
Symbolic Invariant Verification for Systems
with Dynamic Structural Adaptation ∗

Basil Becker1 Dirk Beyer2 Holger Giese1 Florian Klein1 Daniela Schilling1

1 Software Engineering Group
University of Paderborn, Germany

{basilb,hg,fklein,das}@upb.de

2 Models and Theory of Computation
EPFL, Lausanne, Switzerland

Dirk.Beyer@epfl.ch

ABSTRACT
The next generation of networked mechatronic systems will
be characterized by complex coordination and structural
adaptation at run-time. Crucial safety properties have to be
guaranteed for all potential structural configurations. Test-
ing cannot provide safety guarantees, while current model
checking and theorem proving techniques do not scale for
such systems. We present a verification technique for arbi-
trarily large multi-agent systems from the mechatronic do-
main, featuring complex coordination and structural adap-
tation. We overcome the limitations of existing techniques
by exploiting the local character of structural safety proper-
ties. The system state is modeled as a graph, system tran-
sitions are modeled as rule applications in a graph trans-
formation system, and safety properties of the system are
encoded as inductive invariants (permitting the verification
of infinite state systems). We developed a symbolic verifi-
cation procedure that allows us to perform the computation
on an efficient BDD-based graph manipulation engine, and
we report performance results for several examples.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification — Formal
methods; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs — In-
variants; D.2.11 [Software Engineering]: Software Archi-
tectures — Domain-specific architectures; D.2.2 [Software
Engineering]: Design Tools and Techniques — Computer-
aided software engineering (CASE);

General Terms: Design, Reliability, Verification

Keywords: Formal verification, Graph transformation sys-
tems, Structural invariants, Transition invariants, Symbolic
algorithms, Embedded systems, Mechatronics

∗This research was supported in part by the SFB 614 of
the DFG, the MICS NCCR of the SNSF, and the Interna-
tional Graduate School of Dynamic Intelligent Systems of
the University of Paderborn.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06,May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Mechatronic systems [6] combine traditional mechanical

and electrical engineering with technologies from software
engineering in order to provide reliable technical solutions
for complex real-world problems. In the future, advanced
mechatronic multi-agent systems are expected to exhibit in-
creasingly complex, context-dependent behavior. The key
to enhance their behavior and pushing the limits of feasible
functionality is the agents’ ability to cooperate in dynamic
local and global networks, using complex real-time coordina-
tion and structural adaptation. The envisoned systems will
not only exhibit self-adaptive behavior (cf. [19, 23]) within
individual agents, but also at the inter-agent level.

As mechatronic systems are usually safety-critical, it has
to be ensured that any configuration that is reachable at
run-time is safe w.r.t. a given set of safety properties. Con-
sequently, the development of such systems has to include
rigorous verification activities that can guarantee the iden-
tified crucial safety properties even for those real-time coor-
dination features that result from the structural adaptation
at run-time. Techniques such as testing the system in sev-
eral test environments and in its operation environment are
not sufficient for this task due to their incomplete nature.
On the other hand, complete automated verification tech-
niques do not scale: current model checking approaches can
prove safety properties for models of moderate size only, and
semi-automatic approaches such as theorem proving require
advanced proof skills, which are usually not available.

Previous verification approaches for systems with struc-
tural adaptation were based on exhaustive state exploration;
they are limited to finite state models of rather small size
[3, 14, 16, 20, 21, 24]. It is even more problematic that they
require a known initial system topology, whereas in practice,
the system design has to support a huge set of well-formed
initial configurations. The structural adaptation could, in
principle, lead to an unbounded number of reachable sys-
tem configurations, which was not considered so far.

We present a verification technique that can handle the
real-time coordination and structural adaptation of arbitrar-
ily large multi-agent systems from the mechatronic domain.
We model the system’s ontology using UML class diagrams,
the system’s states as graphs —represented by UML object
diagrams, which provide a suitable, user-friendly graphical
notation for graphs—, and the system’s behavior as a set of
graph transformation rules —represented by story patterns,
which are an extension of object diagrams for modeling be-
havior. Safety requirements of the system are modeled using
graph patterns: for example, the set of unsafe system states

72

is represented by a set of graph patterns, which we call ‘for-
bidden graph patterns’.

The question answered by traditional verification is
whether an unsafe system state is reachable from an initial
system state. In other words: can one of the initial graphs
be transformed into one of the forbidden graphs using a
sequence of graph transformations from the set of transfor-
mation rules defining the system’s behavior? In our appli-
cation domain, we neither know all initial states nor can we
compute all reachable states of the system. However, we
can inspect every transformation rule to find out whether it
can transform a safe graph into an unsafe graph. Since we
cannot consider the —usually infinite— complete set of safe
graphs, we try the opposite: we verify that the backward ap-
plication of a rule to a forbidden graph pattern cannot lead
to a graph pattern that represents a safe system state. Once
we have verified this property for every forbidden graph pat-
tern (there is a finite number of them, although they can
represent infinitely many states) and for every transforma-
tion rule of the system (once again a finite set), we have
proven that the system can never enter an unsafe state.

This technique is well-known as the verification of tran-
sition invariants, and many approaches to make it practi-
cal exist (e.g. [5]), but transition invariants have not yet
been applied to systems with structural adaptation. Ap-
plied to the area of software and hardware verification, this
approach is limited due to the overapproximation that pre-
vents the method from proving many interesting proper-
ties. However, modeling the system transitions of mecha-
tronic systems with structural adaptation as graph trans-
formations allows us to capture the most interesting part
of the system in the transformation rules. We report on
a number of examples based on the R&D project RailCab
(http://www.railcab.de) in the modeling section and in the
evaluation section.

We provide a tool implementation that scales to large
systems, and developed —besides the traditional explicit
algorithm, which is based on traditional data structures
for graph manipulation— a symbolic algorithm for our ap-
proach. The symbolic encoding of the problem allows us to
run the algorithm on engines that are optimized for symbolic
computations (e.g., BDD engines and SAT solvers). We in-
tegrated both the explicit and the symbolic algorithm into
the UML CASE tool Fujaba (http://www.fujaba.de). We
used the GROOVE engine [21] for comparing our results
to a model-checking approach, i.e., computing all reachable
graphs from a given initial graph. The explicit algorithm is
completely implemented within the Fujaba framework. For
the symbolic encoding, we use the relational programming
language RML and the BDD-based calculator CrocoPat [4].
Our experiments show that model-checking and the explicit
approach work well for small examples, while the symbolic
approach has the potential to scale to larger graph patterns.

The paper is structured as follows: The modeling ap-
proach is introduced by means of a running example in
Sect. 2. Section 3 defines the underlying formal model in
terms of graphs and graph transformation systems. Our new
approach for the invariant verification of structural proper-
ties is explained in Sect. 4, where we also discuss the explicit
and symbolic algorithms for the verification. We present the
results of several performance experiments in Sect. 5, and
Sect. 6 relates our work to other approaches.

2. MODELING APPROACH

2.1 Advanced Mechatronic Systems

Example. As an application example that is representa-
tive of both the challenges and the potential of advanced
mechatronic systems, we use a system of autonomous shut-
tles navigating a railway network. Inspired by the R&D
project RailCab, the intent is providing safe, energy-efficient
individual transportation.

To this end, shuttles have the ability to minimize drag
by forming contact-free convoys. However, increased ef-
ficiency comes at the cost of reduced safety margins. In
order to avoid collisions, shuttles need to precisely coordi-
nate their spacing and anticipate decelerations. This can
only be achieved cooperatively, as distances cannot reliably
be measured in bends or at junctions. A wireless network
allows shuttles to communicate speeds, positions, and in-
tended driving moves. Besides, the convoy mode constrains
the admissible behavior, e.g., reduces the maximum speed
and the brake force of leading shuttles the more tightly-
spaced a convoy is.

To ensure safe operation, the required real-time coordina-
tion thus needs to be established reliably and satisfy cer-
tain safety requirements (e.g., consistent convoy mode, no
deadlocks). In case of a complete communication failure,
all shuttles need to perform a controlled emergency braking
maneuver, resulting in a trivially safe system state.

Approach. From the information processing perspective,
active mechatronic subsystems of such a system can be seen
as autonomous agents, enhancing their behavior through
cooperation and the exploitation of contextual knowledge.
Their ability to establish and relinquish real-time coordina-
tion as required is the key to their flexibility, as it allows
changing the system structure at run-time. Such structural
adaptation is a powerful concept that enables more sophis-
ticated solutions, including complex software-based coordi-
nation and information management.

Our modeling approach uses a formal model of the sys-
tem’s ontology as its foundation. This model includes the
underlying structure, assumed structural constraints, haz-
ards, and a coarse-grained abstraction of the underlying
physical behavior. On top of this, we layer a control ar-
chitecture consisting of various social structures and coordi-
nation pattern types that interrelate the agents and exclude
the specified hazards.

When verifying that the structural evolution and the in-
stantiation rules of the control architecture are sufficient
w.r.t. the safety requirements, we rely on two restricting as-
sumptions that are plausible in a mechatronic context: (1)
Coordination patterns refer to a local context and only con-
tain a limited number of participating agents, which bounds
the number of elements we need to consider. (2) Required
reaction times for establishing a coordination pattern are
an order of magnitude larger than the required reaction
times within the pattern itself, which enables us to verify
relevant structural properties without explicitly considering
real-time aspects as the agent will always be able to react
within this generous time frame.

73

http://www.railcab.de
http://www.fujaba.de

2.2 Modeling
All our notations are based on the UML. Beside the stan-

dard notations, we use Mechatronic UML [7, 11, 13] for
the specification of real-time coordination patterns. We also
employ story patterns, an extension of UML object dia-
grams based on the theory of graph transformation systems
(cf. [18]), for expressing structural changes and properties.

Physical System. We model the ontology of the system
using UML class diagrams. Figure 1 specifies the physi-
cal entities of the system —shuttle agents and tracks— and
their relationships. Tracks are short segments with room for
a single Shuttle. The successor association connects them into
a network. A Shuttle’s position is expressed by the on associ-
ation; the go association encodes physical movement towards
a Track. Note that, even though we are not using attributes
and are thus abstracting from the Shuttle’s actual position on
the Track, this level of abstraction is sufficient for designing
the structural adaptation of the real-time coordination.1

<<agent>>
Shuttle

<<entity>>
Track

on

go

successor

Figure 1: Class diagram modeling physical entities

Concrete states instantiating the ontology can be modeled
using UML object diagrams. We use this to specify unsafe
conditions, i.e., states that must not occur during the ex-
ecution of the system. Specifically, this allows expressing
hazards and accidents.

All hazards and accidents a system is supposed to exclude
need to be defined explicitly. In our example, we restrict our
attention to shuttle collisions, characterized by two shuttles
sharing a track (see Fig. 2).

Shuttle:sa
on

Track:ta Shuttle:sb
on

Figure 2: Diagram specifying a Collision accident

Note that cardinalities in conditions are currently not di-
rectly supported by our approach. It is possible, however,
to encode cardinalities that are critical for the system’s cor-
rectness by means of additional conditions (e.g., forbidding
Shuttles with two on associations).

Story patterns allow modeling the behavior of the system.
Story patterns basically consist of two object diagrams spec-
ifying concrete states, a precondition and a postcondition. If
the precondition is matched, i.e., occurs in a state, that oc-
currence is transformed to correspond to the postcondition.
By extending object diagrams with appropriate stereotypes,
the pre- and postcondition can be compactly specified as a
single object graph where unmarked elements remain con-
stant, elements annotated with �destroy� are erased and
elements annotated with �create� are created. Crossed
out elements are parts of the precondition that must not
occur in a state; otherwise the pattern is not applicable.

1Using attributes is possible even though in this paper all
properties are expressed in terms of structural relationships
between objects. There is no categorical limitation to that
effect in either story patterns or our approach.

We use story patterns for expressing all kinds of state
changes, e.g., agent behavior, rules, and physical processes.
The story patterns in Fig. 3 and 4 describe the physical
process of a Shuttle moving from one Track to the next. As
we strive for an adequate description of the physical level
that does not abstract away relevant problems, the specified
behavioral rules do in fact allow a collision to happen.

successor

«destroy»
go

«destroy»

on

«create»
on

Track:t1

Shuttle:s1

Track:t2

Shuttle:s2

on

Figure 3: moveSingle: Story Pattern for moving a
shuttle to an empty track.

successor

go

«create»

on
«destroy»

go

successor
Track:t1

«destroy»

on

Shuttle:s1

Track:t3

next

Track:t2

Shuttle:s2

on

Figure 4: moveMultiple: Story Pattern for crashing a
shuttle into another, immobile shuttle.

Coordination Architecture. In order to achieve the de-
sired properties, we now extend the specification with so-
cial structures controlling the architectural evolution and
the real-time coordination, prominently using Mecha-
tronic UML coordination patterns [13]. As a means of
structuring the problem domain, we define a hierarchy of
cultures [17], each of which is responsible for ensuring a set
of specific system properties.

A culture is a set of subcultures, roles, instantiation rules,
behavioral rules, professed intentions, and invariants. A
community is a dynamically formed group of agents imple-
menting a specific culture. Instantiation rules are responsi-
ble for creating and destroying communities and assigning
roles to agents, i.e., the actual structural adaptation. Be-
havioral rules specify valid physical and social agent behav-
ior. They may also provide a social interpretation of the
agents’ actions. Professed Intentions are such interpreta-
tions of an agent’s intentions, e.g. as a commitment to a
specific course of action. Invariants encode constraints and
properties guaranteed by the culture. All agents belong to
a global default community that can be used for bootstrap-
ping.

Coordination patterns can be seen as a restricted type of
culture without subcultures and proprietary professed in-
tentions, i.e., pattern instantiation can be subsumed un-
der community instantiation. In the case of Mecha-
tronic UML coordination patterns, roles correspond to
communication protocols and are linked by connectors rep-
resenting communication channels. Invariants serve to ex-
press constraints for each role and the overall pattern.

The central idea of the approach is to start with solu-
tions for small, specific problems, and then compose them

74

into the overall multi-agent system. Agents are seen as com-
ponents that implement pattern roles and internally recon-
cile potential conflicts. The corresponding modeling process
consists of five steps: (1) After specifying a coordination
pattern / culture, (2) formal verification is used to ensure
that it conforms to its invariants. (3) The pattern is then
stored for reuse (4) and used to create components by re-
fining roles to ports and properly synchronizing them. (5)
Refinement and synchronization again need to be verified
against the role constraints. Any syntactically correct com-
position of verified components is then guaranteed to yield a
correct system without any additional verification (cf. [13]).

Shuttle Culture. At the specification level, the physical
ontology (Fig. 1) is extended with conceptual elements to
yield the augmented ontology presented in Fig. 5. The (im-
plied) ShuttleCulture introduces the next association, which
represents a commitment (marked by the stereotype) to go

to a specific Track the next time a go-Rule is executed. Be-
sides, it contains the DistanceCoordinationCulture as a subcul-
ture. The DistanceCoordinationPattern, which instantiates that
culture, groups two Shuttles which take on the rear respec-
tively front role, again marked by stereotypes.

<<community>>
DistanceCoordinationPattern

<<agent>>
Shuttle

<<entity>>
Track

on

go

<<role>>
rear

<<role>>
front

successor

<<commitment>>
next

Figure 5: Augmented class diagram

The ShuttleCulture introduces two behavioral rules: goSim-

ple1 (see Fig. 6) allowing a solitary (i.e., not following an-
other Shuttle) Shuttle to move freely where no Tracks join, and
goSimple2, forcing a solitary Shuttle to give way at a switch
where Tracks join. These rules imply the convention that
Shuttles respect the commitment expressed by their next as-
sociation.

successor

successor

«create»
go

«create»
next

Track:t4

Track:t3

«destroy»

next

Track:t2
successor

Track:t1

on

Shuttle:s1
rear

DistanceCoordinationPattern:dc1

Figure 6: Behavioral rule: unrestricted movement
for a solitary Shuttle

Distance Coordination Culture. The actual collision
avoidance is realized by the ShuttleCulture’s subculture re-
sponsible for distance coordination. The culture achieves
this by instantiating a DistanceCoordinationPattern —thereby
disabling the goSimple rules and enabling the provided be-
havioral rules for coordinated movement— once a Shuttle

approaches another.

The instantiation rule createDC creates a DistanceCoordina-

tionPattern, and thus a new community, if there is a hitherto
unconnected Shuttle on a Shuttle’s next Track (see Fig. 7). The
rule deleteDC removes the pattern as soon as the rear Shuttle

no longer has a go or next association to the front Shuttle’s
location, i.e., the Shuttles have moved away from each other.

frontrear

next
onon

«create»

DistanceCoordinationPattern:dc1

DistanceCoordinationPattern:dc2

Track:t1 Track:t2

«create»

rear

Shuttle:s1 Shuttle:s2

«create»

front

DistanceCoordinationPattern:dc3

Figure 7: Instantiation rule: creating a DistanceCoor-

dinationPattern

The behavioral rules goDC1 (see Fig. 8) and goDC2 only
allow the rear Shuttle to move, i.e., go, once the front Shuttle

has decided to move. This prevents the moveMultiple rule
(for crashing into a stationary Shuttle) from ever applying,
thus in turn preventing collisions.

«create»

next
next

«create»

go
go

successor
Track:t3

rear

Shuttle:s1

on

Track:t1
successor

Track:t2

on

DistanceCoordinationPattern:dc1

Shuttle:s2

front

«destroy»

Figure 8: Behavioral rule: Coordinated movement

An invariant that is implied in this specification is that a
Shuttle will never try to go to a Track occupied by another
Shuttle without coordinating its movement, i.e., making sure
the other Shuttle is moving, which would constitute a haz-
ard. Though not required for the operational correctness of
the model, this implied condition (see Fig. 9) needs to be
made explicit, along with several structural constraints re-
stricting cardinalities, in order for the specification to pass
the inductive invariant checking introduced below.

In the remainder of the paper, we will outline the semantic
underpinning of the employed concepts and our approach to
automatically verify that collisions are effectively avoided.

go

successor

onon

frontrear

Shuttle:sbShuttle:sa

Track:tbTrack:ta

DistanceCoordinationPattern:dca

Figure 9: Invariant: No uncoordinated movement of
Shuttles in close proximity, which would constitute a
hazard

75

3. FORMAL MODEL
In the preceding section, we used class diagrams and story

patterns to define possible system states and possible system
transitions. This section defines the formal model of graph
transformation systems in general, and story patterns in par-
ticular, which we use in our approach for the verification of
safety properties.

Graphs. A system state, given as an object diagram, can be
encoded as a graph by modeling objects as nodes and links
as edges. The system model is based on a set N of nodes,
a set E ⊆ N × N of edges, and a set T of types. The type
of a node or edge is defined by the relation T : (N ∪E)×T ,
i.e., x is of type t if (x, t) ∈ T . A graph G = (N, E) consists
of a set N ⊆ N of nodes and a set E ⊆ N ×N of edges.

Let G1 = (N1, E1) and G2 = (N2, E2) be two graphs.
The union G1 ∪ G2 is defined as (N1 ∪ N2, E1 ∪ E2), the
intersection G1 ∩ G2 as (N1 ∩ N2, E1 ∩ E2), and the sub-
traction G1 \ G2 as (N, E) with N = N1 \ N2 and E =
(E1 \ E2) ∩ (N ×N).

Example 1. (Graph) Consider the set N = {sa, sb, ta}
of nodes, the set E = N × N of edges, the set T =
{Shuttle,Track , on} of types, and the type relation T with
T = {(sa,Shuttle), (sb,Shuttle), (ta,Track), ((ta, sa), on),
((ta, sb), on)}. Then G = (N , {(ta, sa), (ta, sb)}) is the
graph representing the collision accident depicted in Fig. 2.

Graph Patterns. A graph pattern P = (N+, N−, E+, E−)
consists of two sets N+ and N− of positive and negative
nodes, and two sets E+ and E− of positive and negative
edges. The sets E+ and E− are subsets of (N+ ∪ N−) ×
(N+∪N−). We further use P+ to denote P restricted to N+

and E+. A graph pattern represents the set of graphs that
match the pattern. A graph G matches a graph pattern P if
there exists an isomorphic function m that maps the positive
nodes and positive edges of P to nodes and edges of G,
respectively, and m cannot be extended in such a way that
it matches any negative node or negative edge of P to a
node or edge in G, respectively. The matching function m
preserves types, i.e., a node or edge may only be mapped
to a node or edge of the same type, respectively. There can
be an arbitrary number of negative elements, but negative
nodes have to be connected with at least one positive node
and may not be connected with each other.

A graph pattern P matches a graph pattern P ′ if there
exists an isomorphic function iso that maps all positive el-
ements of P to positive elements of P ′ and all negative ele-
ments of P to negative elements of P ′. The set of all such
isomorphic functions is denoted by ISO. If P matches P ′,
we say that P is a subpattern of P ′, and write P v P ′.

Graph patterns that are used to describe system proper-
ties can be divided into required and forbidden patterns. A
required pattern must always be fulfilled during system exe-
cution (system invariant), whereas a forbidden pattern must
never be fulfilled (system hazard, accident).

Graph Transformation Systems. A graph transforma-
tion transforms one graph into another one by creating new
graph elements (nodes or edges) and/or removing existing
graph elements. Transformation rules define sets of possible
graph transformations. If a graph represents the state of a
system, a graph transformation represents an update of the
system’s state, and a sequence of transformations represents
an execution of the system.

Story patterns are extended graph patterns that allow the
annotation of graph elements with the stereotypes�create�
and �destroy�. As introduced informally above, story pat-
terns are used to specify transformation rules. A graph
transformation rule (L, R)r consists of two graph patterns,
a left hand side L (LHS) and a right hand side R (RHS).
L consists of those elements of the story pattern that are
not annotated with �create�, including negative elements,
whereas R consists of all elements not annotated with
�destroy�. The elements annotated with �create� will
be created by the rule (elements from R+ \L+), while those
annotated with �destroy� will be deleted (elements from
L+ \ R+). Elements without annotations are preserved by
the application (elements from L+ ∩R+).

A graph transformation system (GTS) S = (R, prio) con-
sists of a set of graph transformation rules R (defined by
a set of story patterns), defining all possible transforma-
tions in the transformation system, and a priority function
prio : R → N, which assigns a priority to each rule (the
higher the number assigned to a rule the higher the rule’s
precedence). An additional set of initial graphs may describe
the initial states of the system.

A rule (L, R)r is applicable to a graph G if G matches L
and G does not match the LHS L′ of any other rule (L′, R′)r′

with higher priority. During the application of a rule (L, R)r

to a graph G, the elements that are in L+ but not in R+ are
removed from G, and elements that are in R+ but not in L+

are added to G.2 We write G →r G′ if rule r can be applied
to graph G and the application results in graph G′. We write
G →∗ G′ if G is transformed into G′ by a (possibly empty)
sequence of rule applications. Given a graph transformation
system S and a graph G, the set of graphs producible (i.e.,
the set of states reachable) by applying rules from S to G is
denoted by REACH(S, G) = {G′ | G →∗ G′}.

We extend the notion of rule application to graph pat-
terns in a natural way. The application of a rule to a graph
pattern that represents a set of start graphs results in a
graph pattern that represents the set of all graphs result-
ing from applying the rule to a start graph. The backward
application of a rule (L, R)r to a graph pattern P is de-
fined as ApplyBack(r, P) := P \ (R \ L) ∪ L if R v P and
(L\R)∩P = G∅ holds, with G∅ = (∅, ∅) is the empty graph.

4. VERIFICATION
This section states the verification problem and proposes

to solve the original problem by checking inductive invari-
ants, which works well in practice for systems from the con-
sidered mechatronic domain. We want to verify that none of
the structural adaptations within the system —formally de-
scribed by transformation rules— leads to an unsafe system
state. We introduce an explicit and a symbolic implemen-
tation of the procedure. The goal of the symbolic imple-
mentation is to increase the efficiency by using a relational
calculator that is optimized for the required operations.

2Our notion of application is a restricted version of the Sin-
gle Pushout approach (cf. [22]). The approach is restricted
in such a way that the identification condition as well as the
dangling edge condition are always fulfilled. This restric-
tion further ensures that the backward application of rules
is always possible when an automatic extension procedure
adds the corresponding tests for all created resp. removed
elements in form of negative elements to L resp. R.

76

Verification Problem. Safety-violation conditions (haz-
ards, accidents) are represented by a set of forbidden graph
patterns F = {F1, . . . , Fn}. The graph G fulfills the safety
property ΦF , denoted by G |= ΦF , if G matches none of
the graph patterns in F . If G matches a forbidden graph
pattern F ∈ F , we call G a witness for the property ¬ΦF .
The property ΦF is an operational invariant of the GTS S
iff G |= ΦF for all G ∈ REACH(S, G0), for a given initial
graph G0 (cf. [9]).

In general, operational invariants cannot be checked fully
automatically, because graph transformation systems with
types are Turing-complete. Therefore, it is impossible to
provide complete automatic verification procedures. Model
checking approaches for GTS can only be employed if G0

and REACH(S, G0) are finite, or finitely representable.
The property ΦF is an inductive invariant of a GTS S =

(R, prio) if for all graphs G and for all rules r ∈ R the fol-
lowing holds: G |= ΦF ∧ G →r G′ implies G′ |= ΦF . If this
is the case and the initial graph G0 fulfills the property, then
ΦF is also an operational invariant (the reverse implication
does not hold in general).

As, at design-time, we cannot place undue restrictions
on the system’s deployment, the set of initial states is not
known, in the considered domain. In addition, the reachable
state space REACH(S, G0) is usually infinite. Therefore, we
propose to prove inductive invariants of the GTS to verify
the system’s safety. In the next subsection, we present our
verification approach which covers infinite state systems and
allows arbitrary correct initial deployments.

Checking Inductive Invariants. In order to solve this
verification problem, we reformulate the definition of an in-
ductive invariant in a more readily falsifiable form: a prop-
erty ΦF is an inductive invariant of a GTS S = (R, prio) if
and only if there exists no pair (G, r) of a graph G and a
rule r ∈ R such that G |= ΦF , G →r G′ and G′ 6|= ΦF . We
call such a pair (G, r) a counterexample, as it witnesses the
violation of property ΦF by rule r.

To verify whether a counterexample exists, we can exploit
the fact that the application of a rule can only have a lo-
cal effect: only that clearly delimited part of a graph that
is matched by the rule can be affected by its application.
When a counterexample (G, r) occurs, the local modification
of G by rule r is necessarily responsible for transforming the
correct graph G into a graph that violates the property.

A forbidden graph F can result from a rule application in
two ways. Firstly, the rule (L, R)r may complete the positive
part of a forbidden graph with an element from R+\L+∩F+.
Secondly, the rule may delete elements of the start graph
that were negative elements of a forbidden graph pattern F
and thus prevented it from matching, i.e. elements from L+\
R+∩F−. Our restricted notion of application requires these
latter elements to be connected to an element from L+∩R+∩
F+ to avoid dangling edges. As any possible counterexample
must fall into either one or both of these categories, G′ must
therefore contain an intersection between the positive nodes
of the RHS of the rule and the forbidden graph, i.e., R+∩F+.

Consequently, we can check that no counterexample exists
(and ΦF is thus an inductive invariant) by considering the
finite set Θ of graph patterns P ′ that are combinations of
a RHS R of a rule r and a forbidden graph pattern F ∈ F :
Θ(F, R) = {iso(F) ∪ R | iso ∈ ISO and iso(F) ∩ R 6= ∅}.
For each of these combined graph patterns P ′ ∈ Θ(F, R) we
only need to check if there exists a forbidden graph pattern

Algorithm 1 SearchCounterexample(r, F, C)
Input: Rule (L, R)r, GraphPattern F , Set〈GraphPattern〉 C
Output: Set〈Counterexample〉
Variables: Set〈GraphPattern〉 tgpSet, sgpSet
1: tgpSet := Θ(F, R)
2: sgpSet := {P | P ′ ∈ tgpSet ∧ P = ApplyBack(r, P ′)}
3: return {(P, r) | P ∈ sgpSet ∧ 6 ∃F ∈ C : F v P}

Algorithm 2 CheckInvariant(S,F)

Input: GTS S = (R, p), Set〈GraphPattern〉 F
Output: Set〈Counterexample〉
Variables: Rule r, Set〈GraphPattern〉 candSet, GraphPattern F ,

Set〈Counterexample〉 res
1: for all (L, R)r ∈ R do
2: candSet := F ∪ {L′|(L′, R′)r′ ∈ R ∧ prio(r′) > prio(r)}
3: for all F ∈ F do
4: res := SearchCounterexample(r, F, candSet)
5: if res 6= ∅ then
6: // Counterexample found.
7: return res
8: end if
9: end for

10: end for
11: return ∅

F ′ ∈ F with F ′ v P for the graph pattern P with P →r P ′.
Let S = (R, prio) be a GTS, P ′ be a graph pattern, and
r ∈ R be a transformation rule of S. The pair (P, r) is a
counterexample for ΦF if the following conditions hold:

1. P ′ ∈ Θ(F, R) for some F ∈ F , and

2. P →r P ′, i.e., the rule r can be applied to graph pat-
tern P and the resulting graph pattern is P ′ (this im-
plies that no r′ ∈ R\{r} exists with prio(r′) > prio(r)
that matches G, due to the definition of rule applica-
tion), and

3. there exists no F ′ ∈ F with F ′ v P , i.e., P is safe.

We use the above conditions in our algorithms to check if a
counterexample exists.3 Algorithm 1 performs this check for
a given rule (L, R)r ∈ R, a forbidden graph pattern F ∈ F ,
and a set C of candidate graph patterns. The algorithm
first computes the set of all possible target graph patterns
(tgpSet) for R and the forbidden graph pattern F (using
function Θ). The source graph patterns (sgpSet) are then
determined using ApplyBack. The set of candidate graph
patterns C is the union of the set of forbidden graph pat-
terns F and the left hand sides (LHS) of all rules with higher
priority. If a graph pattern from C matches the source graph
pattern, the application of r is either irrelevant, as the source
graph pattern already represents a forbidden state, or im-
possible, because it is preempted by another matching rule
with higher priority. Otherwise, if no graph pattern from C
matches, the source graph pattern P represents graphs that
can be transformed into unsafe graphs by applying r, and

3In the case of negative elements in the rules or graph pat-
terns, the check is a sufficient but not a necessary criterion
for a counterexample, while without negative elements the
check is sufficient and necessary. This limitation exists due
to rare cases in which no forbidden graph pattern matches
the identified source graph pattern, due to missing nega-
tive elements, but no concrete counterexample graph that
matches the source graph pattern but not some forbidden
graph pattern can be constructed.

77

Algorithm 3 SearchCounterexampleExplicit(r, F, C)
Input: Rule (L, R)r, GraphPattern F , Set〈GraphPattern〉 C
Output: Set〈Counterexample〉
Variables: GraphPattern target, source, cand,
Variables: Boolean enabled, Set〈GraphPattern〉 candSet
1: for all target ∈ Θ(F, R) do
2: source := ApplyBack(r, target)
3: enabled := true
4: candSet := C
5: while enabled ∧ candSet 6= ∅ do
6: choose cand ∈ candSet
7: candSet := candSet \ {cand}
8: if cand v source then
9: enabled := false

10: end if
11: end while
12: if enabled then
13: // Counterexample found.
14: return {(source, r)}
15: end if
16: end for
17: return ∅

the pair (P, r) is included in the resulting set of counterex-
amples.

Algorithm 2 checks for a given GTS S = (R, prio) and
a set of forbidden graphs F whether ΦF is an inductive in-
variant of S. It enumerates all pairs of rules r ∈ R and
forbidden graph patterns F ∈ F and applies Alg. 1 to them.
For each pair, Alg. 1 either returns a non-empty set of coun-
terexamples, or the empty set if no counterexample exists.
The property ΦF is an inductive invariant if the algorithm
does not find any counterexamples.

Explicit implementation. Algorithm 3 is an implemen-
tation of Alg. 1 based on an explicit graph representation
and on explicit operations. It stops the search as soon as
it encounters the first counterexample. A serious problem
of the explicit algorithm is that the number of target graph
patterns in the set Θ(F, R) grows exponentially w.r.t. the
size of the involved graphs. If there is no counterexample,
the for all loop in line 1 will have to iterate over each of the
target patterns.

Symbolic implementation. In order to make the compu-
tations more efficient, we have implemented the Algorithm
SearchCounterexample using symbolic encodings of graph
patterns. We use an appropriate language that is based on
first-order predicate logic. As the number of target graph
patterns is exponential in the number of nodes in the graph
patterns, and symbolic encodings provide a compact repre-
sentations of large sets and relations, the new encoding can
drastically reduce the run-time of the algorithm, especially
for complex graph patterns.

The symbolic algorithm can be executed by an interpreter
that takes advantage of efficient data structures and algo-
rithms for relational manipulation, such as BDD libraries or
SAT solvers. We chose to encode Alg. 1 in the relational pro-
gramming language RML and execute it using a BDD-based
interpreter for that language, namely CrocoPat [4].

Symbolic encoding. The universe of values U = N ∪ T is
the set of all nodes and types that occur in the system.
A variable assignment of a set X of variables is a total
function v : X → U , which assigns to each variable a value
from U . The set of all variable assignments of X is denoted
by Val(X). For a predicate φ over the variables from X,

we use φ[v] to denote the evaluation of φ w.r.t. a variable
assignment v ∈ Val(X).

We define the symbolic representation of a graph
pattern P with k nodes as the tuple SG(P) =
(X, pn, nn, pe, ne, φ), which consists of the following compo-
nents: The set X = {x1, . . . , xk} is a set of k node variables,
each of which represents a node of a concrete graph that
matches P . The functions pn : T → 2X and nn : T → 2X

assign to each type a set of node variables (empty sets for
edge types). A variable x ∈ pn(t) (x ∈ nn(t)) represents a
node of type t that must exist (must not exist) in a matching
concrete graph. The functions pe : T → 2X×X and ne : T →
2X×X assign to each type a set of pairs of variables (empty
sets for node types). A pair of variables (x, x′) ∈ pe(t)
((x, x′) ∈ ne(t)) represents an edge of type t that must exist
(must not exist) in a matching concrete graph. The predi-
cate φ : Val(X) → B evaluates to true for a given variable
assignment v if

V
1≤i≤k

V
1≤j≤k∧i6=j v(xi) 6= v(xj) (all node

variables of the graph pattern are mapped to different nodes)
and

V
t∈T

V
x∈pn(t) T (x, t) (all variables must be of their re-

quired node type) and φ′[v] holds. The predicate φ′ can be
used to include additional properties of the matching graphs
into the graph pattern (default: φ′ := true). The set of all
symbolic repr. of graph patterns is denoted by GRAPH .

A graph G = (N, E) matches a graph pattern P with
k nodes that is given by SG(P) = (X, pn, nn, pe, ne, φ), if
there exists a variable assignment v of X for which all of
the following conditions are fulfilled: (1) the set of nodes
N ′ = {v(x1), . . . , v(xk)} is a subset of N , (2) for all nodes
n ∈ N ′, the node n is element of N and the type of n is t
iff n ∈ pn(t), and the node n is not element of N and the
type of n is t iff n ∈ nn(t), (3) for all edges e ∈ N ′×N ′, the
edge e is element of E and the type of e is t iff e ∈ pe(t),
and the node e is not element of E and the type of e is t iff
e ∈ ne(t), and (4) the predicate φ is fulfilled: φ[v] = true.

Example 2. (Graph pattern matching) Consider the
graph pattern P from Fig. 2, which defines the set of all
subgraphs of G such that two shuttles are on the same track
(the collision accident). The symbolic representation of P
is SG(P) = (X, pn, nn, pe, ne, φ), where X = {x1, x2, x3},
pn = {(Shuttle, {x1, x2}), (Track , {x3}), (succ, ∅), (on, ∅)},
nn = {(Shuttle, ∅), (Track , ∅), (succ, ∅), (on, ∅)}, pe =
{(Shuttle, ∅), (Track , ∅), (succ, ∅), (on, {(x1, x3), (x2, x3)})},
ne = {(Shuttle, ∅), (Track , ∅), (succ, ∅), (on, ∅)}, and
φ = (x1 6= x2) ∧ (x1 6= x3) ∧ (x2 6= x3) ∧ T (x1,Shuttle) ∧
T (x2,Shuttle) ∧ T (x3,Track). We now want to check
whether the graph G from Example 1 matches pattern P .
It matches, because a variable assignment v of X exists:
v(x1) = sa, v(x2) = sb, v(x3) = ta. The assignment v
fulfills all conditions for matching graph G, and the variable
assignment specifies a subgraph of G.

In our verification algorithm, we do not consider explicit
graphs but graph patterns. Since we can encode graph pat-
terns as first-order predicates over our universe, it is suffi-
cient to consider a universe that contains as many nodes as
used in all different graph patterns Li, Ri, and Fi that are
used in the algorithm.

Backward Application. Now we can define the symbolic rep-
resentation of the backward application of a rule (L, R)r to a
graph pattern F ∪R. Let SG(L), SG(R), SG(F), SG(L∩R),
and SG(R \L) be the symbolic representations for L, R, F ,
L ∩ R, and R \ L, respectively. As shortcut, we denote the

78

elements of a representation SG(P) of a graph pattern P by
XP , pnP , nnP , peP , neP , and φP .

We denote the symbolic backward application of (L, R)r

to F ∪ R by the function SBA : GRAPH ×
GRAPH × GRAPH → GRAPH , with SBA(L, R, F) =
(XLRF , pnLRF , nnLRF , peLRF , neLRF , φLRF). The func-
tions pnLRF , nnLRF , peLRF , and neLRF are defined as fol-
lows: pnLRF (t) = pnL(t) ∪ pnF (t) (positive nodes from
L and F), nnLRF (t) = nnL(t) ∪ nnF (t) ∪ pnR\L(t) (pos-
itive nodes from R \ L), peLRF (t) = peL(t) ∪ peF (t)
(positive edges from L and F), neLRF (t) = neL(t) ∪
neF (t) ∪ peR\L(t) (positive edges from R \ L), for all
types t ∈ T , and XLRF =

S
t∈T pnLRF (t) ∪ nnLRF (t).

The application condition, included into the graph pat-
tern encoding as φ′, is defined as follows: φ′LRF =V

t∈T pnR(t) ∩ nnF (t) = ∅ ∧ nnR(t) ∩ pnF (t) = ∅ ∧V
t∈T peR(t) ∩ neF (t) = ∅ ∧ neR(t) ∩ peF (t) = ∅, in or-

der to exclude mappings of negative elements on positive
elements for R and F , but not for L and F .

Pattern Inclusion. We extend the inclusion operator from
patterns to symbolic representations of patterns in the
following way: Given two graph patterns P, P ′ and their
encodings SG(P ′) = (XP ′ , pnP ′ ,nnP ′ , peP ′ ,neP ′ , φP ′)
and SG(P) = (XP , pnP ,nnP , peP ,neP , φP), we encode
P ′ v P by SG(P ′) v SG(P), i.e., by the function
v: GRAPH × GRAPH → B, with SG(P ′) v SG(P) iff
(φP ⇒ φ′P)∧(

V
t∈T SUB(pnP (t), pnP ′(t),nnP (t),nnP ′(t)))∧

(
V

t∈T SUB(peP (t), peP ′(t),neP (t),neP ′(t))), where for sets
X1, . . . , X4 of variables we define SUB(X1, X2, X3, X4) =
(X2 ⊆ X1) ∧ (X4 ⊆ X3) ∧ (X1 ∩X4 = ∅) ∧ (X2 ∩X3 = ∅).
The conditions ensure that positive and negative elements
are not mixed and that all elements of G′ are mapped
correctly to elements of G.

Symbolic Algorithm. Using the symbolic encoding for the
graph pattern that results from the backward application
of the rule (L, R)r to a graph R ∪ F and the condition
for graph pattern inclusion, P ′ v P , we can now define
the condition to be checked as SCE(L, R, F, C) = SG(C) v
SBA(SG(L), SG(R), SG(F)), where C ∈ C is a candidate
graph pattern.

When checking this condition for different Ci ∈ C in par-
allel, we can further exploit the fact that we can perform
these checks using the same universe, as the different Ci do
not affect each other during checking. For a rule (L, R)r, a
forbidden graph pattern F , and the set of graph patterns C,
where X is the set of variables in L , R, and F , and X ′ is
the set of variables in the elements of C, we encode the de-
sired symbolic check as ∀ X ∃ X ′ : SCE∨(L, R, F, C), where
SCE∨(L, R, F, C) is the or-combination of the individual
checks in the form

W
Ci∈C SCE(L, R, F, Ci). Any assignment

v of the variables X for which (6 ∃X ′ : SCE∨(L, R, F, C))[v] is
evaluated to true represents a counterexample. Algorithm 4
summarizes the resulting symbolic computation steps.

Algorithm 4 SearchCounterexampleSymbolic(r, F, C)
Input: Rule (L, R)r, GraphPattern F , Set〈GraphPattern〉 C
Output: Set〈CounterexampleAssignment〉
1: return {v ∈ Val(X) | 6 ∃X′ : SCE∨(L, R, F, C)[v]}

5. EVALUATION
In order to evaluate the performance and competitive-

ness of our approach, we have modeled the case study pre-
sented in Section 2 with the Fujaba CASE tool and used it
to benchmark the following: (1) model checking over graphs,
(2) explicit invariant verification using the procedure in Al-
gorithm 3, and (3) symbolic invariant verification using an
RML encoding of Algorithm 4.

Case Study Characteristics. Our case study consists of
6 rules, 1 accident, 3 hazards and 15 invariants encoding
cardinalities. As we surmise that the performance of our
approach is largely dependent on the number and especially
the complexity of the individual patterns, we present the
main characteristics of the system in Table 1. We list the
number of rules (#r) and forbidden graph patterns (#p),
and the size of the rules (size(r)) and the forbidden graph
patterns (size(p)). The size of a story pattern is given as
a tuple n : e, where n corresponds to the number of nodes
and e corresponds to the number of edges in R, the pattern’s
right-hand side. All experiments were performed on a Linux
machine with a 933MHz Pentium III processor and 4GB
memory.

Table 1: Characteristics data of the case study

#r #p size(r)(n:e) size(p)(n:e)
min max min max

8 19 3:2 7:10 1:1 5:4

Model Checking. We used the GTS model checker
GROOVE [21] to carry out the model checking. GROOVE
imports GTS specifications and computes all reachable
states of the transformation system, optionally bounded by
the occurrence of a forbidden graph. Creating an appropri-
ate plug-in, we were able to export our model from Fujaba
to GROOVE’s input format.

We checked our model, using collision as the forbidden
graph, omitting all auxiliary constraints as the assumed
topologies imply the required cardinalities. Effectively, mod-
els of moderate size can be checked. Applied to small ex-
ample topologies, the checks provide valuable feedback for
the design of a system. Unexpected system behavior can be
visualized and analyzed interactively. However, experiments
on a topology with 15 tracks confirmed the adverse effect of
combinatorial complexity: After moving from 3 (2 min) to 4
(7min) to 5 (55min) shuttles, the verification task became
intractable. Finally, the obtained result is only valid for the
specific topology and initial state used.

Explicit Invariant Checking. We implemented the ex-
plicit invariant checking algorithm as a self-contained Fu-
jaba plug-in. It either pronounces a specification correct or
produces a set of counterexamples. Checking just the phys-
ical part of the case study yielded the expected collisions,
whereas the verification of the complete model proved it to
be correct.

Figure 10 displays the performance results for the explicit
implementation of the SearchCounterexample subroutine. It
shows the computation times in seconds for each pair of
rule and forbidden graph. The rules are listed on the X-
axis, whereas the invariants are listed on the Y-axis. The
number of nodes in R has been used to order the rules and
invariants. The slope of the graph supports our hypothesis
that the computation time of the algorithm mainly depends
on the complexity of the involved graphs. The extreme case

79

01:01 01:01 02:01 02:02 02:02 02:02 02:02 02:02 03:02 03:03 03:02 03:02 03:02 03:02 03:02 03:02 03:02 04:04 05:04

03:02
04:02
04:05
05:05
05:05
05:06
06:09
07:10

0,00

10,00

20,00

30,00

40,00

50,00

60,00

time

forbidden patterns

rules

Figure 10: Computation times (in seconds) for ex-
plicit search counterexample

Table 2: Run-times for verifying the largest pairs

Rule / pattern (nodes:edges) explicit symbolic
goDC1(7:10) / invalidDCPattern(5:4) 744 s 11.2 s
goDC2(6:09) / invalidDCPattern(5:4) 170 s 6.5 s
goDC1(7:10) / noDC(4:4) 20 s 16.8 s
goDC2(6:09) / noDC(4:4) 7 s 13.1 s
goDC1(7:10) / unambigousOn(3:2) 60 s 6.1 s
goDC2(6:09) / unambigousOn(3:2) 36 s 2.9 s
goDC1(7:10) / unambigousNext(3:2) 48 s 4.1 s
goDC2(6:09) / unambigousNext(3:2) 33 s 2.1 s

resulting from the combination of the goDC1 rule and in-

validDCPattern invariant consumed 744s and is omitted from
this figure. The explicit algorithm required 34min for the
verification of the overall system.

Symbolic Invariant Checking. The symbolic invariant
checker was implemented as a Fujaba plug-in that generates
the required RML program from the model and passes it to
the graph manipulation engine CrocoPat, which is based on
a highly optimized BDD package. The prototypical imple-
mentation of the symbolic algorithm results in drastically
reduced computation times for large pairs. The run-time
increases only moderately with increasing size of the pat-
terns, as shown by Fig. 11. The largest rule/invariant pair
is verified in 11.2 s. The symbolic algorithm requires only
5min to complete the overall verification.

Summary. Table 2 lists the computation times for the
largest rule/invariant pairs. The pairs are ordered according
to the size of the forbidden graph patterns. For the explicit
algorithm, the combinatoric complexity of the rule/invariant
pair, i.e., the number of different ways to intersect the pat-
terns, has the most significant impact on the computation
time. This explains why the pair goDC2 and noDC is a par-
ticularly easy case for the explicit algorithm, in spite of the
size of the pair, as the number of possible intersections is
constrained by a large number of positive edges.

The symbolic algorithm seems to be dramatically less sen-
sitive to increasing problem complexity of the rules and
invariants. The extreme case in the first row in the ta-
ble, which results from the combination of the goDC1 rule
and invalidDCPattern invariant, especially highlights this fact:
a run-time of 11.2 s for the symbolic algorithm versus a run-

01:01 01:01 02:01 02:02 02:02 02:02 02:02 02:02 03:02 03:03 03:02 03:02 03:02 03:02 03:02 03:02 03:02 04:04 05:04

03:02

04:05

05:05

06:09

0,00

10,00

20,00

30,00

40,00

50,00

60,00

time

forbidden patterns

rules

Figure 11: Computation times (in seconds) for sym-
bolic search counterexample

time of 744 s for the explicit algorithm. This case indicates
that the speed-up due to the symbolic encoding can be ex-
tremely high for certain hard cases with a high number of
nodes and edges.

6. RELATED WORK

Verifying finite state spaces. Caporuscio et al. propose
to build a system with dynamically changing structures by
using architectural patterns [8]. To verify such a system,
they suggest to consider a certain minimal sub-model and
verify it by model checking. The model checking result has
to be generalized manually to ensure that it holds for all
possible states. In our approach, in contrast, we support
a fully-automatic procedure for verifying whether only safe
sub-models can be reached at run-time.

Alloy allows the design and analysis of systems with
changing structures [16]. DynAlloy extends Alloy in such
a way that state changes can also be modeled [10]. In con-
trast to our approach, where operations are described by
story patterns, Alloy and DynAlloy require operations and
properties given as logical formulae. They check whether the
given properties are operational invariants of the system.

Varró uses a visual language for modeling systems, and
transforms the models then into a model-checker specific in-
put [24]. This approach has been successfully applied to
verify service-oriented systems [3]. Instead of transforming
a system to a model checker’s input format, Rensink per-
forms the model checking directly on the GTS [21]. As a
consequence, his tool implementation GROOVE focuses on
pure GTS, rather than on object-oriented models. The tool
(and language) Real-Time Maude is based on rewriting log-
ics [20]. The tool supports the simulation of a single behav-
ior of the system as well as model checking of the complete
state space, if it is finite.

In contrast to our work, the above approaches have two
main restrictions. First, they require an initial graph. Sec-
ond, the application of the methods is only possible if the
system to be verified either has a finite state space or the
system is abstracted to a finite state model of moderate size.
To require a fixed initial graph and a finite state space is not
appropriate for mechatronic systems, and the abstraction to
a finite state space is (currently) difficult to achieve. How-
ever, there is work in progress in this direction (cf. [2]).

80

Verifying infinite state spaces. The only approach that
explicitly addresses the verification of infinite state systems
with changing structure so far is the following. A GTS can
be transformed into a finite structure, called Petri graph [1].
Such a Petri graph consists of a graph and a Petri net, each
of which can be analyzed with existing tools for the analysis
of Petri nets. For infinite systems, the authors suggest an
approximation. The approach is not appropriate for the
verification of mechatronic systems, because it requires an
initial graph and the expressiveness of the underlying GTS
is rather restricted, e.g., rules must not delete nodes.

Verifying invariants. In the context of graph transforma-
tions, Heckel and Wagner used the idea of gluing a rule’s
RHS with a forbidden graph pattern and then performing a
backward application of the rule, to ensure consistency [15].
Using backward application, they transform the forbidden
graph patterns into additional negative application condi-
tions (NAC), i.e., negative nodes of the LHS. The trans-
formation of a correct into an incorrect graph is thus pre-
vented by the modified rule. However, the objective of their
approach is not to verify the consistency of a set of trans-
formation rules w.r.t. a set of forbidden graph patterns, but
rather to automatically construct a set of modified rules that
ensures consistency by avoiding the production of forbidden
graphs, at the cost of possibly adding vacuous constraints.
Applied to our domain as a run-time checking technique,
this approach would only work where the extensions respect
the agent’s actually accessible context and do not modify
physical processes such as the movement of shuttles.

7. CONCLUSION
We presented an extension of the Mechatronic UML de-

velopment approach towards the modeling and verification
of mechatronic multi-agent systems. It takes architecture-
level structural adaptation of the agent network at run-time
into account. We developed an automated checking tech-
nique for structural invariants, based on the formal model
of graph transformation systems. System states are mod-
eled as graphs, and system transitions are modeled as graph
transformations. Safety properties are modeled as induc-
tive invariants on the graph transformation rules. The per-
formance of our approach is determined by the size of the
safety property (given as a set of forbidden graph patterns)
and by the size of the transformation rules. The symbolic
encoding of the verification procedure enables the applica-
tion of efficient symbolic graph manipulation engines. Our
experiments confirm that the symbolic encoding of our algo-
rithm scales better than the explicit encoding. We recorded
a speed-up of more than an order of magnitude for the most
complex rule/invariant pair. As expected, both implemen-
tations scale vastly better for non-trivial systems than an
orthogonal approach that uses state space exploration. Fu-
ture work in this project includes the improvement of the
user-interface to make the interaction between the engineer
and the formal model more convenient (e.g., visual coun-
terexample inspection), the evaluation of the approach in
an industrial-size case study, and releasing the Fujaba ex-
tension as a stable verification product.

8. REFERENCES
[1] P. Baldan, A. Corradini, and B. König. A static analysis

technique for graph transformation systems. In Proc.
CONCUR, LNCS 2154, pages 381–395. Springer, 2001.

[2] P. Baldan, B. König, and A. Rensink. Graph grammar
verification through abstraction (summary 2). Proc. Dagstuhl
Seminar 04241, 2005.

[3] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Modeling and
validation of service-oriented architectures: Application vs.
style. In Proc. ESEC/FSE, pages 68–77. ACM, 2003.

[4] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational
calculation for software analysis. IEEE Trans. on Software
Engineering, 31(2):137–149, 2005.

[5] R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers
with BDDs for automatic invariant checking. In Proc. TACAS,
LNCS 1785, pages 378–394. Springer, 2000.

[6] D. Bradley, D. Seward, D. Dawson, and S. Burge.
Mechatronics. Stanley Thornes, 2000.

[7] S. Burmester, H. Giese, and M. Tichy. Model-driven
development of reconfigurable mechatronic systems with
mechatronic UML. In Model Driven Architecture: Foundations
and Applications, LNCS 3599, pages 47–61. Springer, 2005.

[8] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis
of architectural patterns. In Proc. EWSA, LNCS 3047, pages
10–24. Springer, 2004.

[9] M. Charpentier. Composing invariants. In Proc. FME,
LNCS 2805, pages 401–421. Springer, 2003.

[10] M. F. Frias, J. P. Galeotti, C. L. Pombo, and N. Aguirre.
DynAlloy: Upgrading Alloy with actions. In Proc. ICSE, pages
442–451. ACM, 2005.

[11] H. Giese, S. Burmester, W. Schäfer, and O. Oberschelp.
Modular design and verification of component-based
mechatronic systems with online-reconfiguration. In Proc. FSE,
pages 179–188. ACM, 2004.

[12] H. Giese and D. Schilling. Towards the automatic verification
of inductive invariants for infinite state UML models. Technical
Report tr-ri-04-252, University of Paderborn, Germany, 2004.

[13] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the compositional verification of real-time UML
designs. In Proc. ESEC/FSE, pages 38–47. ACM, 2003.

[14] R. Heckel, J. Küster, and G. Taentzer. Towards automatic
translation of UML models into semantic domains. In Proc.
AGT, pages 11–22, 2002.

[15] R. Heckel and A. Wagner. Ensuring consistency of conditional
graph rewriting — a constructive approach. ENTCS, 2, 1995.

[16] D. Jackson. Alloy: A lightweight object modelling notation.
ACM Trans. Software Engineering and Methodology,
11(2):256–290, 2002.

[17] F. Klein and H. Giese. Separation of concerns for mechatronic
multi-agent systems through dynamic communities. In
SELMAS III, LNCS 3390, pages 272–289. Springer, 2005.

[18] H. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating
UML diagrams for production control systems. In Proc. ICSE,
pages 241–251. ACM, 2000.

[19] D. Musliner, R. Goldman, M. Pelican, and K. Krebsbach.
Self-adaptive software for hard real-time environments. IEEE
Intelligent Systems, 14(4), 1999.

[20] P. Ölveczky and J. Meseguer. Specification and analysis of
real-time systems using Real-Time Maude. In Proc. FASE,
LNCS 2984, pages 354–358. Springer, 2004.

[21] A. Rensink. Towards model checking graph grammars. In Proc.
AVoCS, pages 150–160. University of Southampton, 2003.

[22] G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation: Foundations, volume 1.
World Scientific Pub Co, 1997.

[23] J. Sztipanovits, G. Karsai, and T. Bapty. Self-adaptive software
for signal processing. Commun. ACM, 41(5):66–73, 1998.

[24] D. Varró. Automated formal verification of visual modeling
languages by model checking. Software and System Modeling,
3(2):85–113, 2004.

81

	Introduction
	Modeling Approach
	Advanced Mechatronic Systems
	Modeling

	Formal Model
	Verification
	Evaluation
	Related Work
	Conclusion
	References

