
Algorithms for Interface Synthesis�

(Invited Tutorial)

Dirk Beyer1, Thomas A. Henzinger2, and Vasu Singh2

1 Simon Fraser University, B.C., Canada
2 EPFL, Switzerland

Abstract. A temporal interface for a software component is a finite
automaton that specifies the legal sequences of calls to functions that
are provided by the component. We compare and evaluate three dif-
ferent algorithms for automatically extracting temporal interfaces from
program code: (1) a game algorithm that computes the interface as a rep-
resentation of the most general environment strategy to avoid a safety
violation; (2) a learning algorithm that repeatedly queries the program
to construct the minimal interface automaton; and (3) a CEGAR algo-
rithm that iteratively refines an abstract interface hypothesis by adding
relevant program variables. For comparison purposes, we present and
implement the three algorithms in a unifying formal setting. While the
three algorithms compute the same output and have similar worst-case
complexities, their actual running times may differ considerably for a
given input program. On the theoretical side, we provide for each of the
three algorithms a family of input programs on which that algorithm
outperforms the two alternatives. On the practical side, we evaluate the
three algorithms experimentally on a variety of Java libraries.

1 Introduction

Large software systems are built using components and libraries, which are
often developed by different teams, or even different companies. Quality com-
ponent interfaces facilitate the integration and validation process for such sys-
tems. This explains the recent interest in rich interfaces for existing code, such
as software libraries. We consider temporal interfaces [4], which specify the le-
gal sequences of function calls to a library, i.e., those sequences that do not
cause the library to enter an error state. Consider, for example, the library
shown in Fig. 1, which supports read and write accesses to files. The safe
use of the library requires that a file be opened for read or for read-write
access before being read, and be opened for read-write access before being
written. The library interface can be represented by the regular expression
((ropen · read∗ · close) ∪ (rwopen · (read ∪ write)∗ · close))∗. This interface
is both safe, in that it accepts no sequence of function calls that leads to an
error in the library, and permissive, in that it accepts all other sequences.
� This research was supported in part by the grant SFU/PRG 06-3, and by the Swiss

National Science Foundation.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 4–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algorithms for Interface Synthesis 5

void ropen(File f) {
if (!f.rdflag)

f.rdflag = true;
else

f.error = true; }

void close(File f) {
if (f.rdflag) {
f.rdflag = false;
f.wrflag = false; }

else
f.error = true; }

void rwopen(File f) {
if (!f.rdflag) {
f.rdflag = true;
f.wrflag = true; }

else
f.error = true; }

void read(File f) {
if (!f.rdflag)
f.error = true; }

void write(File f) {
if (!f.wrflag)
f.error = true; }

Fig. 1. Example of a library that supports read and write accesses to files

Several algorithms have been proposed for automatically extracting safe and
permissive temporal interfaces (in the form of finite automata) from library
code. Like many questions of sequential synthesis, interface extraction is fun-
damentally a game problem, namely, the problem to compute the most general
environment strategy for calling library functions without causing a safety vio-
lation. We call the algorithm that solves the safety game on the library code the
‘direct’ algorithm. As the complexity of this algorithm grows with the number
of library states, two very different improvements have been suggested. The first
is based on techniques for learning a finite automaton by repeatedly querying a
teacher [1]. The learning algorithm guarantees the construction of a determin-
istic interface automaton with a minimal number of states, and thus performs
well if the number of states required in the interface is small. The second im-
provement is based on counterexample-guided abstraction refinement [3]. The
CEGAR algorithm computes a library abstraction, then extracts an interface
automaton for the abstract library, then checks if the extracted interface is both
safe and permissive for the concrete library (using two reachability tests), and if
not, iteratively refines the library abstraction [5]. This algorithm performs well
if there exists a small abstraction of the library from which a safe and permissive
interface can be constructed.

Our aim is to compare and analyze the three approaches (direct; learning; and
CEGAR) both theoretically and experimentally. Even though they address the
same problem, the three algorithms proceed very differently. Moreover, the learn-
ing algorithm was published and previously implemented in the context of Java
libraries without guaranteeing interface permissiveness [1], and the CEGAR al-
gorithm was published and previously implemented in the context of C programs
without ensuring interface minimality [5]. For a fair comparison, we formalize
and reimplement all three algorithms in a uniform setting. In order to disregard
orthogonal issues as much as possible, we remove all effects of the programming
language by choosing, as input to the three algorithms, the transition graph of
a library. We assume the transition graphs to be finite-state, so that all three
algorithms are guaranteed to terminate (on infinite-state systems, none of the
algorithms is guaranteed to terminate, although different algorithms may ter-
minate on different inputs). In order to further level the playing field, we add a
permissiveness check to the learning algorithm of [1], and we add a minimization
step to the direct and the CEGAR algorithm. We also make some improvements

6 D. Beyer, T.A. Henzinger, and V. Singh

to the published algorithms. For example, we simplify the CEGAR algorithm
by combining the safety and permissiveness checks into a single reachability test
(rather than using two separate tests on different automata, as suggested in [5]).

On the theoretical side, we construct parametric families of input programs
that amplify the differences in the performance of the three algorithms. In exper-
iments, we find that these input families do not represent uninteresting corner
cases, but commonly occur in applications such as Java libraries. As expected,
abstraction refinement performs best if only few program variables1 are needed
to prove an interface both safe and permissive. If this is the case, then the re-
sulting interface automaton has few states. Learning also requires the interface
automaton to be small, and performs better than CEGAR if the interface states
reflect the values of many different program variables. The direct (game) algo-
rithm outperforms both other approaches if the interface is not small, but the
size of the state space is not too large to be explored and minimized (this is
because the direct algorithm does not involve any of the overhead necessary for
either learning or automatic abstraction refinement).

2 Open Programs and Interfaces

We investigate sequences of calls to a software library. We formalize the library
code as an open program. In order to remove language effects, we describe an
open program as a labeled transition graph over a finite set of boolean variables.
The labels are function calls; one of the variables marks the error states. Certain
sequences of function calls may lead the open program to an error state. At
the concrete level, an open program is deterministic, and thus each sequence of
function calls either causes or does not cause an error (this will not be true in
general for abstractions of open programs). The set of all sequences of function
calls that do not cause an error is called the safe and permissive interface of
the open program. We strive to construct a minimal deterministic finite-state
representation of that interface, called an interface automaton.

Finite automata. Consider a finite automaton A = (Q, Σ, q0, δ) with the set Q
of states, the input alphabet Σ, the initial state q0 ∈ Q, and the transition
relation δ ⊆ Q × Σ × Q (there are no accepting states). The automaton A is
serial if for all states q ∈ Q, there exists an input symbol f ∈ Σ and a state q′ ∈ Q
such that (q, f, q′) ∈ δ. The automaton A is input-enabled if for all states q ∈ Q
and all input symbols f ∈ Σ, there exists a state q′ ∈ Q such that (q, f, q′) ∈ δ.
The automaton A is deterministic if for all states q, q′, q′′ ∈ Q and all input
symbols f ∈ Σ, if (q, f, q′) ∈ δ and (q, f, q′′) ∈ δ, then q′ = q′′. The transitive
closure w−→δ of the transition relation is defined as usual: let q

ε−→δ q′ if q = q′,
and let q

f ·w−−→δ q′ if there exists a state q′′ such that (q, f, q′′) ∈ δ and q′′ w−→δ q′.
The reachable region of the automaton is Reach(A) = {q ∈ Q | ∃w : q0

w−→δ q}. A
trace α of A is a finite or infinite sequence 〈p0, f0, p1, f1, . . .〉 such that p0 = q0,

1 We perform abstraction by hiding variables. Similar criteria can be obtained for
predicate abstraction.

Algorithms for Interface Synthesis 7

and pj
fj−→δ pj+1 for all j ≥ 0. The word induced by the trace α is the sequence

f0 ·f1 ·f2 · · · of input symbols. The language L(A) is the set of finite and infinite
words w ∈ Σ∗ ∪ Σω such that there exists a trace of A that induces w. The ω-
language Lω(A) is the set of infinite words in L(A); that is, Lω(A) = L(A)∩Σω.

Open programs. An open program P = (X, Σ, s0, ϕ, xe) consists of a finite
set X of boolean variables, whose truth-value assignments [[X]] represent the
states of the program; a finite alphabet Σ of exported function names; an initial
state s0 ∈ [[X]]; a set ϕ containing a transition predicate ϕf over X∪X ′ for every
function f ∈ Σ, where the set X ′ contains a primed variable x′ for each variable
x ∈ X ; and an error variable xe ∈ X . The semantics of the open program P
is given by a finite automaton AP = ([[X]], Σ, s0, δP) and a set EP of error
states. The transition relation δP is defined by (s, f, t) ∈ δP iff s ∪ t′ satisfies
the transition predicate ϕf , where the state t′ ∈ [[X ′]] is obtained by giving each
primed variable x′ ∈ X ′ the value t(x). We require of every open program P that
the automaton AP be input-enabled. The open program P is concrete if AP is
deterministic. For a concrete open program, in every state, every function call
leads to a unique successor state. We will also consider open programs that result
from abstraction; in general these do not have deterministic transition relations.
The set EP of error states is the set of states s with s(xe) = t. Without loss of
generality we assume that for all states s ∈ EP , if (s, f, s′) ∈ δP , then s′ ∈ EP .

Interfaces. An interface for an open program P is a closed2 (in the Cantor
topology) set of infinite words over the alphabet Σ of function names. A finite
or infinite word w ∈ Σ∗ ∪ Σω is safe for P if for all finite prefixes w′ of w,
if s0

w′
−→δP s, then s /∈ EP . A language L ⊆ Σ∗ ∪ Σω is safe for P if every

word in L is safe for P . A language L ⊆ Σ∗ ∪ Σω is permissive for P if L
contains every word that is safe for P . The safe and permissive interface for P
is the set I(P) ⊆ Σω of infinite words that are safe for P . Interfaces for P
can be specified by serial automata over the input alphabet Σ. We look for
deterministic interface specifications, which can be used to monitor the legality
of a sequence of function calls. Such serial and deterministic automata can be
minimized. Thus, the interface synthesis problem is defined as follows:

Given a concrete open program P , we wish to find the (unique) minimal
serial and deterministic finite automaton B such that the ω-language
Lω(B) is the safe and permissive interface for P ; that is, Lω(B) = I(P).

Checking interface automata for safety. Let P = (X, Σ, s0, ϕ, xe) be an
open program, and let B = (Q, Σ, q0, λ) be a finite automaton. The product of P
and B is the finite automaton AP × B = (Q×, Σ, q×0 , λ×) with Q× = [[X]] × Q,
q×0 = (s0, q0), and λ× = {((s, q), f, (s′, q′)) | (s, f, s′) ∈ δP and (q, f, q′) ∈ λ}.
The language L(B) is safe for P iff s /∈ EP for all states (s, q) ∈ Reach(AP × B).
Based on this characterization of safety, we use a procedure checkSafe(P, B) to
check if L(B) is safe for P . If L(B) is safe for P , then checkSafe(P, B) returns
2 A set L of infinite words is closed if for every infinite word w, if every finite prefix

of w is a prefix of some word in L, then w ∈ L.

8 D. Beyer, T.A. Henzinger, and V. Singh

f2

q7 q6 q5 q4

f2

q0 q3q2q1

AP

f1

f1 f1,f2f1,f2

(a) Automaton of open program.

f2

q0

f1f1

q0 q1

f1

f2

q0 q1 q2 q3
f1

f1 f1,f2
f1,f2

qS

C+

f1,f2

B1 B2

(b) Direct algorithm.

ε

C1 C2

f2
ε f2

f1f1,f2 f1
B

ε

(c) Learning algorithm.

q0

q1

B

f1

q0

f1

q1
f2

q0

q3 q2
f1,f2f1,f2

AP[Y] AP[Y’]

f1,f2

(d) CEGAR algorithm.

Fig. 2. Example concrete open program and the output of the three algorithms

Yes; otherwise it returns a finite trace 〈(s0, q0), f0, (s1, q1), f1, . . . , (sn, qn)〉 of
the product AP × B such that sn ∈ EP .

Checking interface automata for permissiveness. Given an open program
P = (X, Σ, s0, ϕ, xe), the errorless automaton A−

P = ([[X]], Σ, s0, δ
−
P) has the

transition relation δ−P = {(s, f, s′) ∈ δP | s′ /∈ EP }. Given a finite automaton
B = (Q, Σ, q0, λ), the serialized automaton B+ = (Q ∪ {qsink}, Σ, q0, λ

+) has
the sink state qsink and the transition relation λ+ = λ ∪ {(q, f, qsink) | q ∈ Q
and f ∈ Σ, and (q, f, q′) /∈ λ for all q′ ∈ Q} ∪ {(qsink, f, qsink) | f ∈ Σ}. We
have the following sufficient condition on permissiveness [5]: the language L(B)
is permissive for P if Reach(A−

P × B+) contains no state of the form (s, qsink).
For deterministic B, the other direction also holds: if L(B) is permissive for P ,
then Reach(A−

P × B+) contains no state of the form (s, qsink). Based on this
characterization of permissiveness, we use, for deterministic B, a procedure
checkPermissive(P, B) to check if L(B) is permissive for P . If L(B) is per-
missive for P , then checkPermissive(P, B) returns Yes; otherwise it returns a
finite trace 〈(s0, q0), f0, (s1, q1), f1, . . . , (sn, qn)〉 of the product A−

P × B+ such
that qn = qsink. The procedures checkSafe(P, B) and checkPermissive(P, B) are
implemented as reachability analyses.

3 Three Algorithms for Interface Synthesis

We discuss three different algorithms for synthesizing interface automata.
Figure 2(a) shows the automaton of a concrete open program, which we use
as an example. The grey circles denote the error states.

3.1 Direct Algorithm

Given a concrete open program P , the algorithm Direct first constructs the er-
rorless automaton A−

P , and then calls the procedure Prune, which prunes the se-
rialized automaton (A−

P)+ backwards, starting from qsink, to eliminate all states

Algorithms for Interface Synthesis 9

Algorithm 1. Direct(P)
Input: a concrete open program P = (X, Σ, s0, ϕ, xe)
Output: the minimal serial deterministic automaton B such that Lω(B) = I(P)

return Minimize(Prune(A−
P))

all of whose successors lead to qsink. The pruning removes all unrecoverable
states of P , from which all infinite input sequences cause an error. Formally,
a state q ∈ Q of a deterministic automaton C = (Q, Σ, q0, λ) is recoverable
if there exists an infinite trace 〈p0, f0, p1, f1, . . .〉 of C such that p0 = q, and
pi �= qsink for all i ≥ 0. This yields a (still deterministic) automaton D, which
we refer as the intermediate automaton obtained in the direct algorithm. Then
the procedure Minimize produces from D a minimal automaton B, using the
DFA minimization algorithm [6]. (More precisely, we serialize D to obtain D+,
and consider the sink state of D+ as rejecting, and all other states as accepting.
We then minimize the automaton and remove the introduced sink state.) The
result B is the minimal serial and deterministic automaton such that Lω(B) is
the safe and permissive interface for P .

Example. Figure 2(b) shows the serialized errorless automaton (C+), its pruned
version (B1), and its minimized version (B2), for the automaton AP from Fig. 2(a)
The grey circles represent the set Err in the procedure Prune. The error states
from EP are unreachable and not shown. The state qS is the sink state qsink.

Time complexity. For an open program with k variables, pruning requires
worst-case time O(|Σ| · 2k). If the pruned automaton D has n states, then sub-
sequent minimization needs O(|Σ| · n · log n) time. The worst case occurs if
n = O(2k), giving a running time of O(|Σ| · k · 2k) for the direct algorithm.

Theorem 1. Given a concrete open program P with variables X and exported
function names Σ, the direct algorithm (Alg. 1) produces the minimal serial and
deterministic finite automaton B such that Lω(B) is the safe and permissive
interface for P , in time linear in |Σ| and exponential in |X |.

Note that if AP is not deterministic, then the pruning performed by the direct
algorithm does not guarantee to result in a safe interface. To work on abstract
open programs, the direct algorithm would have to be preceded by an exponen-
tial determinization step, i.e., subset construction. However, even for concrete
open programs P , where no determinization is necessary, the direct algorithm
needs to explore the entire state space of P and minimize an intermediate au-
tomaton D of possible size O(2k), where k is the number of variables of P . In
software libraries, we expect many recoverable states —i.e., states from which
some sequences of function calls are allowed— and this gives rise to large inter-
mediate automata. Hence the direct algorithm is often too expensive. Therefore
the following two alternative algorithms have been proposed. While no better
in worst-case complexity, in many cases the two alternatives outperform the di-
rect algorithm. They do so by employing very different strategies: the learning

10 D. Beyer, T.A. Henzinger, and V. Singh

Algorithm 2. Prune(C)
Input: a deterministic automaton C = (Q, Σ, q0, λ)
Output: a serial deterministic automaton B such that Lω(B) = Lω(C)
Variables: a serial automaton C+, a state qsink �∈ Q, and

three state sets Err ,Wait ,Pre ⊆ (Q ∪ {qsink})
C+ := serialized automaton (Q ∪ {qsink}, Σ, q0, λ

+) for C
Err := {qsink}; Wait := Err
while Wait �= ∅ do

choose s ∈ Wait ; Wait := Wait \ {s}
Pre := {r ∈ Q | (r, f, s) ∈ λ+ for some f ∈ Σ}
for each state r ∈ Pre do

if r /∈ Err and (∀f ∈ Σ : r
f−→λ+ s′ and s′ ∈ Err) then

Err := Err ∪ {r}; Wait := Wait ∪ {r}
return (Q \ Err , Σ, q0, {(q, f, q′) ∈ λ | q′ �∈ Err})

algorithm queries the concrete open program; the CEGAR algorithm automati-
cally constructs and refines an abstract open program.

3.2 Learning Algorithm

An approach based on learning the interface was proposed by Alur et al. [1].
The learning algorithm learns the interface language by asking membership and
equivalence questions to the teacher, i.e., the given concrete open program P .
In a membership question, the algorithm asks whether a particular word is safe
for P or not. In an equivalence question, the algorithm asks if the language of the
conjectured automaton C = (Q, Σ, q0, λ) is safe and permissive for P . To con-
struct the conjectured automaton, the learning algorithm maintains information
about a finite collection of words over Σ in an observation table (R, E, G), where
R and E are finite sets of words over Σ, and G is a function from (R∪(R·Σ))×E
to B. The set R is a set of representative words. For each word r ∈ R that is safe
for P , there exists a state qr in the automaton C such that qε

r−→λ qr. The set E
is a set of suffix words that distinguish the states. For all representative words
r1, r2 ∈ R, there exists a word e ∈ E such that only one of r1 · e and r2 · e is
safe for P . The function G stores the results of the membership questions, i.e., it
maps a pair of two words r ∈ R∪ (R ·Σ) and e ∈ E to t if r · e is safe for P , and
to f otherwise. For a detailed description of the learning algorithm we refer to
Alur et al. [1] (cf. also [2] and [7]). For a fair comparison between the algorithms,
the learning algorithm described here learns the interface from the concrete open
program rather than from a manual abstraction of the same, as proposed by Alur
et al. [1]. Since a concrete open program is deterministic, the learning algorithm
produces an interface that is not only safe, but also permissive.

Algorithm. The learning algorithm starts with R and E set to {ε}, and G is
initialized for every combination of two words from R ∪ (R · Σ) and E using
membership questions (procedure memb). Then, the algorithm checks whether
the table (R, E, G) is closed (procedure checkClosure). If not, the algorithm adds

Algorithms for Interface Synthesis 11

Algorithm 3. Learning(P)
Input: a concrete open program P = (X, Σ, s0, ϕ, xe)
Output: the minimal serial deterministic automaton B such that Lω(B) = I(P)
Variables: two sets of words R and E over Σ, two words rnew and enew over Σ

an array G that maps (R ∪ (R · Σ)) × E to B,
an automaton C = (Q,Σ, q0, λ), and
a finite trace α× of a product automaton

R := {ε}; E := {ε}; G[ε, ε] := memb(P, ε · ε);
for each f ∈ Σ do

G[ε · f, ε] := memb(P, ε · f · ε)
while true do

rnew := checkClosure(R, E, G)
while rnew �= Yes do

R := R ∪ {rnew}
for each f ∈ Σ, e ∈ E do

G[rnew · f, e] := memb(P, rnew · f · e)
rnew := checkClosure(R, E, G)

C := makeConjecture(R, E, G)
α× := checkSafe(P, C)
if α× = Yes then

α× := checkPermissive(P, C)
if α× = Yes then

return Prune(C)
w := the word induced by the trace α×

enew := findSuffix(P, R,w); E := E ∪ {enew}
for each r ∈ R and f ∈ Σ do

G[r, enew] := memb(P, r · enew)
G[r · f, enew] := memb(P, r · f · enew)

new representative words and rechecks for closure. Once (R, E, G) is closed, an
automaton C is conjectured (procedure makeConjecture). Then, the algorithm
checks if L(C) is safe and permissive for P (this check represents an equiv-
alence question). If not, a counterexample trace is returned. The longest suf-
fix of the counterexample (found by the procedure findSuffix) is added to E,
and the algorithm rechecks for closure. The learning algorithm constructs a
deterministic automaton C whose states correspond to the trace-equivalence
classes of Reach(AP). Two states s, t ∈ [[X]] are trace-equivalent if there are no
word w ∈ Σ∗ and no states s′, t′ ∈ [[X]] such that s

w−→δP s′ and t
w−→δP t′ and

s′(xe) �= t′(xe). Then, the algorithm calls the procedure Prune to produce the
minimal serial and deterministic finite automaton B such that Lω(B) is the safe
and permissive interface for P .

Example. Figure 2(c) shows in the first two boxes the two conjectured au-
tomata. Automaton C2 is the final conjecture, which is used to produce the
serial deterministic finite automaton B.

12 D. Beyer, T.A. Henzinger, and V. Singh

Procedures used in the learning algorithm

– memb(P, w) returns t if w is safe for P . Otherwise it returns f.
– checkClosure(R, E, G) returns Yes if for every r ∈ R and f ∈ Σ, there exists

an r′ ∈ R such that G[r ·f, e] = G[r′, e] for every e ∈ E. Otherwise it returns
the word r · f such that there is no r′ satisfying the above condition.

– makeConjecture(R, E, G) returns a deterministic automaton C=(Q,Σ, q0,λ),
where Q = R \ {r ∈ R | G[r, ε] = f}, and q0 = ε, and for every r ∈ Q and
every f ∈ Σ, if G[r · f, ε] = t, then (r, f, r′) ∈ λ, where r′ is the word such
that G[r · f, e] = G[r′, e] for every e ∈ E.

– findSuffix(P, R, w) finds the longest suffix w′ of w such that for some r ∈ R
and f ∈ Σ, memb(P, r · f · w′) �= memb(P, r′ · w′), where r

f−→λ r′.

Time complexity. For an open program with k variables and m trace-
equivalence classes, the generation of a conjectured automaton has the time
complexity O(2k · (m2 · |Σ|+m · log c)), where c is the length of the longest coun-
terexample trace α× seen by the algorithm. At the end, a call to the procedure
Prune takes O(m·|Σ|) time. Thus the learning algorithm has the worst-case time
complexity O(|Σ| · 23k) when the number of trace-equivalence classes is O(2k).
However, when the number m of trace-equivalence classes (which determines the
size of the output automaton) is small compared to the number 2k of concrete
program states, then the learning algorithm may perform better than the direct
algorithm. This is because learning produces the minimal interface automaton,
whereas the direct algorithm needs to explicitly minimize an intermediate au-
tomaton of potential size O(2k).

Theorem 2. Given a concrete open program P with variables X and exported
function names Σ, and m trace-equivalence classes in Reach(AP), the learning
algorithm (Alg. 3) produces the minimal serial and deterministic finite automa-
ton B (with O(m) states) such that Lω(B) is the safe and permissive interface
for P , in time linear in |Σ|, quadratic in m, and exponential in |X |.

3.3 CEGAR Algorithm

A different approach based on automatic abstraction refinement was proposed
by Henzinger et al. [5].

Abstraction. An abstraction for an open program P = (X, Σ, s0, ϕ, xe) is a set
Y ⊆ X of variables, where xe ∈ Y . The abstraction hides the variables in X \Y .
Given a state s ∈ [[X]], the state s[Y] is the valuation in [[Y]] such that s(x) =
s[Y](x) for all x ∈ Y . An open program P and an abstraction Y for P yield the
(abstract) open program P [Y] = (Y, Σ, s0[Y], ϕ[Y], xe), where for each f ∈ Σ,
the transition predicate ϕf [Y] is the projection ∃(X ∪X ′)\(Y ∪Y ′) : ϕf of ϕf to
the variables in Y ∪ Y ′ (existential abstraction). The semantics of P [Y] is given
by the abstract automaton AP [Y] and the set EP [Y] of abstract error states. Note
that (s, f, s′) ∈ δP [Y] iff (t, f, t′) ∈ δP for some concrete states t, t′ ∈ [[X]] with
s = t[Y] and s′ = t′[Y]. The original CEGAR algorithm for interface synthesis [5]
uses two abstractions: one for checking safety and a possibly different one for

Algorithms for Interface Synthesis 13

Algorithm 4. CEGAR(P)
Input: a concrete open program P = (X, Σ, s0, ϕ, xe)
Output: the minimal serial deterministic automaton B such that Lω(B) = I(P)
Variables: an abstraction Y for P , the open program P [Y], an automaton C

Y := {xe}
while Y �= X do

C := A−
P [Y]

α× := checkSafe(P [Y], C)
if α× = Yes then

return Minimize(Prune(Determinize(C)))
else

α := findSpuriousTrace(P, α×); Y := getNewVars(P, α, Y)
return Minimize(Prune(Determinize(A−

P)))

checking permissiveness. We use a single abstraction, based on the following
observations. An open program P with initial state s0 and error variable xe is
visibly deterministic [5] if there is no word w ∈ Σ∗ and no states s, t ∈ [[X]] such
that s0

w−→δP s and s0
w−→δP t and s(xe) �= t(xe).

Lemma 1. Given the errorless automaton A−
P = (Q, Σ, q0, λ) of an open pro-

gram P , if the language L(A−
P) is safe for P , then L(A−

P) is permissive for P
and P is visibly deterministic.

Proof. (i) We know that the safety and permissiveness conditions are reachability
questions on AP × A−

P and A−
P × A−

P

+
, respectively. As AP is input-enabled, we

know that if (q, f, qsink) ∈ λ+, then (q, f, q′) ∈ δP with q′ ∈ EP . Thus, if there
exists no state (t, q) ∈ ReachAP ×A−

P
such that t ∈ EP , then there exists no state

(t, qsink) ∈ Reach
A−

P ×A−
P

+ . Hence, L(A−
P) is a permissive interface for P .

(ii) The fact that L(A−
P) is safe for P guarantees that there exists no word w

such that w is not safe for P and q0
w−→λ q for some state q ∈ Q. Also, we

know that the automaton A−
P is the errorless automaton for P , and L(A−

P) is
permissive for P . Therefore, there exists no word w such that there exist two
states u and v with s0

w−→δP u and s0
w−→δP v and u(xe) �= v(xe). Hence, P is

visibly deterministic. �

Lemma 2. Let Y be an abstraction for a concrete open program P such that
P [Y] is visibly deterministic. If a language L is safe and permissive for P [Y],
then L is safe and permissive for P .

Proof. Let a word w ∈ L be a counterexample for safety of P . By construction
of AP [Y], we know that the word w is also unsafe for the abstract open pro-
gram P [Y], which is a contradiction to our assumption that L is safe for P [Y].
Similarly, permissiveness of L for P [Y] guarantees that L is permissive for P . �

14 D. Beyer, T.A. Henzinger, and V. Singh

Algorithm 5. getNewVars(P, α, Y)
Input: a concrete open program P = (X, Σ, s0, ϕ, xe), an abstraction Y for P , and

a finite trace α = 〈t0, f0, . . . , tn〉 of the automaton AP [Y]

Output: a new abstraction Y ′ for P such that Y ⊂ Y ′ and α is not a trace of AP [Y ′]

Variables: states s, s′ ∈ [[X]] and t, ts, t
′ ∈ [[Y]], a set R ⊆ [[X]] of states, and f ∈ Σ

s := s0; t := s0[Y]
for i := 1 to n do

ts := ti; f := fi−1

let s′ ∈ [[X]] be such that s
f−→δP s′; let t′ ∈ [[Y]] be such that t′ = s′[Y]

if t′ �= ts then
R := {r ∈ Reach(AP) | t = r[Y] and there exists u ∈ [[X]] such that ts = u[Y]

and r
f−→δP u}

return splitState(s, R, Y)
s := s′; t := t′

Algorithm. We start with an abstraction that contains only the error variable;
that is, Y = {xe}. We construct the abstract open program P [Y] and its er-
rorless automaton C = A−

P [Y]. Then, we check whether L(C) is safe for P [Y].
If so, then we know that L(C) is also permissive and that P [Y] is visibly de-
terministic (by Lemmas 1 and 2). Otherwise, we obtain a counterexample trace
α× = 〈(s0[Y], q0), f0, . . . , (sn[Y], qn)〉 of the product automaton AP [Y] × C. Now
we use the procedure findSpuriousTrace(P, α×) to check if the word w induced
by the trace α× is safe for the concrete open program P . If w is safe (resp. un-
safe) for P , then the procedure declares the projection α of α× that is followed
by the component automaton AP [Y] (resp. C) as spurious. Formally, the finite
trace α = 〈t0, f0, . . . , tn〉 of the abstract automaton AP [Y] (resp. C = A−

P [Y]) is
spurious if there exists no trace 〈s0, f0, . . . , sn〉 of the concrete automaton AP

such that ti = si[Y] for all 0 ≤ i ≤ n. Next, we add more variables from X
to the abstraction Y such that the spurious trace α is eliminated from AP [Y]
(resp. C). This is done by the procedure getNewVars , which constructs a trace
β = 〈s0, f0, . . . , sn〉 of AP , and its corresponding abstract trace β[Y], such that
β induces the same word as α. The procedure locates the first position i where
the spurious abstract trace α differs from the genuine abstract trace β. Then it
finds a set R of states in AP that cause the spurious abstract trace, and a set
Y ′ ⊆ X of variables such that Y ⊂ Y ′ and if t = si−1[Y ′], then there does not
exist a state r ∈ R with t = r[Y ′]. This concludes one refinement step.

In the next refinement iteration, we construct the refined abstract open pro-
gram P [Y ′], and check if it is safe (and therefore visibly deterministic using
Lemma 1). We say that an abstraction Y suffices to prove the safety of P if
P [Y] is visibly deterministic. Once the CEGAR algorithm finds a visibly deter-
ministic abstract open program P [Y], we call the procedure Determinize fol-
lowed by Prune and Minimize , to obtain the minimal serial and deterministic
finite automaton B such that Lω(B) is the safe and permissive interface for P .
This is because before minimization, the abstract automaton AP [Y] found by
the CEGAR algorithm may not be minimal. Note that given a concrete open

Algorithms for Interface Synthesis 15

program P , finding an abstraction Y for P with a minimal number of variables
such that the abstract open program P [Y] is visibly deterministic, is NP-hard [3].

Example. Figure 2(d) shows in the first box automaton AP[Y] with the abstrac-
tion Y = {xe}. Adding one more variable yields the automaton AP[Y′], whose
open program is found to be visibly deterministic. The result B is computed by
first determinizing, then pruning and minimizing.

Procedures used in the CEGAR algorithm

– splitState(s, R, Y) for s ∈ [[X]], R ⊆ [[X]], and Y being the current abstrac-
tion, finds a set Y ′ ⊆ X of variables such that Y ⊂ Y ′ and there is no state
r ∈ R such that t = r[Y ′], where t ∈ [[Y ′]] with t = s[Y ′]. It returns Y ′.

– findSpuriousTrace(P, α×) first checks whether the word w induced by the
finite trace α× of the product automaton is safe for P . If so, then returns
the trace 〈s0[Y], f0, . . . , sn[Y]〉 of AP [Y] in α×. Otherwise, it returns the
trace 〈q0, f0, . . . , qn〉 of C = A−

P [Y] in α×.
– Determinize(A) determinizes the serial automaton A = (Q, Σ, q0, δ). We

note that since A is the automaton for a visibly deterministic open program,
the automaton A is ‘almost’ deterministic, and it is straightforward to deter-
minize A. Determinization does not change the set of states, the alphabet,
and the initial state, only the transition relation: for every state q ∈ Q and
every function f ∈ F , if there exist more than one transitions from q on f ,
then we choose arbitrarily one of the transitions (q, f, q′) ∈ δ to be in the
new transition relation of the resulting deterministic automaton.

Time complexity. Let X and abstraction Y be sets of k and c variables, re-
spectively. One iteration of the algorithm requires O(|Σ| · 2max{k,2c}) time. At
the end of the refinement procedure, the call to procedure Determinize runs
in time O(|Σ| · 2l), where l is the number of variables in the abstraction that
suffices to prove the safety of P . The procedure Prune requires time O(|Σ| · 2l)
followed by the procedure Minimize , which takes time O(|Σ| · l · 2l). Thus, the
worst-case time complexity of the CEGAR algorithm is O(|Σ| · 22k), which is
encountered if the abstraction refinement introduces all k program variables.
However, when the number l of variables that suffice to prove the safety of P
(which determines the size of the output automaton) is small compared to the
number k of all program variables, then the CEGAR algorithm may perform
better than the direct algorithm, because the exponential time dependency on
k is due only to the cost of constructing the abstract program. To be precise,
to check whether there is an abstract transition (s, f, s′) ∈ δP [Y] between two
given abstract states s, s′ ∈ [[Y]] requires time O(2k) but only space O(k). Such
a check can often benefit from symbolic methods.

Theorem 3. Given an open program P with variables X and exported function
names Σ, the CEGAR algorithm (Alg. 4) produces the minimal serial and de-
terministic finite automaton B (with O(2l) states) such that Lω(B) is the safe
and permissive interface for P , in time linear in |Σ| and exponential in |X | + l,
where l is the size of an abstraction that suffices to prove the safety of P .

16 D. Beyer, T.A. Henzinger, and V. Singh

f1f1f1f1f1f1f1

1 3 5 6 7

891011

f2

f1

f1, f2 f1, f2 f1, f2 f1, f2 f1, f2 f1, f2

f2

f2 f2 f2 f2 f2 f2 f2 f2

15 14 13 12

420

f1

(a) D faster than L and C.

f1 f1 f1 f1

f1f1f1

f1
1 3 5 6 7

891011

f2 f2 f2 f2 f2 f2

f1

15 14 13 12

420

f2f2f2f2 f2 f2 f2 f2

f1 f1 f1 f1

f1
f2

f2

f1

(b) L faster than C and D.

f1

f1

f1

f1

f1

f1

f1

f1f2 f2 f2

f1f1f1

1 3 5 6

91011

f2

f2 f2 f2

f2

0 2 4 7

8

f2f2f2f2f2f2f2f2

f1 f1 f1 f1
15 14 13 12

(c) C faster than L and D.

Fig. 3. Examples of concrete open programs where one algorithm performs better than
others. The grey circles denote the error states.

4 Theoretical Separation of the Algorithms

We describe three theoretical classes of examples that amplify the differences
between the three algorithms presented in the previous section. These examples
suggest that the three algorithms are important in their own right, and it is
worthwhile to understand them properly for efficient usage.

We consider concrete open programs with k variables and a fixed alphabet
Σ = {f1, f2}. We denote the set of states by {s0, s1, ...s2k−1}. The boolean value
of the variables is encoded in the index of the state; for example, at s1, the first
k−1 variables are 0, and the last variable is 1. Also, the first variable is the error
variable. Thus, the first half of the states are non-error states, and the second
half are error states. We consider all pairs of the direct (D), learning (L), and
CEGAR (C) algorithm. We evaluate the pairs on the metric of time complexity.
We show graphical examples with k = 4 in Fig. 3, which can be scaled to
arbitrary k. We assume that the CEGAR algorithm finds the minimal sufficient
abstraction in each case.

– D faster than L and C. For the open program in Fig. 3(a), the interface
automaton has size O(2k); that is, the interface is no smaller than the library.
The direct algorithm requires O(2k ·k) time, whereas the learning algorithm
requires O(23k) time and the CEGAR algorithm requires O(22k) time. The
direct algorithm is the fastest, because it avoids the overhead of learning and
abstraction refinement.

– L faster than C and D. The interface automaton for the open program in
Fig. 3(b) has two states (for all k). Hence, the learning algorithm requires
O(2k) time. On the other hand, the CEGAR algorithm has to continue

Algorithms for Interface Synthesis 17

Table 1. Run time for different algorithms, measured on a 3.0 GHz Pentium IV ma-
chine with 1GB memory. The parameter k is described for each class in the text.

k Interface automaton size Learning time CEGAR time
List Iterator

5 2 0.19 s 0.91 s
6 2 0.43 s 1.53 s
7 2 1.10 s 4.31 s
8 2 2.31 s 12.12 s

Piped Output Stream
12 2 2.12 s 0.89 s
13 2 5.30 s 1.83 s
14 2 12.32 s 3.76 s
15 2 27.82 s 7.68 s

refinement until adding k − 1 variables to the abstract program, and thus
produces an intermediate automaton with O(2k) states. Hence, including
minimization, CEGAR requires O(22k) time. The direct algorithm prunes
the concrete program. This yields an intermediate automaton with O(2k)
states, which is then minimized to obtain the interface automaton with two
states. Thus, the direct algorithm requires O(2k · k) time.

– C faster than L and D. For the open program in Fig. 3(c), the number
of trace-equivalence classes is exponential in the number l of variables that
suffice to prove the safety of the program, and l is logarithmic in the num-
ber of all variables; that is, l = O(log k). Thus the CEGAR algorithm re-
quires O(2k · log k) time. On the other hand, the learning algorithm requires
O(2k · k2) time, because it depends quadratically on the size of the interface
automaton. The direct algorithm again has to minimize O(2k) recoverable
states, to produce the interface automaton with O(2l) states. Thus, the direct
algorithm runs in O(2k · k) time.

5 Practical Evaluation of the Algorithms

We implemented the three algorithms in C++. We experimented with a variety
of Java libraries [1], all of which have a finite number of states. For comparison
purposes, we wanted the direct algorithm to succeed on the concrete open pro-
grams; thus we first simplified the Java classes. We retained all fields in a class,
but reduced their sizes, and hence the state spaces. The Java libraries were
manually translated into such simplified, but still concrete, open programs. The
input to the tool is the transition relation of a concrete open program. Table 1
reports some results of our experiments.

Direct works fastest. The following example is similar to Fig. 3(a), where the
direct algorithm performs better than the other algorithms.

18 D. Beyer, T.A. Henzinger, and V. Singh

– java.util.Stack: We consider the class with k + 1 boolean variables. The first
variable encodes error, and the remaining k variables encode the current
size of the stack (thus, the maximal size of the stack is 2k). We create an
interface for the methods push(), pop(), and peek(). The algorithms produce
the interface automaton with O(2k) states. The direct algorithm is fastest.

In general, the direct algorithm performs best if either the number of recover-
able library states is small, or as in the example above, the number of trace-
equivalence classes of the library is of the order of the number of library states.
Neither is the case for the following three examples.

Learning works fastest. The following example is similar to Fig. 3(b).

– java.util.ListIterator: We compute the interface for four methods: next(),
prev (), remove(), add(). The list iterator is encoded by 2k + 1 boolean vari-
ables, one for error, k to encode the previous returned iterator location lp,
and another k to encode the current iterator location lc. The methods next()
and prev () store lc in lp, and update lc. The method remove() checks if lp
is valid; if so, then remove() removes the entry in location lp. Both add()
and remove() invalidate lp. The CEGAR algorithm finds that only the last
k variables are redundant, and thus produces an automaton of size O(2k).
This automaton is then minimized to obtain the interface automaton with
two states, which is shown in Fig. 4(a). On the other hand, the learning algo-
rithm learns that only one value of lp (reached on calling add() or remove())
marks the previous iterator location as invalid, and that all other values are
equivalent. Hence, the learning algorithm finishes after distinguishing two
states of the interface.

CEGAR works fastest. The following programs are similar to Fig. 3(c).

– com.sun.se.impl.activation.ServerTableEntry: We encode the class using
k + 3 boolean variables. The first variable encodes error, the next two encode
the state of the system, and the remaining k encode the current server ID.
The interface is built for six methods, as shown in Fig. 4(b). The CEGAR
algorithm finds that the two variables that encode the state of the system
suffice to prove the safety of the class; after minimization it produces the
interface automaton with three states, which is shown in Fig. 4(b). The
learning algorithm learns the three distinguishable states of the interface,
but takes a longer time to do so.

– java.io.PipedOutputStream: The class is represented by k + 2 boolean vari-
ables. The first variable encodes error, the second encodes the connect flag,
and the remaining k variables encode the buffer. We build an interface for the
following methods: connect(), write(), flush(), and close(). We model invo-
cations of connect() returning different values (0 or 1) as different methods.
The CEGAR algorithm discovers that the variable that encodes the connect
flag suffices to prove the safety of the class. The output is an interface au-
tomaton with two states, which is shown in Fig. 4(c). Again, the learning
algorithm needs more time to find the two distinguishable states.

Algorithms for Interface Synthesis 19

q0 q1

prev(), next()

add(), remove()
prev(), next()add()

(a) List iterator.

q0 q2q1
holdDown

holdDown
activate

activate,register

registerPorts

activate

install,registerPorts

uninstall,holdDown

(b) Server table entry.

q0

write()

q1

close() flush(),

connect(),0 connect(),1

(c) Piped output stream.

Fig. 4. Interface automata for list iterator, server table entry, and piped output stream

6 Conclusion

We formalized and implemented three different algorithms for interface synthesis
in a uniform framework. For each of the three algorithms, we identified classes
of open programs for which the algorithm is better suited for interface synthesis
than the two alternatives. The direct algorithm has the advantage in scenarios
where the interface automaton of the library is large, or the program has few
recoverable states, i.e., states from which some sequences of function calls are
legal. The CEGAR algorithm is the most efficient solution when many variables
of the input program can be hidden in the interface automaton. The learning
algorithm performs best if the interface automaton is much smaller than the set
of recoverable program states, but does not correspond to an abstraction of the
input program over a small set of program variables.

References

1. Alur, R., Cerny, P., Gupta, G., Madhusudan, P.: Synthesis of interface specifications
for Java classes. In: Proc. POPL, pp. 98–109. ACM Press, New York (2005)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75, 87–106 (1987)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Proc. CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

4. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. FSE, pp. 109–120.
ACM Press, New York (2001)

5. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: Proc. FSE, pp.
31–40. ACM Press, New York (2005)

6. Hopcroft, J.E.: An n · log n algorithm for minimizing states in a finite automaton.
In: Proc. Theory of Machines and Computations, pp. 189–196. Acad. Press, San
Diego (1971)

7. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103, 299–347 (1993)

	Introduction
	Open Programs and Interfaces
	Three Algorithms for Interface Synthesis
	Direct Algorithm
	Learning Algorithm
	CEGAR Algorithm

	Theoretical Separation of the Algorithms
	Practical Evaluation of the Algorithms
	Conclusion

