
Competition on Software Verification�

(SV-COMP)

Dirk Beyer

University of Passau, Germany

Abstract. This report describes the definitions, rules, setup, procedure,
and results of the 1st International Competition on Software Verification.
The verification community has performed competitions in various areas
in the past, and SV-COMP’12 is the first competition of verification tools
that take software programs as input and run a fully automatic verifica-
tion of a given safety property. This year’s competition is organized as a
satellite event of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).

1 Introduction

The area of verification, in particular model checking, has grown to an own major
research area within computer science, which is witnessed and acknowledged by
a recent ACM Turing Award in the area and the growth of conferences in the
field of verification to some of the top computer-science conferences with high
impact on the research community. Model checking started to get adopted in
software industry (e.g., Microsoft, NASA, NEC) about ten years ago, and major
tool-development projects in software model checking began around that time
(Blast at UC Berkeley, Slam at MSR, Magic at CMU).

Several new and powerful software-verification tools became available, but
they have not been compared systematically in the past. The reason for this
is that no widely distributed benchmark suite was available and most concepts
were only validated in research prototypes. This can be changed by a compe-
tition. Comparison, and thus competition, is a driving force for the invention
of new methods, technologies, and tools. This article describes the competition
of software-verification tools, which this year is organized as a satellite event
of the conference TACAS. SV-COMP’12 is the first competition that compares
verification tools for software source code.

Only few research projects aim at producing stable tools that can be used by
people outside the respective development groups, and the development of such
tools is not continuous. PhD students and post-docs do not adequately benefit
from tool development because theoretical papers are still considered more rele-
vant than papers that present technical contributions, like tool papers. Through
its visibility, the Competition on Software Verification changes this, by showing
� http://sv-comp.sosy-lab.org

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 504–524, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sv-comp.sosy-lab.org/


Competition on Software Verification 505

off the latest implementation of the research results in our community, and giving
credits and benefits to researchers and students who spend considerable amounts
of time implementing verification algorithms in practical software packages (win-
ning the verification competition in a category serves as acknowledgment). More
discussion on problems and barriers in developing tools for software verification
can be found in a position paper by Alglave et al. [1].

A competition event fosters the transfer of theoretical and conceptual ad-
vancements in software verification into practical tools. The main goals of the
Competition on Software Verification are the following:

– Establish a set of benchmarks for software verification in the community,
i.e., create and maintain a set of programs together with explicit properties
to check, and make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

– Provide an overview of the state-of-the-art in software verification for the
community, i.e., compare, independently from particular paper projects and
specific techniques, different verification tools in terms of precision and per-
formance.

– Increase the visibility and credits that tool developers receive, i.e., provide
a forum for presentation of tools and discussion of the latest technologies,
and give students the opportunity to publish about the implementation work
that they have done.

Related Events. Competitions are widely acknowledged as a means to improve
the available tools, the visibility of their strengths, and to establish a publicly
available set of benchmark problems. In the formal-methods community (loosely
interpreted), there are competitions on, e.g., SAT 1, SMT 2, Planning 3, QBF 4,
HWMC 5, and Theorem Proving 6. These events seem to have a positive impact
on the development speed and the quality of the participating software tools;
theoretical results are transferred to practical tools almost instantly.

2 Procedure and Schedule

The competition compared state-of-the-art software verifiers with respect to ef-
fectiveness and efficiency. The overall process was composed of several phases,
as described in the following.

Announcement and Benchmark Submission. The competition was publicly
announced on July 19, 2011 at the conference event CAV. During the preparation
phase, calls for contributions were made in various mailings, the web page was set
1 http://www.satcompetition.org
2 http://www.smtcomp.org
3 http://ipc.icaps-conference.org
4 http://www.qbflib.org/competition.html
5 http://fmv.jku.at/hwmcc11
6 http://www.cs.miami.edu/∼tptp/CASC

http://www.satcompetition.org
http://www.smtcomp.org
http://ipc.icaps-conference.org
http://www.qbflib.org/competition.html
http://fmv.jku.at/hwmcc11
http://www.cs.miami.edu/~tptp/CASC


506 D. Beyer

up, and benchmark verification tasks were collected and classified into competi-
tion categories. Since this was the first competition, all contributed benchmarks
were initially accepted, and we only disqualified benchmark programs (after dis-
cussion) if they violated the requirements below.

Training Phase. The set of all benchmark verification tasks was finalized and
made publicly available on September 14, 2011. During the training phase, the
teams of the competition candidates were able to download the benchmarks in
order to train their tools on the given verification tasks. At the end of this phase,
the competition contributions (consisting of the software together with a three-
page description of the competition candidate) were submitted. Also during the
training phase, some benchmark programs were corrected (without changing the
verification outcome), and some verification tasks were disqualified (by the rules
below and after community discussion) and removed from the benchmark set.

Benchmark Evaluation Phase. The submission of competition contributions
ended on October 14, 2011; all competition candidates were downloaded and
installed on a competition machine, and the verification tools were applied to
the sets of benchmark verification tasks. All submitted artifacts of the compe-
tition contribution (tool description and software archive files) were stamped
with SHA hash values. The hash values were sent to all members of the program
committee (= jury) of the competition, in order to eliminate the possibility of
undue advantages of any tool.

Also in this phase, all descriptions of competition candidates (the three-page
summary papers) were reviewed, each by several members of the program com-
mittee, in order to ensure the quality standards of the TACAS proceedings.

Approval of Verification Results. After the results were obtained on a
competition machine 7 (the number of solved instances and the run time were
measured), each participating team received the (preliminary) results that were
obtained using their submitted competition candidate. This step gave the jury
the opportunity to discuss some unexpected results with the corresponding au-
thors of the competing tools. This approval phase was completed by December
9, 2011. By this time, a list of all participating teams was publicly announced.

Notification. On December 16, the notification of acceptance of the competition
contribution, together with the reviews, were sent to all authors. All teams were
informed of the results of all competition candidates, and tables with rankings
were made available to all teams.

7 One complete competition run of all candidates on all verification tasks required
a total of 163 hours of non-stop machine time; several such competition runs were
necessary.



Competition on Software Verification 507

3 Definitions and Rules

This section presents the definitions and rules that regulated the execution of
the competition and how the results were evaluated towards a ranking.

Definition of Verification Task. A verification task consists of a C program
and a safety property. For simplicity, the safety properties to be verified are
reduced to reachability problems and encoded in the program source code (using
the error label ‘ERROR’). In other words, the competition candidate is asked,
given a C program and the error label ‘ERROR’, whether there is a concrete
execution path through the program such that the error label can be reached.
A verification run is a non-interactive execution of a competition candidate on
a single verification task. The result of a verification run is either

SAFE: there is no path that reaches the error location,
UNSAFE + Path: there exists a path that reaches the error location, or
UNKNOWN: the competition candidate does not succeed in computing an

answer ‘SAFE’ or ‘UNSAFE’.

There is no particular fixed format for the error path. The error path has to
be written to a file or on stdout in a reasonable format to make it possible to
manually check validity.

Benchmark Verification Tasks. All verification tasks were provided by the
specified date on the competition web site 8. Most programs were provided in
Cil (C Intermediate Language). The programs were assumed to be written in
GNU C (most of them adhere to ANSI C).

Potential competition participants were invited to submit benchmark
verification tasks until the specified date. Programs had to fulfill two require-
ments to be eligible for the competition: (1) the program has to be writ-
ten in GNU C or ANSI C, and can be successfully Cil-pre-processed 9 with
the parameters --dosimplify --printCilAsIs --save-temps --domakeCFG
--no-convert-field-offsets --no-convert-direct-calls, and (2) the
property is instrumented into the program and is violated if the label ‘ERROR’
is reached.

As a further convention, a verification tool can assume that a function call
__VERIFIER_assume(expression) has the following meaning: If expression is
evaluated to ‘0’, then the function loops forever, otherwise the function returns
(no side effects). The verification tool can assume the following implementation:

void __VERIFIER_assume(int expression) {
if (!expression) { LOOP: goto LOOP; }
return;

}

8 http://sv-comp.sosy-lab.org
9 We used Cil version 1.3.7, from http://cil.sourceforge.net, with extensions.

http://sv-comp.sosy-lab.org/
http://cil.sourceforge.net/


508 D. Beyer

Similarly, the following functions can be assumed to return an arbitrary value
of the indicated type: __VERIFIER_nondet_X() (and nondet_X(), deprecated)
with X being one of int, float, char, short, or pointer (no side effects,
pointer refers to void *). The verification tool can assume that the functions
are implemented according to the following template:

X __VERIFIER_nondet_X() {
X val;
return val;

}

Setup. The verification runs of the competition were (natively) executed on a
dedicated unloaded compute server with a 3.4 GHz 64-bit Quad Core CPU (Intel
i7-2600K) and a GNU/Linux operating system (x86_64-linux). The machine had
16 GB of RAM, of which exactly 15 GB were made available to the competition
candidate. Every verification run had a run-time limit of 15 min. The run time
was measured in seconds of CPU time.

The verification runs were started by a batch script that collects statistics and
interprets the result of every competition candidate on every verification task as
one of the following categories of verification results: SAFE (verifier states that
the property holds), UNSAFE (verifier states that the property does not hold,
an error path is reported), UNKNOWN (result does not fall into the other two
categories: verification result not known, resources exhausted, verifier crashed).

Qualification. A verification tool was qualified to participate as competition
candidate if the tool was publicly available (for the GNU/Linux platform, more
specifically, it had to run on an x86_64 machine) and succeeded in more than
50 % of all training verification tasks to parse the input and start the verification
process (a tool crash during the verification phase does not disqualify). A person
(participant) was qualified as competition contributor for a competition candi-
date if the person was a contributing designer/developer of the submitted com-
petition candidate (witnessed by occurrence of the person’s name on the tool’s
project web page, a tool paper, or in the revision logs). A contribution paper was
qualified if the quality of the description of the competition candidate sufficed to
run the tool in the competition and was appropriate as competition-candidate
representation for the TACAS proceedings.

A verification tool could participate several times as an independent competi-
tion candidate, if a significant difference of the conceptual or technological basis
of the implementation is justified in the accompanying description paper. This
applies to different versions as well as different configurations, in order to avoid
forcing developers to create a new tool name for every new concept. Competition
candidates were allowed to opt-out from certain categories.

Evaluation by Scores and Run Time. The scores were assigned according
to the scoring schema in Table 1. Every verification task comes with an ex-
pected result, which was provided by the contributor of the verification task. The



Competition on Software Verification 509

Table 1. Scoring schema

Reported result Points Description
UNKNOWN 0 Failure to compute verification result,

out of resources, program crash.
UNSAFE correct +1 The error in the program was found and

an error path was reported.
UNSAFE incorrect −2 An error is reported for a program that fulfills the

property (false alarm, imprecise analysis).
SAFE correct +2 The program was analyzed to be free of errors.
SAFE incorrect −4 The program had an error but the competition

candidate did not find it (missed bug, unsound analysis).

interpretation of ‘UNSAFE’ is that a verification tool is supposed to find a path
to the error label. The interpretation of ‘SAFE’ is that no executable path to the
error label exists in the program, assuming the C semantics [2] and a standard
POSIX run-time environment. The results of type ‘SAFE’ yield higher absolute
score values compared to type ‘UNSAFE’, because it is expected to be heuristi-
cally easier to detect errors than it is to prove correctness. The absolute score val-
ues for incorrect results are higher compared to correct results, because a single
correct answer should not be able to compensate for a wrong answer. This scor-
ing schema ensures a disadvantage for (hypothetical) competition candidates
that always return the same result or random results.

The participating competition candidates are ranked according to the sum
of points. Competition candidates with the same sum of points are sub-ranked
according to success run time. The success run time for a competition candi-
date is the total CPU time over all verification tasks for which the competition
candidate reported a correct verification result.

The participants had the opportunity to check the verification results against
their own expected results and discuss inconsistencies with the competition chair
(cf. Sect. 2). A candidate that opted out from a category or obtained a negative
total score in a category, was assigned zero points in that category as total score.

To ensure that no undue advantage occurs from knowing the benchmark pro-
grams beforehand, we obfuscated all benchmark programs (by renaming all vari-
able and function names, as well as the file name) and ran the competition can-
didates on the obfuscated versions of the benchmark programs. All verification
results obtained using obfuscated versions matched the verification results of the
corresponding original program.

Publication and Presentation of the Competition Candidates. A de-
scription of every qualified competition candidate (contribution paper) was pub-
lished in the LNCS proceedings of TACAS 2012. In addition, every qualified
competition candidate was granted a demonstration slot in the TACAS program
to present the competition candidate to the TACAS audience.



510 D. Beyer

Competition Jury. The program committee that oversees the process of the
competition consists of one member of each participating team. The tasks of this
committee are to review the competition contribution papers and help the orga-
nizer to resolve any disputes that might occur. Deviation from the competition
rules need to be approved by the committee. The 2012 competition jury consists
of the following members:

Dirk Beyer, University of Passau, Germany (Chair)
Bernd Fischer, University of Southampton, UK
Vadim Mutilin, Russian Academy of Sciences, Russia
Andrey Rybalchenko, TU Munich, Germany
Carsten Sinz, Karlsruhe Institute of Technology, Germany
Michael Tautschnig, University of Oxford, UK
Helmut Veith, TU Vienna, Austria
Tomas Vojnar, Brno University of Technology, Czech Republic
Georg Weissenbacher, Princeton University, USA
Philipp Wendler, University of Passau, Germany
Daniel Wonisch, University of Paderborn, Germany

The term of the jury is one year, and the next jury consists of the chair and one
member of each participating team of the next competition.

4 Benchmark Verification Tasks

All verification tasks are available for browsing and download via the public
SVN repository for the Competition on Software Verification 10. The competition
was organized in several categories of benchmark verification tasks, which are
explained in the following.

The benchmark verification tasks were contributed by several research and
development groups. After the submission deadline for benchmarks, a group of
people (organizer and participants) were working on improving the quality of the
verification tasks. This means that after the benchmark sets were made public,
some programs were removed (not qualified, no property encoded, unknown
architecture), and some programs were technically improved (Cil simplifications,
compiler warnings, memory model). These changes have improved the overall
quality of the final set of verification tasks for the competition, and have not
changed the intended verification result; all changes are tracked in the public
repository.

The expected verification result is encoded in the file name of each verification
task: the sub-strings ‘BUG’ and ‘unsafe’ indicate that the program violates the
property, i.e., the error label is reachable.

10 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp12

https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp12


Competition on Software Verification 511

Control Flow and Integer Variables. The first set of verification tasks con-
sists of the programs in the set ControlFlowInteger:

ntdrivers-simplified/*_BUG.cil.c
ntdrivers-simplified/*[!G].cil.c
ntdrivers/*.BUG.i.cil.c
ntdrivers/*[!G].i.cil.c
ssh-simplified/*_BUG.cil.c
ssh-simplified/*[!G].cil.c
ssh/*.BUG.i.cil.c
ssh/*[!G].i.cil.c
locks/*.BUG.c
locks/*[!G].c

The programs and properties in this category use problems that relate mostly
to control-flow structure and integer variables. There is no particular focus on
pointers, data structures, and concurrency. The verification tasks were taken
from the source-code repositories of the tools Blast [6] and CPAchecker [9].

The directories ‘ntdrivers*’ contain 19 verification tasks that were derived
from (parts of) device drivers of the Windows NT kernel. The directories ‘ssh*’
contain 61 verification tasks s3_clnt* and s3_srvr*, which represent the sub-
routine for the connection handshake protocol (a state machine) of the SSH
client and server. The different versions represent various protocol-specific safety
properties (one program for each property). The directories with the suffix ‘sim-
plified’ contain versions of the drivers and SSH programs that were manually
pre-processed in order to remove heap access. The verification tasks with the suf-
fix ‘BUG’ have artificial bugs injected, which cause the assertions to fail. The 13
verification tasks in directory ‘locks’ were taken from the CPAchecker project,
where they served the purpose of demonstrating the advantage of adjustable-
block encoding [5, 10].

Linux Device Drivers 32-bit. This category consists of problems that require
the analysis of pointer aliases and function pointers (32-bit machine model):

ldv-regression/*-unsafe*.cil.c
ldv-regression/*-safe*.cil.c
ddv-machzwd/*_BUG.cil.c
ddv-machzwd/*[!G].cil.c

The 46 verification tasks in directory ‘ldv-regression’ were contributed by the
Linux Driver Verification (LDV) project 11. The verification tasks are used in the
LDV project as regression tests for Blast and CPAchecker. The benchmark set
consists of small programs that check for features rather than imposing a high
verification load; some of these tests are inspired by the problem patterns that
were seen in real device-driver code.

The 13 verification tasks in the directory ‘ddv-machzwd’ were generated using
DDVerify [30]. The main file ddv_machzwd_all contains several assertions. Then,
11 http://linuxtesting.org/project/ldv

http://linuxtesting.org/project/ldv


512 D. Beyer

there is one separate file for each assertion in file ddv_machzwd_all; the file
names of these separate files have a suffix that indicates the name of the function
in which the assertion occurs.

Linux Device Drivers 64-bit. This category consists of problems that require
the analysis of pointer aliases and function pointers (64-bit machine model):

ldv-drivers/*-unsafe*.cil.c
ldv-drivers/*-safe*.cil.c

The verification tasks in this category were contributed by the LDV project.
The directory contains 41 recent (Sept. 2011) driver-verification tasks that were
taken directly from the x86_64 Linux kernel. Among them are 16 programs with
bugs, which are accompanied by sample error traces. Some of these are confirmed
bugs that were reported by the LDV project to the kernel developers.

Heap Manipulation. The problems in this category require the analysis of data
structures on the heap and consist of the programs in the set HeapManipulation:

heap-manipulation/*BUG.cil.c
heap-manipulation/*[!G].cil.c
list-properties/*.cil.c

The eight verification tasks in directory ‘heap-manipulation’ were provided
by the Predator project 12. The program bubble_sort_linux is a bubble-sort
implementation that operates on Linux lists. Verification tasks with the suf-
fix ‘BUG’ have an artificial bug injected. The program dll_of_dll operates
on a NULL-terminated doubly-linked list of doubly-linked lists. The program
creates a doubly-linked list of doubly-linked lists, and then destroys the data
structure in several phases. The program merge_sort is an implementation of
the merge-sort algorithm that operates on two-level singly-linked lists. The pro-
gram sll_to_dll_rev converts a singly-linked list to a doubly-linked list, then
reverses the list, and coverts it back to a singly-linked list.

The six verification tasks in the directory ‘list-properties’ are taken from a
supplementary web page of the Blast 3.0 project [7]. This set contains several
C programs that manipulate list data structures containing integers as data
elements. The programs simple and simple_built_from_end both create a list
that represents a sequence of integers that matches 1*0 (regular expression), i.e.,
an arbitrary number of list elements that are initialized with the data value 1
with the last element initialized with 0. Then, the programs traverse the list to
check that every element is set to 1 and the last to 0. The difference between the
two programs is the order in which the list elements are created. The program
list creates a sequence that matches 1*2*3. The program list_flag creates a
sequence that matches c*3, where c is a constant determined by a flag. Then, the
program traverses the list to check that the integers occur in the correct order.

12 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/


Competition on Software Verification 513

The program alternating is similar to list except that the list begins with
alternating 1s and 2s, and ends with a value 3, i.e., it creates a sequence that
matches (12)*3. The program splice first builds the same list as alternating.
Then, the list is split into two different lists: the first list contains the nodes at
odd positions and the second list contains nodes at even positions of the original
list, without the last value 3. Each new list is then traversed to check that all
its elements have the same data value.

SystemC. This category contains SystemC-related problems:

systemc/*BUG.cil.c
systemc/*[!G].cil.c

This set of 62 verification tasks was provided by the SyCMC project [14].
The programs were transformed to sequential C programs by incorporating the
scheduler into the C code. More details can be found in the research article that
defines the benchmark [14].

Concurrency. Some concurrency problems are contained in this set:

pthread/*BUG.cil.c
pthread/*[!G].cil.c

This benchmark set of eight verification tasks was contributed by the Esbmc

project 13. The program fib_bench starts two threads, which are together com-
puting a Fibonacci number, and then compares if the results of the two threads
are smaller than an upper bound. The program fib_bench_BUG is a version
which checks a wrong bound and thus is expected to yield an error. The programs
fib_bench_longer and fib_bench_longer_BUG are using the same algorithm
but a larger number of iterations.

The programs queue_ok and queue_BUG operate on a queue data structure,
where the former is expected to work correctly and the second to reach the error
label. Two threads are started, one trying to write to the queue and one trying
to read from the queue, after acquiring a mutex lock, respectively, while the
programs check for some properties to hold.

The program reorder_5_BUG lets a set of threads write values to two variables
and another set of threads verify that the two values are either both untouched
or both changed to the new values. Due to certain interleavings in the execution,
a violation of the property is possible. The program twostage_3_BUG creates two
sets of threads. One set of threads is writing a value to one global variable and an
increased value to a second variable. The other set of threads verifies the success
of the first set of threads. Again, due to certain interleavings, the property might
be violated in some executions.

Overall. The category ‘Overall’ consists of the union of all above-mentioned
sets of verification tasks.
13 http://esbmc.org

http://esbmc.org/


514 D. Beyer

5 Participating Teams

In the following, we briefly introduce the competition candidates, listed in al-
phabetical order. Table 2 gives an overview of the participating candidates. The
top-three placements achieved in the competition for each category are given in
the paragraph for the corresponding tool. The detailed summary of the results
is presented in Sect. 6.

Table 3 provides an overview of the technologies and concepts used by the var-
ious competition candidates. The technique of counterexample-guided abstrac-
tion refinement (CEGAR) [15] is used by the majority of tools. Other techniques
that are offered by the competition candidates are predicate abstraction [3, 19],
bounded model checking [12], shape analysis [23], construction of an abstract
reachability tree (ART) as proof of correctness [6], lazy abstraction [21], and
Craig interpolation for discovering new predicates to refine a predicate analy-
sis [17, 25]. Only three tools provide verification of concurrent programs.

Blast 2.7 [26], submitted by Pavel Shved, Vadim Mutilin, and Mikhail
Mandrykin (Institute for System Programming of the Russian Academy of Sci-
ences, Russia), has achieved the following placements:

– Winner in DeviceDrivers64
– Bronze in DeviceDrivers

Blast 2.7
14 is a model checker that is based on predicate abstraction, with a

focus on verifying control-flow intensive programs such as device drivers and
system programs. It is based on the CEGAR algorithm [15] and uses Craig in-
terpolation [17] on infeasible error paths to discover new predicates for increasing
the precision of the predicate abstraction. The tool was originally developed at
the University of California at Berkeley and at EPFL Lausanne [6], but later
significantly improved by the Linux Driver Verification group at the Institute
for System Programming of the Russian Academy of Sciences in Moscow. The
tool uses Cvc 3 [28] as SMT solver, CSIsat [11] as interpolation procedure, and
is implemented in OCaml.

CPAchecker 1.0.10-abe [24], submitted by Stefan Löwe and Philipp Wendler
(University of Passau, Germany), has achieved the following placements:

– Winner in ControlFlowInteger
– Silver in Overall
– Bronze in SystemC
– Bronze in HeapManipulation

CPAchecker 1.0.10-abe is based on a predicate analysis, with an applica-
tion focus similar to that of Blast. CPAchecker [9] 15 is a flexible veri-
fication framework that implements the formalism of configurable program
14 http://mtc.epfl.ch/software-tools/blast
15 http://cpachecker.sosy-lab.org

http://mtc.epfl.ch/software-tools/blast
http://cpachecker.sosy-lab.org/


Competition on Software Verification 515

Table 2. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Representing jury memb. Affiliation
Blast 2.7 [26] Vadim Mutilin Moscow, Russia
CPAchecker 1.0.10-abe [24] Philipp Wendler Passau, Germany
CPAchecker 1.0.10-memo [31] Daniel Wonisch Paderborn, Germany
Esbmc 1.17 [16] Bernd Fischer Southampton, UK
FShell 1.3 [22] Helmut Veith Vienna, Austria
Llbmc 0.9 [27] Carsten Sinz Karlsruhe, Germany
Predator 2011-10-11 [18] Tomas Vojnar Brno, Czech Republic
QArmc-Hsf(c) [20] Andrey Rybalchenko Munich, Germany
SATabs 3.0 [4] Michael Tautschnig Oxford, UK
Wolverine 0.5c [29] Georg Weissenbacher Princeton, USA

Table 3. Technologies and features that the competition candidates offer

Competition
candidate C

E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

S
h
ap

e
A

n
al

ys
is

A
R

T
-b

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

C
on

cu
rr

en
cy

S
u
p
p
or

t

Blast ✓ ✓ ✓ ✓ ✓

CPA-abe ✓ ✓ ✓ ✓ ✓

CPA-memo ✓ ✓ ✓ ✓ ✓

Esbmc ✓ ✓

FShell ✓

Llbmc ✓

Predator ✓

QArmc-Hsf(C) ✓ ✓ ✓ ✓ ✓

SATabs ✓ ✓ ✓

Wolverine ✓ ✓ ✓ ✓



516 D. Beyer

analysis (CPA) [8]. The competition candidate CPAchecker 1.0.10-abe uses
the concept of adjustable-block encoding [10], which is implemented as a CPA
in the framework. The algorithm uses an interpolation-based refinement of the
predicate precision and explores the abstract state space by building an abstract
reachability graph. The framework currently uses MathSAT [13] as SMT solver
and interpolation procedure, and is implemented in Java.

CPAchecker 1.0.10-memo [31], submitted by Daniel Wonisch (University
of Paderborn, Germany), has achieved the following placements:

– Winner in Overall
– Silver in ControlFlowInteger
– Silver in DeviceDrivers64
– Bronze in HeapManipulation

CPAchecker 1.0.10-memo is based the verification framework CPAchecker,
configured for large-block encoding [5] and boolean predicate abstraction. The
novel feature of the competition candidate CPAchecker 1.0.10-memo is the inte-
gration of the concept of block-abstraction memoization as a CPA. Intermediate
analysis results of large blocks are cached in order to avoid repeated verification
of similar program traces. This concept yields a significant improvement over
the standard configuration of CPAchecker in the category ‘DeviceDrivers64’,
as shown in Table 4.

Esbmc 1.17 [16], submitted by Lucas Cordeiro, Jeremy Morse, Denis Nicole,
and Bernd Fischer (University of Southampton, UK), has achieved the following
placements:

– Winner in SystemC
– Winner in Concurrency
– Bronze in Overall

Esbmc 1.17
16 is a bounded model checker that is based on the concept of gener-

ating verification conditions for the program, which are then passed to an SMT
solver for checking if a feasible error path exists. The focus of Esbmc is to provide
a context-bounded verification of multi-threaded C programs, in addition to se-
quential C programs. The tool uses components of the CProver framework 17,
the external solvers Z3 18 and Boolector 19, and is implemented in C++.

FShell 1.3 [22], submitted by Andreas Holzer, Daniel Kröning, Christian
Schallhart, Michael Tautschnig, and Helmut Veith (TU Vienna, Austria), is
a test-generation tool for C programs, which is based on bit-precise bounded
model checking for identifying program paths that fulfill a given test-coverage
16 http://esbmc.org
17 http://www.cprover.org
18 http://research.microsoft.com/projects/z3
19 http://fmv.jku.at/boolector

http://esbmc.org/
http://www.cprover.org/
http://research.microsoft.com/projects/z3
http://fmv.jku.at/boolector/


Competition on Software Verification 517

criterion, for which test vectors can be derived using satisfying assignments.
The tool FShell

20 is based on the CProver framework, uses the SAT solver
MiniSAT

21, and is implemented in C++.

Llbmc 0.9 [27], submitted by Carsten Sinz, Stephan Falke, and Florian Merz
(Karlsruhe Institute of Technology, Germany), has achieved the following place-
ments:

– Winner in DeviceDrivers
– Silver in HeapManipulation

Llbmc 0.9
22 is a bounded model checker that operates on LLVM’s intermediate

representation, with a focus on providing a bit-precise analysis of C code, in partic-
ular for detecting violations of safe memory usage. The tool is based on the Llvm
compiler infrastructure, and passes the verification conditions to the SMT solver
Stp 23, which supports bit-vectors and arrays. Llbmc is implemented in C++.

Predator 2011-10-11 [18], submitted by Kamil Dudka, Petr Muller, Petr
Peringer, and Tomas Vojnar (Brno University of Technology, Czech Republic),
has achieved the following placements:

– Winner in HeapManipulation
– Silver in DeviceDrivers

Predator 2011-10-11
24 is a program analyzer that is based on separation logic,

with a focus on verifying C programs with dynamically linked list data structures.
The separation-logic formulas that describe (infinite) sets of heaps are internally
represented as heap graphs. The main objective of the Predator project is to
support the verification of system code, which also uses low-level programming
techniques like pointer arithmetics. The tool uses no external decision procedure,
is designed as a plug-in for GCC, and is implemented in C++.

QArmc-Hsf(c) [20], submitted by Sergey Grebenshchikov, Ashutosh Gupta,
Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko (TU Munich, Ger-
many), has achieved the following placements:

– Bronze in ControlFlowInteger

QArmc-Hsf(c)
25,26 is a model checker that is based on predicate abstraction

with a special focus on liveness properties in addition to being able to check safety
20 http://code.forsyte.de/fshell
21 http://minisat.se
22 http://baldur.iti.uka.de/llbmc
23 http://sites.google.com/site/stpfastprover
24 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
25 This tool participated in the competition as QArmc and was renamed to Hsf(c)

when the proceedings were due.
26 http://www7.in.tum.de/tools/hsf

http://code.forsyte.de/fshell
http://minisat.se/
http://baldur.iti.uka.de/llbmc/
http://sites.google.com/site/stpfastprover/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www7.in.tum.de/tools/hsf/


518 D. Beyer

properties. The tool is based on the CEGAR algorithm, but instead of operating
on transition systems, it operates directly on Horn-clause representations of the
program and its proof rules. The tool is based on the Armc infrastructure and
the constraint solver Clp(q). The frontend Cil is used as parser and for the
transformation of C programs into the internal representation; the backend is
implemented in Prolog and requires the SICStus compiler package.

SATabs 3.0 [4], submitted by Alastair Donaldson, Alexander Kaiser, Daniel
Kröning, Michael Tautschnig, and Thomas Wahl (Oxford University, UK), has
achieved the following placements:

– Silver in SystemC
– Silver in Concurrency
– Bronze in DeviceDrivers64

SATabs 3.0
27 is a model checker that is based on predicate abstraction with a fo-

cus on bit-precise analysis of program variables. The tool implements an explicit
abstract-check-refine loop of the CEGAR algorithm for sequential and concur-
rent programs. In every iteration, an abstract (boolean) program is computed,
then this abstract program is model-checked, then the error path is checked
for feasibility, and predicates are discovered in order to compute a more pre-
cise abstract program in the next iteration. The tool uses components from
the CProver framework, Smv or Boom as model checkers, MiniSAT as SAT
solver, and is implemented in C++.

Wolverine 0.5c [29], submitted by Georg Weissenbacher, Daniel Kröning,
and Sharad Malik (Princeton University, USA), is a model checker that is based
on interpolation-based predicate analysis without computing predicate abstrac-
tions during single post-operations. Instead of discovering predicates and col-
lecting them in a predicate precision, the interpolants from infeasible paths are
directly used as part of the abstract states. Wolverine 0.5c

28 is based on an in-
tegrated interpolating decision procedure, uses components from the CProver
framework, and is implemented in C++.

6 Results and Discussion

The results in this paper represent the state-of-the-art in software verification
in terms of precision and performance, as available and participated, when the
benchmark verification runs for the 1st Competition on Software Verification were
performed. We sent all results to the participating competition teams for review;
all results shown in this paper are approved by the competing teams. The to-
tal quantitative overview is provided in Table 4. The run time in the tables is given

27 http://www.cprover.org/satabs
28 http://www.cprover.org/wolverine

http://www.cprover.org/satabs/
http://www.cprover.org/wolverine/


Competition on Software Verification 519

Table 4. Summary of all results. The tools are listed in alphabetical order. In every
table cell for competition results, we list the points in the first row and the CPU time
for successful runs in the second row (cf. Table 1 for the scoring schema). The top-three
candidates have their score set in bold face and in larger font size. The entry ‘—’ means
that the competition candidate opted-out or obtained a total of less than 0 points in the
category.

Competition
candidate

Representing
jury member

Affiliation C
on

tr
ol

F
lo

w
In

te
ge

r
14

4
po

in
ts

m
ax

.
93

ve
ri
fic

at
io

n
ta

sk
s

D
ev

ic
eD

ri
ve

rs
10

3
po

in
ts

m
ax

.
59

ve
ri
fic

at
io

n
ta

sk
s

D
ev

ic
eD

ri
ve

rs
64

66
po

in
ts

m
ax

.
41

ve
ri
fic

at
io

n
ta

sk
s

H
ea

p
M

an
ip

u
la

ti
on

24
po

in
ts

m
ax

.
14

ve
ri
fic

at
io

n
ta

sk
s

S
ys

te
m

C
87

po
in

ts
m

ax
.

62
ve

ri
fic

at
io

n
ta

sk
s

C
on

cu
rr

en
cy

11
po

in
ts

m
ax

.
8

ve
ri
fic

at
io

n
ta

sk
s

O
ve

ra
ll

43
5

po
in

ts
m

ax
.

27
7

ve
ri
fic

at
io

n
ta

sk
s

Blast
Vadim Mutilin 71 72 55 — 33 — 231
Moscow, Russia 9900 s 30 s 1400 s 4000 s 15000 s
CPA-abe
Philipp Wendler 141 51 26 4 45 0 267
Passau, Germany 1000 s 97 s 1900 s 16 s 1100 s 0 s 4100 s
CPA-memo

Daniel Wonisch 140 51 49 4 36 0 280
Paderborn, Germany 3200 s 93 s 500 s 16 s 450 s 0 s 4300 s
ESBMC
Bernd Fischer 102 63 10 1 67 6 249
Southampton, UK 4500 s 160 s 870 s 220 s 760 s 270 s 6800 s
FShell
Helmut Veith 28 20 0 — — 0 48
Vienna, Austria 580 s 3.5 s 0 s 0 s 580 s
LLBMC
Carsten Sinz 100 80 1 17 8 — 206
Karlsruhe, Germany 2400 s 1.6 s 110 s 210 s 2.4 s 2700 s
Predator
Tomas Vojnar 17 80 0 20 21 0 138
Brno, Czech Republic 1100 s 1.9 s 0 s 1.0 s 630 s 0 s 1700 s
QArmc-Hsf(c)
Andrey Rybalchenko 140 — — — 8 — 148
Munich, Germany 4800 s 820 s 5600 s
SATabs
Michael Tautschnig 75 71 32 — 57 1 236
Oxford, UK 5400 s 140 s 3200 s 5000 s 1.4 s 14000 s
Wolverine
Georg Weissenbacher 39 68 16 — 36 — 159
Princeton, USA 580 s 65 s 1300 s 1900 s 3800 s



520 D. Beyer

Table 5. Overview of the top-five candidates for each category. The run time is given in
seconds of CPU usage for the verification tasks that were successfully solved. The column
‘False Alarms’ indicates the number of verification tasks for which the tool reported an
error but the program was safe (false positive), and column ‘Missed Bugs’ indicates the
number of verification tasks for which the tool claims that the program is safe although
it contains a bug (false negative).

Rank Candidate Score Run Solved False Missed
Time Tasks Alarms Bugs

ControlFlowInteger
1 CPAchecker-abe 141 1000 91
2 CPAchecker-memo 140 3200 91
3 QArmc-Hsf(c) 140 4800 91
4 Esbmc 1.17 102 4500 70 4
5 Llbmc 0.9 100 2400 79 5 3

DeviceDrivers
1 Llbmc 0.9 80 1.6 46
2 Predator 80 1.9 46
3 Blast 2.7 72 30 51 6 1
4 SATabs 3.0 71 140 43 1
5 Wolverine 0.5c 68 65 48 2 3

DeviceDrivers64
1 Blast 2.7 55 1400 33
2 CPAchecker-memo 49 500 33 2
3 SATabs 3.0 32 3200 17
4 CPAchecker-abe 26 1900 23 2
5 Wolverine 0.5c 16 1300 12

HeapManipulation
1 Predator 20 1.0 12
2 Llbmc 0.9 17 210 10
3 CPAchecker-abe 4 16 9 5
3 CPAchecker-memo 4 16 9 5
5 Esbmc 1.17 1 220 6 3 1

SystemC
1 Esbmc 1.17 67 760 58 4
2 SATabs 3.0 57 5000 40
3 CPAchecker-abe 45 1100 34
4 CPAchecker-memo 36 450 30
5 Wolverine 0.5c 36 1900 25

Concurrency
1 Esbmc 1.17 6 270 7 1
2 SATabs 3.0 1 1.4 1

Overall
1 CPAchecker-memo 280 4300 209 20
2 CPAchecker-abe 267 4100 203 20
3 Esbmc 1.17 249 6800 191 9 11
4 SATabs 3.0 238 15000 149 1
5 Blast 2.7 231 15000 158 6 1



Competition on Software Verification 521

in seconds of CPU time. All measurement values are rounded to two significant
digits. The points are calculated according to the scoring schema in Table 1. Some
more details on the top-five tools for each category are given in Table 5.

The main result of this competition is that there is currently no single tech-
nique that is absolutely superior in comparison with the other tools. The compe-
tition candidates have scored differently in the various categories, with no single
candidate being the absolute winner.

Towards Robustness. There is one single competition candidate that achieved
positive scores in all categories: Esbmc 1.17. The following candidates partici-
pated in all categories, with a non-negative score in all categories: CPAchecker

1.0.10-abe, CPAchecker 1.0.10-memo, Esbmc 1.17, and Predator 2011-10-11.

Towards Soundness. There are four competition candidates that never re-
ported the answer ‘SAFE’ for a benchmark program that actually contains a bug
(missed a bug): CPAchecker 1.0.10-abe, CPAchecker 1.0.10-memo, Predator

2011-10-11, and QArmc-Hsf(c).

Towards Completeness. There are three competition candidates that never
reported a bug for a safe program (false alarm): FShell 1.3, QArmc-Hsf(c),
and SATabs 3.0.

Fig. 1. Quantile functions: For each competition candidate, we plot all pairs (x, y) such
that the maximum run time of the x fastest results is y. A logarithmic scale is used for
the time range from 1 s to 1000 s, and a linear scale is used for the time range between
0 s and 1 s. The graphs are decorated with symbols at every tenth data point in order
to make the graphs distinguishable on gray-scale prints.



522 D. Beyer

About Solved Instances and Run Time. Figure 1 illustrates the competi-
tion results using the quantile functions over all benchmark verification tasks.
The function graph for a competition candidate yields the maximum run time y
for the x fastest computed correct results. On the left, the plot shows that two
candidates need a few seconds of run time even for the simplest benchmark pro-
grams; this seems due to the setup time for the Java virtual machine that these
two candidates are using. The right-most data point of each graph yields the
number of successfully solved verification tasks by the corresponding competi-
tion candidate. The area below a graph (its integral) is the accumulated run
time for all successfully solved verification tasks.

7 Summary and Future Plans
The competition on software verification was well received in the research com-
munity, and the participants were enthusiastic about the event. The participation
of ten teams in the first competition, which exceeded the expectation, witnesses
the need for such an event. The organizer and the jury were making sure that
the competition follows the high quality standards of the TACAS conference, in
particular to respect the important principles of fairness, community support,
transparency, and technical accuracy. The conclusion is that the event shall be
held annually from now on. One important objective for the next competition
is to significantly extend the benchmark set, especially in the categories ‘Heap-
Manipulation’ and ‘Concurrency’. Since software verification becomes more and
more relevant in practice, we are convinced that the pool of available benchmarks
will considerably grow in the next few years. We also hope that the number of
participants even increases in the next years, and that a wider range of verifica-
tion technologies will be covered.

Acknowledgments. We thank the TACAS steering committee and the pro-
gram chairs for hosting the Competition on Software Verification as satellite
event of the conference TACAS, and for the encouragement and support during
the design of the event. Most importantly, we thank the participating teams
for contributing their tools and system descriptions. In particular, we want to
thank (among others) Pavel Shved, Kamil Dudka, Georg Weissenbacher, Cor-
neliu Popeea, Bernd Fischer, and Carsten Sinz for their help in preparing the
benchmark verification tasks for the competition (contributing verification tasks,
sending patches and comments). The biggest thanks goes to Karlheinz Fried-
berger, who programmed the benchmark processing script and helped with con-
figuring the tools and infrastructure that we used for the competition.

References

1. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making Software Verifi-
cation Tools Really Work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 28–42. Springer, Heidelberg (2011)



Competition on Software Verification 523

2. American National Standards Institute. ANSI/ISO/IEC 9899-1999: Programming
Languages — C. American National Standards Institute, 1430 Broadway, New
York, NY 10018, USA (1999)

3. Ball, T., Rajamani, S.K.: The Slam Project: Debugging System Software via Static
Analysis. In: Proc. POPL, pp. 1–3. ACM (2002)

4. Basler, G., Donaldson, A., Kaiser, A., Kröning, D., Tautschnig, M., Wahl, T.:
SATabs: A Bit-Precise Verifier for C Programs. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 551–554. Springer, Heidelberg (2012)

5. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
Model Checking via Large-Block Encoding. In: Proc. FMCAD, pp. 25–32. IEEE
(2009)

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy Shape Analysis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg
(2006)

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program Analysis with Dynamic Pre-
cision Adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008)

9. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

10. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

11. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer,
Heidelberg (2008)

12. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

13. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The
MathSAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 299–303. Springer, Heidelberg (2008)

14. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A Soft-
ware Model Checking Approach. In: Proc. FMCAD, pp. 51–59. FMCAD Inc. (2010)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794
(2003)

16. Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-Bounded Model Checking
with Esbmc. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 534–537. Springer, Heidelberg (2012)

17. Craig, W.: Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem.
J. Symb. Log. 22(3), 250–268 (1957)

18. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A Verification Tool
for Programs with Dynamic Linked Data Structures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 544–547. Springer, Heidelberg (2012)

19. Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

20. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier Based on Horn Clauses. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 548–550. Springer, Heidelberg (2012)



524 D. Beyer

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

22. Holzer, A., Kröning, D., Schallhart, C., Tautschnig, M., Veith, H.: Proving Reach-
ability Using FShell. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 537–540. Springer, Heidelberg (2012)

23. Jones, N.D., Muchnick, S.S.: A Flexible Approach to Interprocedural Data-Flow
Analysis and Programs with Recursive Data Structures. In: POPL, pp. 66–74
(1982)

24. Löwe, S., Wendler, P.: CPAchecker with Adjustable Predicate Analysis. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 527–529.
Springer, Heidelberg (2012)

25. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

26. Shved, P., Mandrykin, M., Mutilin, V.: Predicate Analysis with Blast 2.7. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 524–526.
Springer, Heidelberg (2012)

27. Sinz, C., Merz, F., Falke, S.: Llbmc: A Bounded Model Checker for Llvms Inter-
mediate Representation. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 541–543. Springer, Heidelberg (2012)

28. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A Cooperating Validity Checker.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504.
Springer, Heidelberg (2002)

29. Weissenbacher, G., Kröning, D., Malik, S.: Wolverine: Battling Bugs with In-
terpolants. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
555–557. Springer, Heidelberg (2012)

30. Witkowski, T., Blanc, N., Kröning, D., Weissenbacher, G.: Model Checking Con-
current Linux Device Drivers. In: Proc. ASE, pp. 501–504. ACM (2007)

31. Wonisch, D.: Block Abstraction Memoization for CPAchecker. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 531–533. Springer, Heidelberg
(2012)


	Competition on Software Verification
	Introduction
	Procedure and Schedule
	Definitions and Rules
	Benchmark Verification Tasks
	Participating Teams
	Results and Discussion
	Summary and Future Plans
	References




