
Linux Driver Verification

(Position Paper)

Dirk Beyer1 and Alexander K. Petrenko2

1 University of Passau, Germany
2 ISPRAS, Moscow, Russia

Abstract. Linux driver verification is a large application area for
software verification methods, in particular, for functional, safety, and se-
curity verification. Linux driver software is industrial production code —
IT infrastructures rely on its stability, and thus, there are strong require-
ments for correctness and reliability. This implies that if a verification
engineer has identified a bug in a driver, the engineer can expect quick
response from the development community in terms of bug confirmation
and correction. Linux driver software is complex, low-level systems code,
and its characteristics make it necessary to bring to bear techniques from
program analysis, SMT solvers, model checking, and other areas of soft-
ware verification. These areas have recently made a significant progress
in terms of precision and performance, and the complex task of verifying
Linux driver software can be successful if the conceptual state-of-the-art
becomes available in tool implementations.

1 Overview

The Linux kernel is currently one of the most important software systems in
our society. Linux is used as kernel for several popular desktop operating sys-
tems (e.g., Ubuntu, Fedora, Debian, Gentoo), and thus, the seamless workflow of
many users depends on this software. Perhaps even more importantly, the server
operating systems that currently dominate the market are based on Linux. Al-
most all (90% in 2010) supercomputers run a Linux-based operating system.
Increasingly many embedded devices such as smart phones run Linux as kernel
(e.g., Android, Maemo, WebOS). This explains an increasing need for automatic
verification of Linux components.

Microsoft had identified the device drivers as the most important source of
failures in their operating systems. Consequently, the company has significantly
increased the reliability of Windows by integrating the Static Driver Verifier
(Sdv) into the production cycle. The foundations were developed in the Slam

research project [1]. The Sdv kit is now included by default in the Windows
Driver Kit (Wdk).

For Linux, an industry-funded verification project of the size of Sdv does
not exist. But the development community is increasingly looking for automatic
techniques for verifying crucial properties, and the verification community is us-
ing Linux drivers as application domain for new analysis techniques. During the

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 D. Beyer and A.K. Petrenko

last years, three verification environments were build in order to define verifica-
tion tasks from Linux drivers: the Linux Driver Verification project 1 [23], the
Avinux project [27], and the DDVerify project 2 [32].

The Linux code base is a popular source for verification tasks [17, 22, 24, 25].
Linux drivers provide a unique combination of specific characteristics that at-
tract researchers and practitioners to challenge their tools. The most impor-
tant benefits of using the Linux code as source for verification tasks are the
following:

• the software is important – many people are interested in verification results;
• every bug in a driver is potentially critical because the driver runs with
kernel privileges and in the kernel’s address space;

• the code volume is enormously large (10MLOC) and continuously increases;
• the verification tasks are difficult enough to be challenging, but not too
complex to be hopeless; and

• most Linux drivers are licensed as open source and therefore easy to use in
verification and research projects.

Although many new advancements in the area of software verification have been
made, it requires a special effort to transfer them to practice and make them
applicable to complex industrial code such as Linux device drivers. The recent
competition on software verification (SV-COMP’12) 3 [3] showed that even mod-
ern state-of-the-art tool implementations have problems analyzing the problems
in the category on device drivers.

2 Research Directions

Pointer Analysis and Dynamic Data Structures. Many safety properties
of device drivers depend on a precise analysis of pointers and data structures
on the heap. The analysis of pointers is well understood, but due to the low-
level code that is used in system programming, the analysis concepts are dif-
ficult to implement. The LDV project has made a significant progress on this
topic with implementing a more precise pointer analysis into the software model
checker Blast [29]. This improved version of the original software model checker
Blast [5] is the SV-COMP’12 winner on the verification tasks that were derived
from the Linux kernel [28].

The analysis of data structures is still an ongoing research topic, with signifi-
cant progress in the last years; however, there is no large set of open benchmark
verification tasks to practically compare the different implementations. The tool
Predator is an example of a state-of-the-art static analyzer with the ability to
check data structures and memory safety [16].

1 http://linuxtesting.org/project/ldv
2 http://www.cprover.org/ddverify
3 http://sv-comp.sosy-lab.org

http://linuxtesting.org/project/ldv/
http://www.cprover.org/ddverify/
http://sv-comp.sosy-lab.org/


Linux Driver Verification 3

Symbolic Verification. Due to the progress in SMT solving, formula-based
symbolic representations of abstract states are nowadays effective and efficient.
Microsoft’s Sdv and Slam [1], and several current research tools are based on
predicate abstraction [5, 8, 12, 18]. Several tool implementations integrate the
concepts of counterexample-guided abstract refinement (CEGAR) [11], various
kinds of shape analysis, abstract reachability trees [5], lazy abstraction [21],
interpolation [20], and large-block encoding [4, 9]. Also bounded model check-
ing [10] is a technique of practical relevance and with impressive results in the
verification competition [14, 30].

Not yet sufficiently addressed in research projects are the problems of de-
termining the interpolants (there is a wide range between weak and strong in-
terpolants), block-sizes (which criterion should be used to determine the end
of a block that is completely encoded in one post operation), and traversal or-
ders (coverage-directed verification, BFS, DFS, etc.). Another important and
promising technique that has been largely ignored in software verification is the
possibility to encode abstract states and transition relations completely as bi-
nary decision diagrams (BDD). There was some progress on this topic, e.g., the
extension of CPAchecker and Java PathFinder to using BDDs to represent the
state space that boolean variables span in code of product-line simulators [31].

Explicit-State Verification. Some explicit-state model checkers are successful
in their application domain (e.g., Spin and Java PathFinder). In order to apply
this technology to the verification of driver software in a scalable manner, it
would be interesting to incorporate state-of-the-art techniques that are successful
in symbolic verification. For example, CEGAR should be used to automatically
create an abstraction, and Craig interpolation for explicit-value domains could
identify which parts of the state space are necessary to be analyzed.

Combination of Verification Techniques. In the past, several combination
techniques have been proposed for assembling new analyses that are created by
parallel combination of different existing analyses [7, 15]. This is extremely ef-
fective and should receive more attention and be used in practical applications.
The practical application of parallel combinations is hindered by technical bar-
riers: the two analyses have to use the same traversal algorithm, have to be
implemented in the same programming language and in compatible tool envi-
ronments, and need to run on the same machine at the same location (e.g., not
distributed in a computing cloud).

Sequential combination using conditional model checking is an effective solu-
tion to this problem [6]. Different tools and techniques can be run one after the
other, and try to solve the verification task using the various strengths. A condi-
tional model checker is instructed when to give up (by an input condition). The
input conditions represent a flexible way of bounding or restricting the verifica-
tion process. Output conditions represent the state space that was successfully
verified already. A successive verifier can use such conditions of previous runs to
not perform the same verification work again, but concentrate on applying its
strengths to the remaining task.



4 D. Beyer and A.K. Petrenko

Termination Analysis. An area that needs more attention is termination
analysis. There are a few tools for termination checking (most prominently,
Armc [26]) but the technology is not yet as wide-spread as it should be. The
technology has been adopted and further improved by Microsoft’s Terminator

project [13].

Concurrency. Due to the increasing availability of multi-core machines, the
verification of multi-threaded software becomes an important research direction.
Checking for race conditions and deadlocks is an essential quality assurance
means that needs to be applied to Linux driver software as well. The verification
community actively invents new concepts and implements new tools to approach
this problem (for example, Esbmc [14], SATabs [2], Threader [19]). It is inter-
esting to observe that the best tool for checking concurrency problems in the
last competition was a bounded model checker [14].

3 Conclusion

We outlined the motivation for considering Linux device drivers as application
domain for verification research. It is important to develop verification tools that
are efficient and effective enough to successfully check software components that
are as complex as device drivers. The benefits are twofold: for the society it is
important to get such crucial software verified; for the verification community it
is important to get realistic verification tasks in order to tune and further develop
the technology. We provided an overview of the state-of-the-art and pointed out
research directions in which further progress is essential.

References

1. Ball, T., Rajamani, S.K.: The Slam Project: Debugging System Software via Static
Analysis. In: Proc. POPL, pp. 1–3. ACM (2002)

2. Basler, G., Donaldson, A., Kaiser, A., Kröning, D., Tautschnig, M., Wahl, T.:
SatAbs: A Bit-Precise Verifier for C Programs. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 552–555. Springer, Heidelberg (2012)

3. Beyer, D.: Competition on Software Verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

4. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
Model Checking via Large-block Encoding. In: Proc. FMCAD, pp. 25–32. IEEE
(2009)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

6. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional Model
Checking: A Technique to Pass Information Between Verifiers. In: Proc. FSE. ACM
(2012)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program Analysis with Dynamic Pre-
cision Adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)



Linux Driver Verification 5

9. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794
(2003)

12. Clarke, E., Kröning, D., Sharygina, N., Yorav, K.: SatAbs: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

13. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

14. Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-Bounded Model Check-
ing with ESBMC 1.17. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 534–537. Springer, Heidelberg (2012)

15. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of Abstractions in the ASTRÉE Static Analyzer. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg
(2008)

16. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A Verification Tool for
Programs with Dynamic Linked Data Structures. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 545–548. Springer, Heidelberg (2012)

17. Galloway, A., Lüttgen, G., Mühlberg, J.T., Siminiceanu, R.I.: Model-Checking the
Linux Virtual File System. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 74–88. Springer, Heidelberg (2009)

18. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier Based on Horn Clauses. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)

19. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A Constraint-Based Verifier
for Multi-threaded Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412–417. Springer, Heidelberg (2011)

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: Proc. POPL, pp. 232–244. ACM (2004)

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

22. Khoroshilov, A., Mutilin, V., Novikov, E., Shved, P., Strakh, A.: Towards an Open
Framework for C Verification Tools Benchmarking. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 179–192. Springer, Heidelberg
(2012)

23. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing Linux Driver
Verification Process. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009.
LNCS, vol. 5947, pp. 165–176. Springer, Heidelberg (2010)

24. Mühlberg, J.T., Lüttgen, G.: Blasting Linux Code. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 211–226. Springer, Heidelberg (2007)

25. Penninckx, W., Mühlberg, J.T., Smans, J., Jacobs, B., Piessens, F.: Sound Formal
Verification of Linux’s USB BP Keyboard Driver. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 210–215. Springer, Heidelberg (2012)



6 D. Beyer and A.K. Petrenko

26. Podelski, A., Rybalchenko, A.: Transition Predicate Abstraction and Fair Termi-
nation. In: Proc. POPL, pp. 132–144. ACM (2005)

27. Post, H., Sinz, C., Küchlin, W.: Towards Automatic Software Model Checking of
Thousands of Linux Modules — A Case Study with Avinux. Softw. Test., Verif.
Reliab. 19(2), 155–172 (2009)

28. Shved, P., Mandrykin, M., Mutilin, V.: Predicate Analysis with BLAST 2.7.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 525–527.
Springer, Heidelberg (2012)

29. Shved, P., Mutilin, V., Mandrykin, M.: Experience of Improving the Blast Static
Verification Tool. Programming and Computer Software 38(3), 134–142 (2012)

30. Sinz, C., Merz, F., Falke, S.: LLBMC: A Bounded Model Checker for LLVM’s Inter-
mediate Representation. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 542–544. Springer, Heidelberg (2012)

31. von Rhein, A., Apel, S., Raimondi, F.: Introducing Binary Decision Diagrams in
the Explicit-State Verification of Java Code. In: Proc. Java Pathfinder Workshop
(2011)

32. Witkowski, T., Blanc, N., Kröning, D., Weissenbacher, G.: Model Checking Con-
current Linux Device Drivers. In: Proc. ASE, pp. 501–504. ACM (2007)


	Linux Driver Verification
	Overview
	Research Directions
	Conclusion
	References




