrences of array read expressions, i.e.,
of termsa[·] indexed by positions other than universally
quantified indexk. We observe that the implication (4a)
does not have any such occurrences. Hence, we conclude
that the validity of (4a) does not rely on its conjunctπ. We
can replace the condition (4a) by the condition

ρ ∧ p1(i + 1, n) ≤ k
∗ ∧ k

∗ ≤ p2(i + 1, n) ∧

i = k
∗ |= 0 = p3(i + 1, n).

(5)

In the implication (4b), the set of occurrences is the sin-
gleton set{k∗}. Since the array read expressiona[k∗] ap-
pears only on the right-hand side of the implication (4b),
its validity depends onπ. The conjunctπ can yield a con-
straint ona[k∗], via the universal quantification, ifk∗ satis-
fies the premises of the implication inπ. That is, we have
a[k∗] = p3(i, n) and require the condition

ρ ∧ p1(i + 1, n) ≤ k
∗ ∧ k

∗ ≤ p2(i + 1, n) ∧

i 6= k
∗ |= p1(i, n) ≤ k

∗ ∧ k
∗ ≤ p2(i, n).

(6)

Under assumption that the template parameters satisfy the
condition (6), we can drop the implication (4b) and use the
following one instead, wherea[k∗] = p3(i, n) is an instance
of π which we add to the left-hand side of the implication:

i < n ∧ p1(i + 1, n) ≤ k
∗ ∧ k

∗ ≤ p2(i + 1, n) ∧

i 6= k
∗ ∧ a[k∗] = p3(i, n) |= a[k∗] = p3(i + 1, n).

(7)

Array Reads as Function Applications. So far, we re-
duced the condition (3) containing universal quantification
and an array update expression to a conjunction of condi-
tions that require reasoning over arithmetic and array read
expressions. We observe that due to the absence of array up-
dates, we can treat array read expressions as applications of
uninterpreted function symbols. This means that we only
assume the functionality axiom, which states that a read op-
eration from the same array from the same position always
produces the same value.

We consider the condition (7). We replace each occur-
rence of the array read expressiona[k∗] by a fresh variable
and record its origin. Let the first occurrence be replaced by
the variablev and second one byw. Then, we introduce an
equality constraint over the fresh variables. The constraint
encodes the functionality axiom, as described above, and
states thatv andw are equal if the corresponding array read
expressions refer to the same position in the array. In this
particular case, the premise is vacuously true, sincev and
w replace the same expression. Finally, we can replace the
condition (7) by the following:

ρ ∧ p1(i + 1, n) ≤ k
∗ ∧ k

∗ ≤ p2(i + 1, n) ∧

i 6= k
∗ ∧ v = p3(i, n) ∧ v = w |= w = p3(i + 1, n).

(8)

Implication Encoding. The sequence of previously de-
scribed steps transforms the condition (3), which ensures
that the templateϕ yields an assertion satisfying the induc-
tiveness constraint at the control location`1, to the conjunc-
tion of conditions (5), (6), and (8). They contain arithmetic
expressions that are linear w.r.t. the program variablesi and
n, and auxiliary variablesk∗, v, andw. Thus, we can ap-
ply the classical approach for encoding the validity of such
implications by arithmetic constraints over the template pa-
rameterspi, pn, andp. We omit details of this construction,
see, e.g., [5, 10, 48] for detailed exposition.

We proceed in the similar way with the remaining condi-
tions on the invariant templates, and translate them into a set
of arithmetic constraints. We compute a valuation of tem-
plate parameters, which yields an inductive invariant map
defining a path invariant, by applying specialized constraint
solving techniques on the resulting constraint (cf. [10, 44]).

We obtain the following valuation of the template param-
eters for the control locatioǹ1

p1(i, n) p2(i, n) p3(i, n) p4(i, n) p5(i, n)
0 i− 1 0 −i i− n

which yields the invariant

(∀k : 0 ≤ k∧k ≤ i−1 → a[k] = 0)∧−i ≤ 0∧i−n ≤ 0 .

Theoretical Foundations.While we have outlined the in-
variant synthesis algorithm through an example, we can
prove that our algorithm is sound and complete for invari-
ant generation for invariant templates from the following
language. A template is a conjunction of linear inequalities
over the program variables whose coefficients may be pa-
rameters that may be conjoined with a universally quanti-
fied template

∀k1 . . . ∀kn :
∧

i

pi(X) ≤ ki∧ki ≤ qi(X) → r(X, k1, . . . , kn),

wherepi(X), qi(X), andr(X, k1, . . . , kn) are linear terms
over the program variablesX with parameterized coeffi-
cients, and the linear expressionr can additionally have
terms where the variableski appear as indices in array reads
(i.e., as termsa[k] for an array variablea). That is, our algo-
rithm is guaranteed to construct an invariant map for invari-
ant templates in the language of array properties iff an in-
variant map exists and is expressible in the language. This
follows from several observations: first, the decidabilityof
the array property fragment [6], second, the reduction of
the invariant synthesis problem for linear arithmetic and un-
interpreted functions to linear arithmetic using hierarchic
combination of theories [3], and third, the soundness and
completeness of invariant generation for linear arithmetic.
We omit the technical details. We can still run our invari-
ant synthesis algorithm in case the template does not con-
form to the above form, but then completeness is no longer
guaranteed (results are sound, however).
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The complexity of the procedure is influenced by the
number of array reads involving quantified variables, since
each array read on the r.h.s. involves a case split. In our ex-
periments, we have therefore always tried to find invariants
of the tractable form:

∀k : p(X) ≤ k ∧ k ≤ q(X) → a[k] = r(X),

wherep(X), q(X), andr(X) are linear terms over the pro-
gram variablesX with parameterized coefficients, anda is
an array symbol in the program.

5. Experiments

We have implemented the instantiation of our technique
using predicate abstraction-based CEGAR and template-
based invariant generation as outlined in Section 4. This
gives an automatic software verification tool that can rea-
son about universally quantified assertions.

The invariant generation tool is implemented using
the Constraint Logic Programming system SICSTUS Pro-
log [36], which contains a constraint solver for linear arith-
metic [29]. The tool takes as input a path program together
with an invariant template map. The template map ranges
over cut-points. Invariants for non-cut-point locations are
obtained by computing strongest postconditions from cut-
points in a standard way. The path programs are constructed
from error paths as generated by the BLAST model checker.

We have applied our algorithm to examples involving
array reasoning, including the examples in Section 2. We
present some experimental data collected while applying
the tool (on a 1.6 GHz laptop).

Example FORWARD . In order to compute a path invariant
for the path program shown in Figure 1(c), we first try an
invariant template map that assigns the template

cii+ cnn+ caa+ cbb+ c = 0

to the control locatioǹ 1,4 (which is the only cut-point),
where ci, cn, ca, cb and c are unknown parameters to be
instantiated. We choose this template following a simple
heuristic that obtains a template by replacing the coeffi-
cients of the target assertion by parameters.

Our tool fails to instantiate the above template, and re-
ports the failure in 40 ms. We heuristically refine the tem-
plate by conjoining an inequality, and obtain the new tem-
plate

cii+ cnn+ caa+ cbb+ c = 0 ∧

dii+ dnn+ daa+ dbb+ d ≤ 0.

This template is instantiated in 130 ms, and yields the asser-
tion

a+ b = 3i ∧ a+ b ≤ 3n.

Example INIT CHECK . The path program shown in Fig-
ure 2(c) contains an assertion statement that refers to the
content of the arraya and is accessible inside a loop.
Thus, our heuristic proposes the following map contain-
ing universally quantified templates for the cut-point loca-
tions `1,3 and `3,6 (wherecj(i, n) denotes the expression
c
j
i i+ cjnn+ cj , anddj is defined similarly):

∀k : c1(i, n) ≤ k ≤ c2(i, n) → a[k] = c3(i, n)

∀k : d1(i, n) ≤ k ≤ d2(i, n) → a[k] = d3(i, n).

This template reflects the intuition that the assertion validity
depends on the content of a range of array cells.

The tool instantiates the template in 3 s as follows:

∀k : 0 ≤ k ≤ n− 1 → a[k] = 0

∀k : i ≤ k ≤ n− 1 → a[k] = 0.

Note that, compared to the manually created invariant map
shown in Section 2, no additional conjuncts are required.
We observe that at locatioǹ3,6, the universally quantified
indexk ranges fromi ton−1, thus, there is no need for any
additional constraints on the value of variablei.

Example PARTITION . The experimental data for this ex-
ample is similar to the example INITCHECK. Again, no tem-
plate refinement is required.

6. Discussion

We make two contributions in this paper. First, we pro-
pose an abstraction refinement technique that considers pro-
gram fragments rather than finite paths as counterexamples.
Path invariants decouple the problem of synthesizing possi-
bly disjunctive invariants into an efficient search over pro-
gram paths performed by the CEGAR loop, and a search
for program relationships that rule outall possible path
unwindings of the path program through strong invariant
generation techniques. By considering program fragments
rather than paths, our refinement algorithms can find expres-
sive assertions on the program state.

Our second contribution is an instantiation of our scheme
with path invariant generation based on constraint-based in-
variant synthesis. In particular, we provide a template-based
scheme for synthesizinguniversally quantifiedinvariants
(e.g., to reason about array elements) that is sound and com-
plete for our template language.

The initial experiences with the tool are promising. We
believe the combination of abstract interpretation based pro-
gram analysis and abstraction refinement via path invariant
generation will provide scalable and precise techniques for
proving program assertions. For example, in initial exper-
iments, we could automatically prove a suite of programs
(including the ones in Section 2) none of which could be
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proved by BLAST, a state-of-the-art software verification
tool.

However, path programs are not a panacea for all pro-
gram verification problems. In particular, we assume sim-
ple invariant templates heuristically. It may happen that the
program is safe, but the templates guessed by the tool are
not strong enough to capture the invariants required for a
proof of safety. Also, our technique is geared towards prov-
ing safety of systems. Consider a buggy version of Example
INITCHECK:

for (i = 0; i < 100; i++) {
a[i] = 1;

}
assert(a[0]==0);

In this case, the CEGAR analysis will generate longer and
longer counterexample traces, however, the path program
is useless since there is no path-invariant map that exhibits
the infeasibility of the error path for all unwindings of the
loop (there is, in fact, an error trace). We are investigating
how our techniques can be combined with techniques that
are geared towards falsification.
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