
Predicate Abstraction with Adjustable-Block Encoding

Dirk Beyer
Simon Fraser University / University of Passau

M. Erkan Keremoglu
Simon Fraser University, B.C., Canada

Philipp Wendler
University of Passau, Germany

Abstract—Several successful software model checkers are
based on a technique called single-block encoding (SBE), which
computes costly predicate abstractions after every single program
operation. Large-block encoding (LBE) computes abstractions
only after a large number of operations, and it was shown that
this significantly improves the verification performance. In this
work, we present adjustable-block encoding (ABE), a unifying
framework that allows to express both previous approaches.
In addition, it provides the flexibility to specify any block
size between SBE and LBE, and also beyond LBE, through
the adjustment of one single parameter. Such a unification of
different concepts makes it easier to understand the fundamental
properties of the analysis, and makes the differences of the
variants more explicit. We evaluate different configurations on
example C programs, and identify one that is currently the best.

I. Introduction
Software model checking has been proven successful for

increasing the quality of computer programs [2]. Several

fundamental concepts were invented in the last decade which

made it possible to scale the technology from tiny examples to

real programs, e.g., device drivers [4], and to significantly im-

prove the analysis precision, compared to traditional data-flow

analyses. Predicate abstraction was introduced as an appropri-

ate abstract domain [17], counterexample-guided abstraction

refinement (CEGAR) makes it possible to automatically learn

new facts to track [12], lazy abstraction performs expensive

refinements only on relevant program paths [19], and interpo-

lation is a sucessful technique to identify a small number of

predicates that suffice to eliminate imprecise paths [15], [18].
The software model checker BLAST is an example of a

tool that implements all of the above-mentioned concepts [7].

Such a tool implementation performs a reachability analysis

along the edges of the control-flow automaton (CFA). The

program counter is explicitly represented, and the data state

is symbolically represented using predicates. The intermediate

results are stored in an abstract reachability graph (ARG). Ab-

stract successor states are obtained by computing the predicate

abstraction of the strongest postcondition for a program opera-

tion, which involves querying a theorem prover. This category

of implementing predicate abstraction can be characterized as

single-block encoding (SBE), because every single control-

flow edge of the program is transformed into a formula that

is used for computing the abstract successor state. For a more

detailed illustration of the general SBE approach on a concrete

example, we refer the reader to the overview article [7].

∗ This research was supported in part by the Canadian NSERC grant RGPIN
341819-07.

Recently, a new approach was introduced which encodes

many CFA edges into one formula, for computing the ab-

stract successor. This approach is called large-block encoding
(LBE) [6], and transforms the original CFA into a new,

summarized CFA in which every edge represents a large

subgraph (of the original CFA) that is free of loops. Solvers

for satisfiability modulo theories (SMT) had continuously

improved their expressiveness and performance, but the SBE

approach did not take advantage of this additional power.

Therefore, it was time to explore LBE, where a large part

of the computational burden of the reachability analysis is

delegated to an SMT solver. The experiments showed that

LBE not only has a much better performance, but even a

better precision (because it is feasible to use boolean instead

of cartesian predicate abstraction). However, LBE has two

drawbacks: First, it operates on a modified CFA which makes

combinations with other abstract domains that operate on

single edges impossible. Second, LBE is just one particular

choice for how much of the program is encoded in one block

and this choice is hard-coded into the verifier and cannot be

changed. Our work addresses the need to explore the large

space of choices from SBE to LBE, and also beyond LBE.

This article contributes a new approach that is called

adjustable-block encoding (ABE), which unifies SBE and

LBE in one single formalism and fills the gap of missing

configurations. This new formalism, together with the corre-

sponding tool implementation, makes it possible to perform

experiments which were not possible before, i.e., in which

the block encoding is adjustable as a parameter. ABE works

on the original CFA and constructs the formulas for large

blocks on-the-fly during the analysis, and in parallel to other

domains (product domains). The number of operations that are

encoded in one formula per abstraction step is freely adjustable

using a so called block-adjustment operator. By modifying this

parameter, ABE can not only operate like SBE or LBE, but

can also express configurations with block encodings between

SBE and LBE, as well as block encodings larger than LBE.

In our predicate analysis with adjustable-block encoding,

every abstract state has two formulas to store the abstract

data state: an abstraction formula and a path formula. The

successor computation can operate in two different modes,

either in abstraction mode or in non-abstraction mode. In a

first step (same for both modes) the strongest postcondition

for the path formula of the predecessor and the program

operation is (syntactically) constructed as formula. In non-

abstraction mode, this formula is stored as the path formula

in the new state, and the abstraction formula is just copied.

189©2010 FMCAD Inc.

1 int main() {
2 int i = 0;
3 while (i < 2) {
4 i++;
5 }
6 if (i != 2) {
7 ERROR: return 1;
8 }
9 }

Fig. 1. Simple example program

�
�

�
�

���������	

�
�

������

�
�

�

�
�

���������

����

�
�����

���������

Fig. 2. Corresponding CFA

In abstraction mode, the boolean predicate abstraction of the

formula is computed and stored as abstraction formula in the

new state, and the path formula is set to true. At meet points

in the control flow, and if the analysis is in non-abstraction

mode, the path formulas of the two branches are combined

via disjunction (resulting in a disjunctive path formula). In

other words, as long as the analysis operates in non-abstraction

mode, a disjunctive path formula is constructed that represents

all program operations since the last abstraction formula was

computed in abstraction mode. The mode is determined by the

block-adjustment operator (analysis parameter).

Availability. Our experiments (implementation, benchmarks,

logs) are available at http://www.sosy-lab.org/∼dbeyer/cpa-abe.

The archive includes an executable copy of the CPACHECKER

system. For the complete system, cf. the CPACHECKER website.

Example. We illustrate ABE on the simple program in Fig. 1.

Figure 2 shows the corresponding CFA (assume(p) is repre-

sented by [p]; we removed irrelevant parts from which the

error location is not reachable). Nodes represent program lo-

cations and arrows represent program operations. We consider

a predicate precision (the set of predicates that are tracked)

that contains the predicates i = 0, i = 1, and i = 2. First we

consider a block-adjustment operator that implements LBE

on-the-fly, i.e., abstracting at loop heads and at the error

location. The abstract reachability graph (ARG) is shown in

Fig. 3. Nodes represent abstract states, and the numbers in

the node are the CFA program location (top) and the unique

state identifier (bottom). Nodes that are filled in grey represent

abstraction states, and their abstraction formula is shown in

the box attached to the abstraction state. Nodes with dashed

circles represent abstract states that the analysis determines as

unreachable (i.e., the result of the abstraction compuation is

f alse). Such states are not added to the set of reachable states,

therefore they do not have a unique state identifier. Note that

the number of grey nodes shows exactly how many (costly)

abstraction computations were necessary.

The analysis starts in non-abstraction mode, and is initial-

ized with the formula true for both the abstraction formula ψ
and the path formula ϕ . The analysis explores the path from

location 2 to 3, creating abstract state 3
2. Since location 3 is

a loop head, state 3
2 is an abstraction state and the computed

abstraction formula is i = 0, the path formula ϕ is re-set to

true. Locations 4 and 5 are no loop heads, so no abstraction

�
�

�
�

����������	

�����

�

�������

�
��

��������

�

����	

�
�

�����

�

�������

�
��

��������

�
�

����	

�
�

�����

�

�������

�
��

��������

�
��

����	

�
�

�	
��

�
�

��������

�	
��

�
�

��������

�	
��

�
�

��������

�	
��

Fig. 3. ARG after analysis with
large-block encoding (LBE)

�
�

�
�

����������	

�

������

�
�

�

�
��

���������

����	

�
�

�����������������

��

�������

�
��

���������

�
��

����	

�
�

������

�

������

�
��

��������

�	
�

�
�

���������

�	
�

�
�

���������

�	
�

�����

�
�

���������

�	
�

�
�

Fig. 4. ARG after analysis with
blocks of length 7

is computed and instead only the path formula is extended by

the operations on the edges to states 4
3 and 5

4. The abstraction

formula is copied from their respective predecessor. When the

analysis re-encounters location 3, an abstraction is computed

again, this time with i = 1 as the result (state 3
5). This process

continues until the result of the abstraction computation is false
(for the successor of 5

10), which means that the new abstract

state is not reachable and analysis can stop exploring this path.

Note that 4
9 and 5

10 are already unreachable, but the analysis

does not detect this, because the abstraction formula is not

computed for such non-abstraction states. However, this does

not cause a problem because all computations needed for the

construction of non-abstraction states like 5
10 are inexpensive

compared with the cost of abstraction computations. The

exploration of the remaining paths (those through location 6)

is similar. At location 7, an abstraction is always computed

because it is the error location, and thus the analysis checks

the reachability of abstract states at this location. No such

abstraction state is reachable, thus the program is safe.

Now we consider a block-adjustment operator that forces

an abstraction computation if the longest path represented by

the current path formula has length 7. The ARG is shown in

Fig. 4. The analysis starts similarly to the previous example.

190

However, when it first encounters location 3 it does not

compute an abstraction because the condition of the block-

adjustment operator (length 7) is not yet fulfilled. Instead, it

creates a non-abstraction state 3
2 (which does not occur in

the figure because it is later subsumed by the result of a

merge). The same holds for 4
3 and 5

4. When the analysis reaches

location 3 again, it creates state 3
5 and immediately merges it

with the existing state 3
2, because both share the same location

and the same abstraction formula (which is still the initial

one). Therefore, abstract state 3
2 is removed. The path formula

of the new (merged) abstract state is the disjunction of the path

formulas of both states, i.e., representing both the paths 2-3

and 2-3-4-5-3. The same happens at locations 4 and 6, creating

states 4
6 and 5

7. But when the analysis encounters location 3 for

the third time, the path formula represents the paths 2-3-4-5-

3 and 2-3-4-5-3-4-5-3. The latter path contains 7 edges, thus

an abstraction is computed. At this abstraction state, either

the predicate i = 1 or the predicate i = 2 is true. Continuing,

the analysis constructs the non-abstraction states 4
9, 5

10, 3
11, 4

12,
5
13 and 3

14. Again, the former three states are removed from

the set of reached states because they are merged into the

latter three states. All these six states are not merged with

the previous states although some of them share a common

program location, because the abstraction formula of the new

states differs from the abstraction formula of the previous

states. Also, abstraction states like 3
8 are never changed by

merge operations. The path formula of 3
14 represents the paths

3-4-5-3 and 3-4-5-3-4-5-3. Thus, when the successors of this

state are created, the length of the longest path represented by

the path formula reaches 7 and an abstraction is computed. The

successor at location 4 has the abstraction formula false, thus

it is not added to the reached states. The abstraction formula

of 6
17 is i = 2. The analysis continues with the remaining paths,

correctly determining that all paths leading to the error location

are infeasible. Therefore the program is again reported as safe.

By choosing a good block-adjustment operator, the size of

the blocks (the regions of the ARG that do not contain abstrac-

tion states) and the number of abstraction computations can

be optimized. Larger blocks lead to fewer costly abstraction

computations, but the problems given to the SMT solver are

harder because the path formulas are more complex. With

ABE, the reachable states do not necessarily form a tree, like

for SBE and for LBE with preprocessing. However, note that

the abstraction states still form a tree in both examples. In fact,

this is true for all choices of the block-adjustment operator.

Related Work. Our work is based on the idea of stepwise

exploring the reachable states of the program, using CEGAR

to refine the abstraction, and symbolic techniques to operate

on abstract data states. Existing example implementations of

this category are SBE-based (SLAM [4] and BLAST [7]) or

LBE-based [6]. The goal of our ABE-based approach is to

make the configuration of the algorithm flexible, i.e., (1) to

subsume the previous approaches (SBE, LBE) and (2) enable

even larger encodings such that it is freely adjustable how

much of the state-space exploration is done symbolically by

the SMT solver. A different category of verification tools is

based on the idea of performing a fully symbolic search.

Examples are the model checker SATABS [14], which is

based on CEGAR but operates fully symbolically, and the

bounded model checker CBMC [13], which is targeted at

finding bugs instead of proving safety. Fully symbolic search

is also applied to large generated verification conditions, for

example in the extended static checkers CALYSTO [1] and

SPEC# [5]. The algorithm of McMillan is also based on

the idea of lazy abstraction, but never performes predicate

abstraction-based successor computations [21]. Our approach

can be characterized as based on predicate abstraction [17],

CEGAR [12], lazy abstraction [19], and interpolation [18].

II. Preliminaries
A. Programs and Control-Flow Automata

We restrict the presentation to a simple imperative program-

ming language, where all operations are either assignments

or assume operations, and all variables range over integers.1

We represent a program by a control-flow automaton (CFA).

A CFA A = (L,G) consists of a set L of program locations,

which model the program counter l, and a set G⊆ L×Ops×L
of control-flow edges, which model the operations that are

executed when control flows from one program location to

another. The set of program variables that occur in operations

from Ops is denoted by X . A program P = (A, l0, lE) consists

of a CFA A = (L,G) (models the control flow of the program),

an initial program location l0 ∈ L (models the program entry),

and a target program location lE ∈ L (models the error loc.).

A concrete data state of a program is a variable assignment

c : X → Z that assigns to each variable an integer value. The

set of all concrete data states of a program is denoted by C . A

set r⊆C of concrete data states is called region. We represent

regions using first-order formulas (with free variables from X):

a formula ϕ represents the set [[ϕ]] of all data states c that

imply ϕ (i.e., [[ϕ]] = {c ∈ C | c |= ϕ}). A concrete state of

a program is a pair (l,c), where l ∈ L is a program location

and c is a concrete data state. A pair (l,ϕ) represents the

following set of concrete states: {(l,c) | c |= ϕ}. The concrete
semantics of an operation op∈Ops is defined by the strongest

postcondition operator SPop(·): for a formula ϕ , SPop(ϕ) rep-

resents the set of data states that are reachable from any of the

states in the region represented by ϕ after the execution of op.

Given a formula ϕ that represents a set of concrete

data states, for an assignment operation s := e, we have

SPs:=e(ϕ) = ∃ŝ : ϕ[s�→ŝ]∧ (s = e[s�→ŝ]), and for an assume op-

eration assume(p), we have SPassume(p)(ϕ) = ϕ ∧ p.

A path σ is a sequence 〈(op1, l1), ...,(opn, ln)〉 of pairs of

operations and locations. The path σ is called program path
if σ starts with l0 and for every i with 0 < i≤ n there exists

a CFA edge g = (li−1,opi, li), i.e., σ represents a syntactical

walk through the CFA. The concrete semantics for a program

1 Our implementation CPACHECKER works on C programs that are given
in CIL intermediate language [22]; non-recursive function calls are supported.

191

path σ = 〈(op1, l1), ...,(opn, ln)〉 is defined as the successive

application of the strongest postoperator for each opera-

tion: SPσ (ϕ) = SPopn(...SPop1(ϕ)...). The formula SPσ (ϕ)
is called path formula. The set of concrete states that result

from running σ is represented by the pair (ln,SPσ (true)).
A program path σ is feasible if SPσ (true) is satisfiable. A

concrete state (ln,cn) is called reachable if there exists a

feasible program path σ whose final location is ln and such

that cn |= SPσ (true). A location l is reachable if there exists

a concrete state c such that (l,c) is reachable. A program is

safe if lE is not reachable.

B. Predicate Precision and Boolean Predicate Abstraction

Let P be a set of predicates over program variables in a

quantifier-free theory T . A formula ϕ is a boolean combina-

tion of predicates from P . A precision for formulas is a finite

subset π ⊂P of predicates. A precision for programs is a

function Π : L→ 2P , which assigns to each program location

a precision for formulas. The boolean predicate abstrac-
tion (ϕ)π of a formula ϕ is the strongest boolean combination

of predicates from the precision π that is entailed by ϕ . Such

a predicate abstraction of a formula ϕ , which represents a

region of concrete program states, is used as an abstract data
state (i.e., an abstract representation of the region) in program

verification. For a formula ϕ and a precision π , the boolean

predicate abstraction (ϕ)π of ϕ can be computed by querying

an SMT solver in the following way: For each predicate pi ∈ π ,

we introduce a propositional variable vi. Now we ask the solver

to enumerate all satisfying assignments of v1, ...,v|π| in the

formula ϕ ∧∧
pi∈π(pi ⇔ vi). For each satisfying assignment,

we construct a conjunction of all predicates from π whose

corresponding propositional variable occurs positive in the

assignment. The disjunction of all such conjunctions is the

boolean predicate abstraction for ϕ . An abstract strongest

postoperator for a predicate abstraction with precision π and

a program operation op, which transforms an abstract data

state ϕ into its successor ϕ ′, can be defined by applying first

the strongest postcondition operator and then the predicate

abstraction, i.e., ϕ ′ = (SPop(ϕ))π . For more details, we refer

the reader to the work of Ball et al. and Lahiri et al. [3], [20].

III. Adjustable-Block Encoding
In ABE, the predicate abstraction is not computed after every

CFA edge, but only at certain abstract states, which we call

abstraction states (the other abstract states are called non-

abstraction states). On paths between two abstraction compu-

tations, the strongest postcondition of the path(s) is stored in a

second formula of the abstract state, which we call disjunctive
path formula. Therefore, every abstract state of ABE contains

two formulas ψ and ϕ , where the abstraction formula ψ is

the result of an abstraction computation and the disjunctive

path formula ϕ represents the strongest postcondition since

the last abstraction state was computed. Given a CFA edge

g = (l,op, l′) and an abstract state with ψ and ϕ , the abstract

successor either extends the path formula ϕ only (which is a

purely syntactical operation), or computes a new abstraction

formula ψ and resets ϕ . Where to compute abstractions

(and thus the block size) is determined by the so-called

block-adjustment operator blk as follows: If blk(e,g) returns

false (no abstraction computation, i.e., the abstract state e
is a non-abstraction state), the abstract successor contains ψ
(unchanged) and SPop(ϕ) (as the new ϕ). If blk(e,g) returns

true (e is abstraction state), the abstract successor contains

the formula that results from the abstraction of ψ ∧ϕ as the

new abstraction formula and true as the new disjunctive path

formula. If ψ ∧ϕ is unsatisfiable for an abstract state e, then

e is not reachable.

A. CPA for Adjustable-Block Encoding

We formalize adjustable-block encoding (ABE) as a config-

urable program analysis (CPA) [8]. This allows us to use the

flexibility of the CPA operators to describe how the analysis

operates without changing the general iteration algorithm (cf.

Alg. CPA). The configurable program analysis for adjustable-

block encoding D=(D,�,merge,stop) consists of an abstract

domain D, a transfer relation�, a merge operator merge, and

a stop operator stop, which are defined as follows. (Given

a program P = (A, l0, lE), we use X for denoting the set of

program variables occuring in P, P for the set of quantifier-

free predicates over variables from X , and Π : L→ 2P for the

precision of the predicate abstraction.)

1. The abstract domain D = (C,E , [[·]]) is a tuple that

consists of a set C of concrete states, a semi-lattice E =
(E,�,�,�), and a concretization function [[·]] : E → C. The

lattice elements e ∈ E are also called abstract states, and

are tuples (l,ψ, lψ ,ϕ) ∈ (L ∪ {l�})×P × (L ∪ {l�})×P ,

where l models the program counter, the abstraction formula

ψ is a boolean combination of predicates that occur in Π,

lψ is the location at which ψ was computed, and ϕ is a

disjunctive path formula representing some or all paths from

lψ to l. Note that an abstraction state has always l = lψ

and ϕ = true. The top element of the lattice is the abstract

state � = (l�, true, l�, true). The partial order � ⊆ E ×E is

defined such that for any two elements e1 = (l1,ψ1, lψ
1,ϕ1)

and e2 = (l2,ψ2, lψ
2,ϕ2) from E the following holds:

e1 � e2 ⇐⇒ (e2 =�)∨ ((l1 = l2)∧ (ψ1∧ϕ1 ⇒ ψ2∧ϕ2))

The join operator � : E×E → E yields the least upper bound

of the two operands, according to the partial order.

2. The transfer relation � ⊆ E ×G× E contains all tu-

ples (e,g,e′) with e = (l,ψ, lψ ,ϕ), e′ = (l′,ψ ′, lψ ′
, ϕ ′) and

g = (l,op, l′) for which the following holds:⎧⎪⎪⎨⎪⎪⎩
(ϕ ′ = true)∧

(
ψ ′ = (SPop(ϕ ∧ψ))Π(l′)

)
∧ (lψ ′ = l′)

if blk(e,g)∨ (l′ = lE)
(ϕ ′ = SPop(ϕ))∧ (ψ ′ = ψ)∧ (lψ ′ = lψ) otherwise

The ‘mode’ of the transfer relation, i.e., when to compute

abstractions, is determined by a block-adjustment operator

192

Algorithm 1 CPA(D,e0) (taken from [8])

Input: a CPA D= (D,�,merge,stop),
an initial abstract state e0 ∈ E, where E denotes
the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached of elements of E,

a set waitlist of elements of E
1: waitlist := {e0}
2: reached := {e0}
3: while waitlist �= /0 do
4: choose e from waitlist
5: waitlist := waitlist\{e}
6: for each e′ with e�e′ do
7: for each e′′ ∈ reached do
8: // combine with existing abstract state
9: enew :=merge(e′,e′′)

10: if enew �= e′′ then
11: waitlist :=

(
waitlist∪{enew}

)\{e′′}
12: reached :=

(
reached∪{enew}

)\{e′′}
13: if ¬ stop(e′, reached) then
14: waitlist := waitlist∪{e′}
15: reached := reached∪{e′}
16: return reached

blk : E × G → B, which maps an abstract state e and a

CFA edge g to true or false. The operator blk is given as

parameter to the analysis. The second case does not compute

an abstraction, but purely syntactically assembles the precise

strongest postcondition 2. Thus, the choice of blk determines

the block-encoding (i.e., how much to collect in the path

formula before abstraction). Most instances of the block-

adjustment operator will eventually return true for every path

through the CFA, otherwise the analysis might not terminate

if the program contains loops. The precision of the predicate

abstraction can vary between program locations (parsimonious

precision [7]).

3. The merge operator merge : E×E → E for two abstract

states e1 = (l1,ψ1, lψ
1,ϕ1) and e2 = (l2,ψ2, lψ

2,ϕ2) is defined

as follows: merge(e1,e2) ={
(l2,ψ2, lψ

2,ϕ1∨ϕ2) if (l1 = l2)∧ (ψ1 = ψ2)∧ (lψ
1 = lψ

2)

e2 otherwise

This operator combines the two abstract states using a disjunc-

tive path formula, if the location of the abstract states is the

same and they were derived from the same abstraction states,

i.e., the abstraction formulas are equal and were computed at

the same program location 3.

4. The stop operator stop : E×2E →B checks if e is covered

by another state in the reached set:

∀e ∈ E,R⊆ E : stop(e,R) = ∃e′ ∈ R : (e� e′)

2 The strongest postcondition as defined in the preliminaries in fact contains
existential quantifiers. However, our implementation of the transfer relation
uses an SP that operates on SSA-like quantifier-free formulas.

3 Two identical abstraction states never exist in the reached set due to
the stop operator, which would eliminate the second instance of the same
abstraction state before insertion into the reached set. Thus, the ARG restricted
to abstraction states still represents a tree (ART).

B. Discussion: SBE, LBE, BMC, and in Between

A fundamental improvement of adjustable-block encoding

over the previous work with blocks hard-coded in the pre-

processed CFA is that now other abstract domains that the

ABE analysis is combined with, can work each with different

(perhaps also adjustable) block sizes, which are not dictated

by the pre-processed CFA. The great flexibility of ABE results

from the possibility to freely choose the blk operator. Two

particular possibilities are blksbe and blklbe. The operator blksbe

returns always true, and thus the transfer computes the pred-

icate abstraction after every CFA edge. The operator blklbe

returns true if the successor location of the given edge is the

head location of a loop, and thus the transfer computes the

predicate abstraction at loop heads. Therefore, the analysis

can easily be configured to behave exactly like SBE or LBE.

Another possible choice for blk is to compute an abstraction

if the length of the longest path represented by the path

formula ϕ of the abstract state exceeds a certain threshold.

But the decision made by blk does not necessarily have to

be based only on statically available information. We could

for example measure the memory consumption of the path

formula and compute abstractions if the path formulas become

too large. Or we could measure the time needed to compute

the abstractions and adjust the block encoding such that a

single computation does not take more than a certain amount

of time. Thus, one could write a block-adjustment operator

that is tailored to the SMT solver that is used, i.e., to delegate

problems to the solver that are large enough to benefit from

the SMT technology, and at the same time small enough to not

overwhelm the solver. In our experiments, we demostrate the

usefulness of the ABE approach using a few simple choices

for the operator blk. In particular, the experiments indicate that

useful block-adjustment operators should respect the control-

flow structure of the program.

We did not describe how the precision Π for programs is

computed, because we use a standard approach that is based

on CEGAR, lazy abstraction, and Craig interpolation. We

consider only abstraction states for the abstract reachability

tree (ART). The merge operator ensures that the abstrac-

tion states form a tree (abstraction states are never changed

by merge). The formulas of the error path are the (disjunctive)

path formulas that were constructed during the creation of

the abstraction states along this path and which were used

as inputs for the abstraction computation. The only differ-

ence is that now a single formula represents one or several

paths between two arbitrary locations of the CFA, and not

necessarily only one CFA edge as before. The interpolation

will then produce predicates for those locations at which an

abstraction was computed, so the new predicates will be used

in the next iteration of the analysis if the block-adjustment

operator returns the same value. The possiblity of dynamic

block-adjustment operators, i.e., determining different abstract

states as abstraction states depending on the overall progress of

the analysis, raises the interesting question of where to add the

predicates extracted from the interpolants. Currently, we refine

193

the predicate precision of the program only at the abstraction

states, but we could in principle also add the predicates to all

locations between the previous and current abstraction state.

IV. Experiments

Implementation. We implemented adjustable-block encoding

in CPACHECKER, which is a software-verification framework

based on configurable program analysis. The tool accepts

programs in C Intermediate Language [22] (other C programs

can be pre-processed with the tool CIL). CPACHECKER uses

MATHSAT [11] and CSISAT [9] as SMT solvers.

Our implementation uses the following optimizations:

(1) The feasibility of abstract paths is checked only at ab-

straction states. This does not negatively affect the precision

of the analysis because abstract states with the error loca-

tion are always abstraction states. (2) Instead of constructing

postconditions that include existential quantifiers, we leave

the variables in the path formulas and use a simple form of

skolemization, which is equivalent to static single-assignment

(SSA) form [16] (well-known from compilers). A tutorial-

like example of this process is provided in an article about

BLAST [7]. (3) When the operator stop checks if an abstract

state e is covered by a non-abstraction state e′, we do not

perform a full SMT check for the implication that the partial

order requires; instead we do a quick syntactical check that

compares the path formulas of both states. This check will

correctly detect that e is covered by e′ if e was merged into

e′, but may fail in other situations. This is sound, and faster

than a full SMT check.

Benchmark Programs. We experimented with three groups

of C programs, which are similar to those previously used [6].

The first group (test_locks_*) was artificially created to

show that SBE leads to exponentially many abstract states.

Several nested locks are acquired and released in a loop. The

number in the name indicates the number of locks in the

program. The second group contains several (parts of) drivers

from the Windows NT kernel. The third group (s3_*) was

taken from the SSH suite. The code contains a simplified

version of the state machine handling the communication

according to the SSH protocol. Both the NT drivers and

the SSH examples were pre-processed manually in order to

remove heap accesses, and automatically with CIL v1.3.6. The

examples with BUG in the name have artificially inserted bugs

that cause assertions to fail. All examples are included in the

CPACHECKER repository together with the used configurations.

All experiments were performed on a machine with 2.8 GHz

and 4 GB of RAM. The operating system was Ubuntu 9.10

(64 bit), using Linux 2.6.31 as kernel and OpenJDK 1.6 as

Java virtual machine. We used CPACHECKER, branch ‘abe’,

revision 1457, with MATHSAT 4.28 as SMT solver. The times

are reported in seconds and rounded to three significant digits.

In cases where CPACHECKER needed either more than 1800 s or

more than 4 GB of RAM, the analysis was aborted, indicated

by “> 1800” or “MO”, respectively. CPACHECKER reports the

correct verification result in all cases, i.e., a counterexample

for all programs with BUG, and safety for all other programs.

Configurations. We experimented with different choices of

the block-adjustment operator of ABE, which we classify into

three categories: (1) we repeat the experiments with LBE from

previous work [6], (2) we perform new experiments to explore

the spectrum of encodings between SBE and LBE, and (3) we

explore new encodings larger than LBE. Our implementation

supports functions, and thus we extend the operator blklbe such

that it returns true at loop heads and function entries/returns.

We measure the length of a block that is encoded in an abstract

state e as the length (in ops) of the longest path represented

in the disjuncive path formula of e.

We have also experimented with cartesian vs. boolean

abstraction, and not only re-confirm the results from previous

experiments [6] (SBE: cartesian works best, LBE: boolean is

best); we conclude that cartesian abstraction becomes unusably

imprecise as soon as the block length is more than 1 op. Thus,

boolean abstraction must be used for all non-SBE encodings.

A. LBE: Pre-Processed versus On-the-Fly

Due to the overhead that is caused by the on-the-fly encod-

ing and some additional abstraction computations, a certain

performance loss is expected. We started our experiments

with confirming that the negative impact of the overhead on

the performance is not dramatic. The results are reported in

Program Pre-proc. LBE LBE (blklbe)

test_locks_5.c .170 .483
test_locks_6.c .370 .398
test_locks_7.c .237 .875
test_locks_8.c .305 .437
test_locks_9.c .202 .510
test_locks_10.c .266 .746
test_locks_11.c .256 .416
test_locks_12.c .248 .486
test_locks_13.c .240 .769
test_locks_14.c .227 .787
test_locks_15.c .466 .896
cdaudio1.sim.c 11.7 51.5
diskperf1.sim.c 537 146
floppy3.sim.c 7.04 20.1
floppy4.sim.c 8.35 32.2
kbfiltr1.sim.c 1.27 2.57
kbfiltr2.sim.c 1.73 3.75
cdaudio1_BUG.sim.c 5.26 32.5
floppy3_BUG.sim.c 2.97 11.1
floppy4_BUG.sim.c 4.58 20.1
kbfiltr2_BUG.sim.c 1.96 2.28
s3_clnt_1.sim.c 15.9 14.6
s3_clnt_2.sim.c 12.8 35.4
s3_clnt_3.sim.c 19.5 17.8
s3_clnt_4.sim.c 36.6 9.59
s3_srvr_1.sim.c 16.6 31.2
s3_srvr_2.sim.c 107 86.7
s3_srvr_3.sim.c 109 14.1
s3_srvr_4.sim.c 441 160
s3_srvr_6.sim.c 456 45.7
s3_srvr_7.sim.c 321 136
s3_srvr_8.sim.c >1800 21.2
s3_clnt_1_BUG.sim.c 1.22 2.81
s3_clnt_2_BUG.sim.c 2.12 2.06
s3_clnt_3_BUG.sim.c 1.26 3.14
s3_clnt_4_BUG.sim.c 2.03 2.54
s3_srvr_1_BUG.sim.c 1.43 1.62
s3_srvr_2_BUG.sim.c 1.55 2.71

TABLE I
COMPARISON OF PRE-PROCESSED LBE WITH ADJUSTED LBE (blklbe)

194

Program SBE k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100 LBE

test_locks_5.c 6.36 3.42 1.02 1.29 .367 .695 .397 .292 .587 .468 .507 .483
test_locks_6.c 13.1 3.03 1.90 1.36 .690 .334 .527 .428 .637 .790 .323 .398
test_locks_7.c 34.8 5.71 1.30 3.26 .516 1.06 .800 .326 .591 .355 .807 .875
test_locks_8.c 102 25.8 3.82 1.86 1.20 1.27 .414 .392 .670 .575 .680 .437
test_locks_9.c 298 67.7 12.4 6.97 1.67 1.63 .543 .454 .551 .667 .705 .510
test_locks_10.c 1250 109 7.53 6.59 3.79 1.24 .679 .588 .805 .845 .993 .746
test_locks_11.c >1800 244 26.7 4.71 6.73 1.71 .906 .992 1.20 .905 .418 .416
test_locks_12.c >1800 >1800 88.5 20.6 3.08 5.31 1.32 1.04 .995 1.35 .728 .486
test_locks_13.c >1800 MO 134 71.5 7.12 2.78 2.29 1.48 1.77 1.05 1.09 .769
test_locks_14.c >1800 MO >1800 580 19.6 17.6 4.61 2.25 2.07 1.13 .915 .787
test_locks_15.c >1800 >1800 >1800 >1800 32.2 22.3 23.1 5.56 2.71 2.46 1.40 .896
cdaudio1.sim.c MO 210 119 51.9 52.9 54.5 49.0 52.6 58.1 53.8 53.5 51.5
diskperf1.sim.c MO 855 155 171 163 168 158 152 154 146 167 146
floppy3.sim.c 559 80.5 23.6 19.3 25.5 23.1 20.0 21.0 21.1 19.8 17.9 20.1
floppy4.sim.c MO 212 54.0 28.8 41.4 39.2 35.2 31.7 32.6 32.8 44.6 32.2
kbfiltr1.sim.c 48.2 10.1 3.72 2.66 3.28 2.82 2.15 2.49 1.83 1.89 2.81 2.57
kbfiltr2.sim.c 128 59.1 10.2 5.26 5.90 7.93 4.12 4.56 4.19 4.67 3.94 3.75
cdaudio1_BUG.sim.c 158 106 151 32.6 36.7 38.6 32.7 35.5 40.0 33.4 31.9 32.5
floppy3_BUG.sim.c 75.8 45.9 13.9 12.1 13.9 11.3 11.2 9.38 9.11 10.5 10.4 11.1
floppy4_BUG.sim.c 77.4 150 39.0 16.9 30.4 31.3 26.1 21.3 22.2 23.3 23.1 20.1
kbfiltr2_BUG.sim.c 156 16.5 3.25 4.16 3.22 3.37 2.89 3.22 2.19 2.36 2.27 2.28
s3_clnt_1.sim.c MO MO MO MO MO 41.3 27.8 13.4 10.8 445 45.0 14.6
s3_clnt_2.sim.c MO MO MO MO MO 34.4 45.0 16.2 12.8 569 49.1 35.4
s3_clnt_3.sim.c MO MO MO MO MO 45.7 238 309 24.6 MO 36.4 17.8
s3_clnt_4.sim.c MO MO MO MO MO 38.1 17.7 24.2 9.53 441 28.4 9.59
s3_srvr_1.sim.c >1800 MO MO MO MO 43.7 MO 712 113 MO 47.8 31.2
s3_srvr_2.sim.c MO MO MO MO MO 462 33.2 MO 340 MO 98.5 86.7
s3_srvr_3.sim.c >1800 MO MO MO MO 32.9 11.5 31.1 24.7 MO MO 14.1
s3_srvr_4.sim.c >1800 MO MO MO MO 325 56.4 12.1 22.0 MO 45.6 160
s3_srvr_6.sim.c >1800 MO MO MO MO MO 83.8 638 MO 50.8 MO 45.7
s3_srvr_7.sim.c >1800 MO MO MO MO MO 133 458 MO MO 315 136
s3_srvr_8.sim.c >1800 MO MO MO MO MO 18.9 42.7 26.8 155 565 21.2
s3_clnt_1_BUG.sim.c 667 67.5 20.4 8.78 11.8 3.82 2.39 2.25 2.16 7.87 4.19 2.81
s3_clnt_2_BUG.sim.c 677 135 26.6 14.2 10.2 3.93 3.05 1.94 2.59 6.47 3.58 2.06
s3_clnt_3_BUG.sim.c 653 55.3 18.6 19.6 6.20 3.62 2.72 3.27 1.93 9.87 3.45 3.14
s3_clnt_4_BUG.sim.c 646 78.0 33.8 15.2 5.42 3.73 2.35 1.86 2.68 8.91 3.64 2.54
s3_srvr_1_BUG.sim.c 42.2 14.9 9.44 2.03 3.01 1.49 2.64 2.32 2.35 5.22 1.47 1.62
s3_srvr_2_BUG.sim.c 35.6 60.4 6.18 2.72 4.80 2.65 1.09 2.03 1.61 5.00 3.32 2.71

TABLE II
RESULTS FOR blksbe , FOR blklbe

k WITH k FROM 10 TO 100, AND FOR blklbe

Fig. 5. Results for blksbe, for blklbe
k with k from 10 to 100, and for blklbe

195

Program LBE k = 50 k = 100 k = 150 k = 200 k = 250 k = 300

cdaudio1_BUG.sim.c 32.5 26989 451 49240 168 6428 11.1 444 12.9 114 15.9 105 13.4 181
floppy3_BUG.sim.c 11.1 4059 51.4 4697 20.1 1207 6.17 217 7.81 99 10.9 112 4.03 43
floppy4_BUG.sim.c 20.1 11066 87.7 7734 43.7 2491 11.8 177 14.2 167 10.4 161 6.63 55
kbfiltr2_BUG.sim.c 2.28 660 3.75 424 1.94 57 1.45 52 2.22 24 1.07 0 1.10 0
s3_clnt_1_BUG.sim.c 2.81 16 14.6 743 MO - 5.39 38 3.63 33 4.67 10 6.57 20
s3_clnt_2_BUG.sim.c 2.06 20 3.70 146 2.94 51 3.41 28 MO - 4.48 9 5.07 18
s3_clnt_3_BUG.sim.c 3.14 22 14.6 795 MO - MO - 13.1 44 7.06 7 5.27 7
s3_clnt_4_BUG.sim.c 2.54 22 5.21 218 4.46 78 MO - 13.2 125 5.32 9 6.17 19
s3_srvr_1_BUG.sim.c 1.62 13 6.01 303 1.28 38 3.24 10 MO - 1.90 2 2.13 7
s3_srvr_2_BUG.sim.c 2.71 13 4.61 306 MO - 2.24 10 MO - 1.97 2 2.01 7

test_locks_5.c .483 4 1.21 22 1.03 10 2.05 7 1.09 5 1.65 3 2.49 2
test_locks_6.c .398 4 71.4 2258 2.26 84 2.22 40 2.18 12 1.11 1 1.47 1
test_locks_7.c .875 4 3.17 120 2.48 17 1.11 1 1.66 10 7.16 26 5.90 60
test_locks_8.c .437 4 3.33 180 .578 1 1.16 14 8.71 144 1.78 1 5.49 7
test_locks_9.c .510 4 2.37 89 .880 2 11.2 192 3.49 19 2.62 10 15.5 47
test_locks_10.c .746 4 1.83 118 .677 10 4.97 144 32.1 114 11.2 38 1.57 1
test_locks_11.c .416 4 3.85 164 1.59 22 3.80 27 1.75 18 8.51 95 3.19 14
test_locks_12.c .486 4 33.0 1985 MO - 1.12 1 17.2 98 1.29 1 185 537
test_locks_13.c .769 4 24.4 285 324 4628 .626 1 37.8 470 1.48 3 24.1 232
test_locks_14.c .787 4 179 79 77.1 1202 1.01 2 10.0 220 4.43 22 27.8 107
test_locks_15.c .896 4 1580 1268 154 2234 1.80 10 4.93 37 367 1255 1.28 1

TABLE III
RESULTS AND NUMBER OF ABSTRACTIONS FOR blklbe

AND FOR blkk WITH k FROM 50 TO 300

Table I. Column ‘Pre-proc. LBE’ reports the performance of

the previous implementation [6], which first transforms the

CFAs of the program in a pre-processing step into new CFAs

that reflect the large-block encoding, and then the analysis is

performed. Column ‘LBE (blklbe)’ reports the performance of

the new, more flexible implementation, with the block operator

adjusted to blklbe. The simple old implementation is faster

on most example programs, as expected, but the difference

is not dramatic, and also inconsistent, i.e., there are several

examples on which the new approach performs as good or even

better. Thus, although it might seem wasteful to explore a huge

number of extra states without performing any abstraction,

just to assemble the strongest-postcondition formula for the

encoded block on-the-fly, this table shows that in fact the

overhead is not dramatic.

B. Block Sizes between SBE and LBE

The second set, of novel configurations, is based on the

new block-adjustment operator blklbe
k : E ×G → B, which is

defined as the disjunction blklbe ∨ blkk. The operator blklbe
k

returns true if either the longest path represented by the

disjunctive path formula of the abstract state is longer than

k ∈ N \ {0} or the successor location is a loop/function

head. Only a few examples have blocks longer than 100 ops

when analyzed with LBE, thus, we analyze the examples for

k ∈ {10,20,30,40,50,60,70,80,90,100}.
Table II shows the results for the three groups of example

programs. The examples test_locks_* and the NT drivers

show an exponential performance improvement with growing

blocks. The diagram with a logarithmic time axis in Fig. 5

illustrates this for the first group of examples. The blocks of

blklbe
k are never longer than in LBE, and thus, there is no

further performance improvement beyond a certain program-

dependent threshold. The SSH programs with artificial bugs

follow the same trend. The safe SSH programs do not follow

such a clear trend and instead, their performance extremely

depends on the block size. This indicates the superiority of

blklbe over blklbe
k for blocks that are smaller than in the LBE

encoding: the operator blkk cuts off the formulas at an arbitrary

position, ignoring the structure of the control flow and thus

destroying the advantage of encoding larger blocks. LBE, i.e.,

the encoding with the largest blocks, is the only configuration

that can verify all examples, and is the best for most examples.

It is important that the block-encoding encloses ‘whole

structures’, i.e., that a block not only contains a few branches,

but that it actually contains the branches until they meet again

(for example, a whole ‘if’ structure). This is demonstrated by

the fact that encodings smaller than LBE are sometimes not

performing well (cf. s3_clnt_3.c with k = 50 vs. k = 60;

in particular, note the MO for k = 90). This is particularly im-

portant for loop unrollings: coverage checks can be done most

efficiently at abstraction states, thus, abstraction computations

should ideally occur at matching locations of the loop body.

C. Block Sizes larger than LBE

In the third set of experiments, we evaluated new configura-

tions with blocks larger than LBE. It is known that shallow

bugs can efficiently be found by a technique called bounded

model checking, where programs are unrolled up to a given

bound of the length, and a formula is constructed which

is satisfiable iff one of the modeled program paths reaches

the error location. We apply a similar technique to find

bugs using our ABE approach: in this set of experiments,

we use the block-adjustment operator blkk : E × G → B,

which returns true if the block is k operations long, with

k ∈ {50,100,150,200,250,300}.
Table III reports the time and number of abstraction com-

putations needed to find the error, in the first part of the table.

The benefit of ever larger block encodings is clearly indicated.

The performance of this configuration for finding bugs is

almost comparable to the performance of a highly tuned tool

for bounded model checking (BMC) [10]: we analyzed the

programs with CBMC [13] and the runtimes were less than

6 s for every NT driver example with bug. It is interesting to

consider the number of abstractions in our table; there are even

two cases where the large size of the block encoding makes it

possible to find the bug without any abstraction computation

or refinement step (this would be equivalent to BMC).

196

As the results look promising, very large block encodings

might be a way to reduce the number of abstraction com-

putations, which in turn improves both precision and perfor-

mance. Therefore, we also experimented with the examples

that do not have bugs. The performance of the examples

test_locks_* are shown in the second part of Table III.

The results show that the performance can dramatically de-

crease if the block is terminated after a certain number

of operations regardless of the control-flow structure. The

performance of the NT driver examples without bug did not

improve, because the effect of the loop bodies seems efficiently

represented by the abstractions at the loop heads (or loop

bodies are not relevant for the property to verify). The results

for the SSH programs were mixed. Only some configurations

provide better performance than LBE for a few programs.

However, there were many examples for which much more

time is needed, or the analysis even fails to terminate. Almost

all time is spent by the SMT solver while computing Craig

interpolants, and the resulting formulas are sometimes huge.

The SMT solvers seem to be overwhelmed by the complexity

of the large disjunctive path formulas. A comparison of differ-

ent SMT solvers (MATHSAT, CSISAT) shows that different

solvers perform well on different examples. Thus, we can

conclude that there is much room for improvement when a new

generation of SMT solvers is available which can handle large

interpolation queries (only three interpolating SMT solvers are

currently available: MATHSAT [11], CSISAT [9], FOCI [21]).

V. Conclusion
Software model checking largely depends on automated the-

orem proving, and the efficiency and precision have signifi-

cantly improved over the last years due to ever better theorem

provers. We have designed and implemented a model-checking

approach which makes it possible to flexibly choose how much

of the state-space exploration is delegated to a theorem prover.

A previous project had already indicated that it is highly

beneficial to design the model-checking process such that

larger queries can be given to a theorem prover, and less state-

space is explored by the software model checker itself [6].

Our work provides answers to several new experimental

questions: (1) We should generally use boolean abstraction

in software model checking, because cartesian abstraction is

feasible only for one (the traditional, SBE) configuration.

(2) On the full spectrum between single-block encoding (SBE)

and large-block encoding (LBE), there is no configuration of

the block size that is generally better than LBE. (3) Encodings

in the spectrum far beyond LBE can significantly improve

the performance for finding bugs, similar to bounded model

checking. We have also identified room for improvement for

block encodings larger than LBE. 4 We leave it for future work

to explore improvements of interpolation procedures, and to

4 For example, the “very large block” encodings should not be defined as a
strict k-bound, but respect the control structure of the program (e.g., compute
an abstraction after each control-flow subgraph of size more than k) — the
ABE approach opens a large spectrum of possibilities.

assemble structurally better encoding formulas that are ‘easier’

for theorem provers, restrict the size of the interpolation

queries, or help the SMT solver where needed by keeping

structures explicit. We found it convenient to formalize our

concept of ABE using the framework of configurable program

analysis [8]; but we have only specified explicitly what ABE

means for a predicate-analysis domain, and have not yet

designed any other abstract domains (e.g., numerical domains)

with adjustable-block encoding.

References
[1] D. Babic and A. J. Hu, “CALYSTO: Scalable and precise extended static

checking,” in Proc. ICSE. ACM, 2008, pp. 211–220.
[2] T. Ball, B. Cook, V. Levin, and S. Rajamani, “SLAM and Static Driver

Verifier: Technology transfer of formal methods inside Microsoft,” in
Proc. IFM, LNCS 2999. Springer, 2004, pp. 1–20.

[3] T. Ball, A. Podelski, and S. K. Rajamani, “Boolean and cartesian abstrac-
tions for model checking C programs,” in Proc. TACAS, LNCS 2031.
Springer, 2001, pp. 268–283.

[4] T. Ball and S. K. Rajamani, “The SLAM project: Debugging system
software via static analysis,” in Proc. POPL. ACM, 2002, pp. 1–3.

[5] M. Barnett and K. R. M. Leino, “Weakest-precondition of unstructured
programs,” in Proc. PASTE. ACM, 2005, pp. 82–87.

[6] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in Proc. FMCAD.
IEEE, 2009, pp. 25–32.

[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker BLAST: Applications to software engineering,” Int. J.
Softw. Tools Technol. Transfer, vol. 9, no. 5-6, pp. 505–525, 2007.

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable software
verification: Concretizing the convergence of model checking and pro-
gram analysis,” in Proc. CAV, LNCS 4590. Springer, 2007, pp. 504–
518.

[9] D. Beyer, D. Zufferey, and R. Majumdar, “CSISAT: Interpolation for
LA+EUF,” in Proc. CAV, LNCS 5123. Springer, 2008, pp. 304–308.

[10] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Proc. TACAS, LNCS 1579. Springer,
1999, pp. 193–207.

[11] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani,
“The MATHSAT 4 SMT solver,” in Proc. CAV, LNCS 5123. Springer,
2008, pp. 299–303.

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[13] E. M. Clarke, D. Kröning, and F. Lerda, “A tool for checking ANSI-C
programs,” in Proc. TACAS, LNCS 2988. Springer, 2004, pp. 168–176.

[14] E. M. Clarke, D. Kröning, N. Sharygina, and K. Yorav, “SATABS: SAT-
based predicate abstraction for ANSI-C,” in Proc. TACAS, LNCS 3440.
Springer, 2005, pp. 570–574.

[15] W. Craig, “Linear reasoning. A new form of the Herbrand-Gentzen
theorem,” J. Symb. Log., vol. 22, no. 3, pp. 250–268, 1957.

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadek,
“Efficiently computing static single-assignment form and the program
dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4,
pp. 451–490, 1991.

[17] S. Graf and H. Saı̈di, “Construction of abstract state graphs with PVS,”
in Proc. CAV, LNCS 1254. Springer, 1997, pp. 72–83.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from proofs,” in Proc. POPL. ACM, 2004, pp. 232–244.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in Proc. POPL. ACM, 2002, pp. 58–70.

[20] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras, “SMT techniques for
fast predicate abstraction,” in Proc. CAV, LNCS 4144. Springer, 2006,
pp. 424–437.

[21] K. L. McMillan, “Lazy abstraction with interpolants,” in Proc. CAV,
LNCS 4144. Springer, 2006, pp. 123–136.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Intermedi-
ate language and tools for analysis and transformation of C programs,”
in Proc. CC, LNCS 2304. Springer, 2002, pp. 213–228.

197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

