
Second Competition on Software Verification�

(Summary of SV-COMP 2013)

Dirk Beyer

University of Passau, Germany

Abstract. This report describes the 2nd International Competition on
Software Verification (SV-COMP 2013), which is the second edition of
this thorough evaluation of fully automatic verifiers for software pro-
grams. The reported results represent the 2012 state-of-the-art in auto-
matic software verification, in terms of effectiveness and efficiency, and
as available and participated. The benchmark set of verification tasks
consists of 2 315 programs, written in C, and exposing features of inte-
gers, heap-data structures, bit-vector operations, and concurrency; the
properties include reachability and memory safety. The competition is
again organized as a satellite event of TACAS.

1 Introduction

Software verification is a major research area within computer science, and mod-
ern implementations of verification tools become industrially relevant due to
recent advancements in verification technology, e.g., new data structures for ab-
stract domains and efficient solvers for satisfiability modulo theories (SMT).
The competition on software verification systematically compares the effective-
ness and efficiency of modern software verifiers. The community has gathered a
benchmark set of a total of 2 315 verification tasks, which are arranged in eleven
categories, according to the characteristics of the programs and the properties
to verify. In difference to other competitions 1 2 3 4 5 6, SV-COMP [1] focuses on
the evaluation of tools for fully automatic verification of source code programs
in a standard programming language. All experiments are performed on dedi-
cated competition machines with a resource specification that is the same for all
participants. The goals of the competition on software verification are to:

– present the state-of-the-art in software-verification research,
– establish a widely accepted benchmark set of software verification tasks,
– make modern software verifiers visible, together with their strengths, and
– accelerate the transfer of new technologies to verification practice.

� http://sv-comp.sosy-lab.org
1 http://www.satcompetition.org
2 http://www.smtcomp.org
3 http://ipc.icaps-conference.org
4 http://www.qbflib.org/competition.html
5 http://fmv.jku.at/hwmcc12
6 http://www.cs.miami.edu/˜tptp/CASC

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 594–609, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://sv-comp.sosy-lab.org/
http://www.satcompetition.org
http://www.smtcomp.org
http://ipc.icaps-conference.org
http://www.qbflib.org/competition.html
http://fmv.jku.at/hwmcc12
http://www.cs.miami.edu/~tptp/CASC


Second Competition on Software Verification 595

2 Procedure

The process of the competition consists of three phases: (1) benchmark submis-
sion, in which new verification tasks are collected and classified into competition
categories (as in the first edition, all contributed benchmarks were accepted),
(2) training phase, in which the benchmark set becomes frozen and teams of
the competition candidates inspect the verification tasks and train their tools,
(3) evaluation phase, in which all competition candidates were applied to the
sets of verification tasks and the system descriptions were reviewed by the com-
petition jury (all systems and their descriptions were archived and stamped with
SHA hash values), and (4) approval of verification results, in which the teams
received the preliminary results of their competition candidate. For more details
on the procedure, we refer to the previous competition report [1].

3 Definitions and Rules

Verification Tasks. A verification task consists of a C program and a property.
A verification run is a non-interactive execution of a competition candidate on
a single verification task, in order to check if the following statement is correct:
“The program satisfies the property.” The result of a verification run is a triple
(answer, witness, time). answer is one of the following outcomes:

TRUE: The property is satisfied (no path that violates the property exists).
FALSE + Path: The property is violated (i.e., there exists a finite path that

violates the property) and a counterexample path is produced and reported.
UNKNOWN: The tool cannot decide the problem, or terminates by a tool

crash, or exhausts the computing resources time or memory (i.e., the compe-
tition candidate does not succeed in computing an answer TRUE or FALSE).

If the answer is FALSE, then a counterexample path must be produced and
provided as witness. There was so far no particular fixed format for the error
path. The path has to be written to a file or on screen in a reasonable format
to make it possible to check validity. time is the consumed CPU time until the
verifier terminates. It includes the consumed CPU time of all processes that
the verifier starts. If time is equal to or larger than the time limit, then the
verifier is terminated and the answer is set to ‘timeout’ (and interpreted as
UNKNOWN). The C programs are partitioned into categories, which are defined
in category-set files. The categories and the contained programs are explained
on the benchmark page of the competition.

Property for Label Reachability. The property to be verified for all cate-
gories except ’MemorySafety’ is the reachability property perror, which is encoded
in the program source code (using the error label ‘ERROR’):

perror : The C label ‘ERROR’ is not reachable from the entry of function ‘main’
on any finite execution of the program.

http://sv-comp.sosy-lab.org/2013/benchmarks.php


596 D. Beyer

Table 1. Scoring schema for SV-COMP 2013

Reported result Points Description
UNKNOWN 0 Failure to compute verification result.
FALSE correct +1 Violation of property in program was correctly found.
FALSE incorrect −4 Violation reported for correct program (false alarm).
TRUE correct +2 Correct program reported to satisfy property.
TRUE incorrect −8 Incorrect program reported as correct (missed bug).

Property for Memory Safety. The property to be verified for category ‘Mem-
orySafety’ is the memory-safety property pmem−safety, which consists of three
partial properties:

pmem−safety : pvalid−free ∧ pvalid−deref ∧ pvalid−memtrack

pvalid−free : All memory deallocations are valid (counterexample: invalid free).
More precisely: There exists no finite execution of the program from the
entry of function ‘main’ on which an invalid memory deallocation occurs.

pvalid−deref : All pointer dereferences are valid (counterexample: invalid derefer-
ence). More precisely: There exists no finite execution of the program from
the entry of function ‘main’ on which an invalid pointer dereference occurs.

pvalid−memtrack : All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists no finite execu-
tion of the program from the entry of function ‘main’ on which the program
lost track of some previously allocated memory.

If a verification run detects that the property pmem−safety is violated, the verifica-
tion result is required to be more specific; the violated partial property has to be
given in the result: FALSE(p), with p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack},
means that the (partial) property p is violated. The competition rules define that
all programs in category ‘MemorySafety’ violate at most one (partial) property
p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack}.
Benchmark Verification Tasks. All verification tasks are available for brows-
ing and download via the public SVN repository of the Competition on Software
Verification 7. The programs were assumed to be written in GNU C (many of
them adhere to ANSI C). Compared to SV-COMP 2012, it was not a requirement
that the programs are provided in Cil (C Intermediate Language).

Evaluation by Scores and Run Time. Table 1 shows the scoring schema
for SV-COMP 2013. Compared to the previous SV-COMP, the negative scores
are doubled, in order to make it more difficult to compensate incorrect results
by some correct results. The participating competition candidates are ranked
according to the sum of points. Competition candidates with the same sum of
points are further ranked according to success run time. The success run time
for a competition candidate is the total CPU time over all verification tasks for
which the competition candidate reported a correct verification result.
7 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13

https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13


Second Competition on Software Verification 597

As in the last edition, all verification runs were also performed on obfuscated
versions of all benchmark programs (renaming of variable and function names;
renaming of file name). There was no discrepancy between the verification results
obtained from the obfuscated programs and the verification results obtained from
the corresponding original program.

Opting-Out from Categories. Every team can submit for every category
(including meta categories, i.e., categories that consist of verification tasks from
other categories) an opt-out statement. In the results table, a dash is entered
for that category; no execution results are reported in that category. If a team
participates (i.e., does not opt-out), all verification tasks that belong to that
category are executed with the verifier. The obtained results are reported in
the results table; the scores for meta categories are weighted according to the
established procedure. (This means, a tool can participate in a meta category and
at the same time opt-out from a sub-category, with having the real results of the
tool counted towards the meta category, but not reported for the sub-category.)

Computation of Score for Meta Categories. A meta category is a category
that consists of several sub-categories. The score for such a meta category is
computed from the normalized scores in its sub-categories. In SV-COMP 2013,
there are two meta categories: ControlFlowInteger and Overall. ControlFlow-
Integer consists of the two sub-categories ControlFlowInteger-MemSimple and
ControlFlowInteger-MemPrecise. Overall consists of the sub-categories BitVec-
tors, Concurrency, ControlFlowInteger, DeviceDrivers64, FeatureChecks, Heap-
Manipulation, Loops, MemorySafety, ProductLines, and SystemC.

The score for a meta category is computed from the scores of all k contained
(sub-) categories using a normalization by the number of contained verification
tasks: The normalized score sni of a verifier in category i is obtained by dividing
the score si by the number of tasks ni in category i (sni = si/ni), then the sum
Σk

i=1sni over the normalized scores of the categories is multiplied by the average
number of tasks per category. 8

The goal is to reduce the influence of a verification task in a large category
compared to a verification task in a small category, and thus, balance over the
categories. Normalizing by score is not an option because we assigned higher
positive scores for expected-true results and higher negative scores for incorrect
results. (Normalizing by score would remove those desired differences.)

Competition Jury. The competition jury consists of the chair and one member
of each participating team; the team-representing members circulate every year
after the candidate-submission deadline. This committee reviews the competition
contribution papers and helps the organizer with resolving any disputes that
might occur. Table 2 lists the team-representing members of the jury of 2013.

8 An example calculation can be found on the web page of the competition.



598 D. Beyer

Table 2. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Jury member Affiliation
Blast 2.7.1 [22] Vadim Mutilin Moscow, Russia
CPAchecker 1.1.10-Explicit [19] Stefan Löwe Passau, Germany
CPAchecker 1.1.10-SeqCom [24] Philipp Wendler Passau, Germany
CSeq 2012-10-22 [12] Bernd Fischer Southampton, UK
Esbmc 1.20 [20] Lucas Cordeiro Manaus, Brazil
Llbmc 2012-10-23 [11] Carsten Sinz Karlsruhe, Germany
Predator 2012-10-20 [10] Tomas Vojnar Brno, Czech Rep.
Symbiotic 2012-10-21 [23] Jiri Slaby Brno, Czech Rep.
Threader 0.92 [21] Andrey Rybalchenko Munich, Germany
Ufo 2012-10-22 [14] Arie Gurfinkel Pittsburgh, USA
Ultimate Automizer 2012-10-25 [15] Matthias Heizmann Freiburg, Germany

4 Participating Teams

This section briefly introduces the competition candidates (alphabetical order).
Table 2 provides an overview of the participating candidates. Below, we list
for each competition candidate the achieved (top-three) placements in the cate-
gories. The detailed summary of the results is presented in Sect. 5.

Table 3 provides an overview of the technologies and concepts that are used
by the various competition candidates. The techniques of counterexample-guided
abstraction refinement (CEGAR) [9], bounded model checking [8], and interpola-
tion for discovering new facts to refine an abstract model [16] are used by a total
of six tools. Other techniques that are offered by the competition candidates are
predicate abstraction [13], construction of an abstract reachability graph (ARG)
as proof of correctness [2], lazy abstraction [17], and shape analysis [18]. Only
three tools support the verification of concurrent programs.

Blast 2.7.1 [2,22], submitted by Pavel Shved, Mikhail Mandrykin, and Vadim
Mutilin (Russian Academy of Sciences, Russia), has achieved the placement:

– Bronze in DeviceDrivers64

Blast 2.7.19 is a software model checker that is based on predicate abstrac-
tion [13], CEGAR [9], and the interpolation tool CSIsat [7].

CPAchecker 1.1.10-Explicit [19], submitted by Stefan Löwe (University of
Passau, Germany), has achieved the following placements:

– Silver in ControlFlowInteger
– Silver in DeviceDrivers64
– Silver in SystemC
– Silver in Overall

9 http://mtc.epfl.ch/software-tools/blast

http://mtc.epfl.ch/software-tools/blast


Second Competition on Software Verification 599

Table 3. Technologies and features that the competition candidates offer

Competition
candidate C

E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

S
h
ap

e
A

n
al

ys
is

A
R

G
-b

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

C
on

cu
rr

en
cy

S
u
p
p
or

t

Blast ✓ ✓ ✓ ✓ ✓

CPA-Explicit ✓ ✓ ✓ ✓ ✓

CPA-SeqCom ✓ ✓ ✓ ✓ ✓ ✓

CSeq ✓ ✓

Esbmc ✓ ✓

Llbmc ✓

Predator ✓

Symbiotic

Threader ✓ ✓ ✓ ✓ ✓

Ufo ✓ ✓ ✓ ✓ ✓ ✓

Ultimate ✓ ✓ ✓ ✓

CPAchecker 1.1.10-Explicit is based on the verification framework
CPAchecker [4]10, which implements the formalism of configurable program
analysis (CPA) [3]. The competition candidate uses an explicit-state model-
checking approach [6] that integrates abstraction, CEGAR, and interpolation.

CPAchecker 1.1.10-SeqCom [24], submitted by Philipp Wendler (Univer-
sity of Passau, Germany), has achieved the following placements:

– Winner in Overall
– Bronze in BitVectors
– Bronze in ControlFlowInteger
– Bronze in FeatureChecks
– Bronze in HeapManipulation
– Bronze in ProductLines
– Bronze in SystemC

10 http://cpachecker.sosy-lab.org

http://cpachecker.sosy-lab.org/


600 D. Beyer

CPAchecker 1.1.10-SeqCom is also based on the verification framework
CPAchecker and uses a sequential combination of an explicit-value analysis
and predicate analysis with adjustable-block encoding [5].

CSeq 2012-10-22 [12], submitted by Bernd Fischer, Omar Inverso, and Gen-
naro Parlato (University of Southampton, UK), has achieved the placement:

– Silver in Concurrency

CSeq 2012-10-2211 is an analyzer that transforms concurrent programs into
non-deterministic sequential programs and starts a model-checking for sequential
programs for the verification of the property on the resulting programs.

Esbmc 1.20 [20], submitted by Jeremy Morse, Lucas Cordeiro, Denis Nicole,
and Bernd Fischer (University of Southampton, UK / UFAM, Brazil), achieved:

– Silver in BitVectors
– Silver in Loops
– Bronze in Concurrency
– Bronze in MemorySafety
– Bronze in Overall

Esbmc 1.2012 is a bounded model checker that uses a combination of context-
bounded symbolic model checking and k-induction for the verification of multi-
threaded and single-threaded C programs.

Llbmc 2012-10-23 [11], submitted by Stephan Falke, Florian Merz, and
Carsten Sinz (Karlsruhe Institute of Technology, Germany), has achieved the
following placements:

– Winner in BitVectors
– Winner in Loops
– Silver in FeatureChecks
– Silver in Heapmanipulation
– Silver in MemorySafety
– Silver in ProductLines

Llbmc 2012-10-2313 is a bounded model checker with a focus on a bit-precise
analysis for low-level C code. The tool is based on the Llvm compiler infras-
tructure, and passes the verification conditions to the SMT solver Stp 14, which
supports bit-vectors and arrays.

11 http://users.ecs.soton.ac.uk/gp4/cseq-0.1a.zip
12 http://esbmc.org
13 http://baldur.iti.uka.de/llbmc
14 http://sites.google.com/site/stpfastprover

http://users.ecs.soton.ac.uk/gp4/cseq-0.1a.zip
http://esbmc.org/
http://baldur.iti.uka.de/llbmc/
http://sites.google.com/site/stpfastprover/


Second Competition on Software Verification 601

Predator 2012-10-20 [10], submitted by Kamil Dudka, Petr Muller, Petr
Peringer, and Tomas Vojnar (Brno University of Technology, Czech Republic),
has achieved the following placements:

– Winner in FeatureChecks
– Winner in Heapmanipulation
– Winner in MemorySafety

Predator 2012-10-2015 is a program analyzer focusing on the verification of C
programs with dynamically-linked-list data structures. The abstract domain is
based on symbolic memory graphs.

Symbiotic 2012-10-21 [23], submitted by Jiri Slaby, Jan Strejcek, and Marek
Trtík (Masaryk University, Czech Republic), has participated in the cate-
gories ControlFlowInteger-MemPrecise, DeviceDrivers64, FeatureChecks, and
SystemC. Symbiotic 2012-10-21 16 is a program analyzer that combines in-
strumentation, program slicing, and symbolic execution.

Threader 0.92 [21], submitted by Corneliu Popeea and Andrey Rybalchenko
(TU Munich, Germany), has achieved the following placements:

– Winner in Concurrency

Threader 0.92 17 is a model checker for multi-threaded C programs that is based
on compositional reasoning and supports, in addition to safety, also termination
properties.

Ufo 2012-10-22 [14], submitted by Arie Gurfinkel, Aws Albarghouthi, Sagar
Chaki, Yi Li, and Marsha Chechik (SEI, USA and University of Toronto,
Canada), has achieved the following placements:

– Winner in ControlFlowInteger
– Winner in DeviceDrivers64
– Winner in ProductLines
– Winner in SystemC
– Bronze in Loops

Ufo 2012-10-22 18 is a verifier that combines numerical data-flow domains with
CEGAR, interpolation, and feasibility checks based on bounded model checking.

Ultimate Automizer 2012-10-25 [15], submitted by Matthias Heizmann
et al. (University of Freiburg, Germany), has participated in the categories
ControlFlowInteger-MemPrecise and SystemC. Ultimate Automizer 19 is a ver-
ifier that is based on trace abstraction, nested interpolants, and interpolation.

15 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
16 https://sf.net/projects/symbiotic
17 http://www.model.in.tum.de/~popeea/research/threader.html
18 https://bitbucket.org/arieg/ufo/wiki/Home
19 http://ultimate.informatik.uni-freiburg.de/automizer

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
https://sf.net/projects/symbiotic/
http://www.model.in.tum.de/~popeea/research/threader.html
https://bitbucket.org/arieg/ufo/wiki/Home
http://ultimate.informatik.uni-freiburg.de/automizer/


602 D. Beyer

Table 4. Quantitative overview over all results — Part 1

Competition
candidate

Representing
jury member

Affiliation B
it

V
ec

to
rs

60
po

in
ts

m
ax

.
32

ve
ri
fic

at
io

n
ta

sk
s

C
on

cu
rr

en
cy

49
po

in
ts

m
ax

.
32

ve
ri
fic

at
io

n
ta

sk
s

C
on

tr
ol

F
lo

w
In

te
ge

r
14

6
po

in
ts

m
ax

.
94

ve
ri
fic

at
io

n
ta

sk
s

D
ev

ic
eD

ri
ve

rs
64

2
41

9
po

in
ts

m
ax

.
1
23

7
ve

ri
fic

at
io

n
ta

sk
s

F
ea

tu
re

C
h
ec

ks
20

6
po

in
ts

m
ax

.
11

8
ve

ri
fic

at
io

n
ta

sk
s

H
ea

p
M

an
ip

u
la

ti
on

48
po

in
ts

m
ax

.
28

ve
ri
fic

at
io

n
ta

sk
s

Blast 2.7.1
Vadim Mutilin — — 93 2 338 130 —
Moscow, Russia 7 100 s 2 400 s 42 s
CPAchecker-Explicit
Stefan Löwe 16 0 143 2 340 159 22
Passau, Germany 86 s 0 s 1 200 s 9 700 s 180 s 30 s
CPAchecker-SeqCom
Philipp Wendler 17 0 141 2 186 159 22
Passau, Germany 190 s 0 s 3 400 s 30 000 s 160 s 29 s
CSeq 2012-10-22
Bernd Fischer — 17 — — — —
Southampton, UK 270 s
Esbmc 1.20
Lucas Cordeiro 24 15 90 2 233 132 —
Manaus, Brazil 480 s 1 400 s 17 000 s 46 000 s 86 s
Llbmc 2012-10-23
Carsten Sinz 60 — — — 166 32
Karlsruhe, Germany 36 s 250 s 310 s
Predator 2012-10-20

Tomas Vojnar -75 0 -27 0 166 40
Brno, Czech Republic 95 s 0 s 650 s 0 s 6.0 s 2.3 s
Symbiotic 2012-10-21
Juri Slaby — — — 870 23 —
Brno, Czech Republic 230 s 11 s
Threader 0.92
Andrey Rybalchenko — 43 — — — —
Munich, Germany 570 s
Ufo 2012-10-22
Arie Gurfinkel — — 146 2 408 74 —
Pittsburgh, USA 450 s 2 500 s 46 s
Ultimate 2012-10-25
Matthias Heizmann — — — — — —
Freiburg, Germany



Second Competition on Software Verification 603

Table 5. Quantitative overview over all results — Part 2

Competition
candidate

Representing
jury member

Affiliation L
oo

p
s

12
2

po
in

ts
m

ax
.

79
ve

ri
fic

at
io

n
ta

sk
s

M
em

or
yS

af
et

y
54

po
in

ts
m

ax
.

36
ve

ri
fic

at
io

n
ta

sk
s

P
ro

d
u
ct

L
in

es
92

9
po

in
ts

m
ax

.
59

7
ve

ri
fic

at
io

n
ta

sk
s

S
ys

te
m

C
87

po
in

ts
m

ax
.

62
ve

ri
fic

at
io

n
ta

sk
s

O
ve

ra
ll

3
79

1
po

in
ts

m
ax

.
2
31

5
ve

ri
fic

at
io

n
ta

sk
s

Blast 2.7.1
Vadim Mutilin 35 — 652 34 80
Moscow, Russia 550 s 16 000 s 2 600 s 30 000 s
CPAchecker-Explicit
Stefan Löwe 51 0 655 61 2 030
Passau, Germany 370 s 0 s 7 300 s 3 500 s 22 000 s
CPAchecker-SeqCom
Philipp Wendler 50 0 915 58 2 090
Passau, Germany 1 400 s 0 s 3 100 s 1 800 s 41 000 s
CSeq 2012-10-22
Bernd Fischer — — — — —
Southampton, UK
Esbmc 1.20
Lucas Cordeiro 94 3 914 57 1 919
Manaus, Brazil 5 000 s 1 300 s 1 200 s 8 500 s 81 000 s
Llbmc 2012-10-23

Carsten Sinz 112 24 926 49 —
Karlsruhe, Germany 540 s 38 s 3 600 s 1 900 s
Predator 2012-10-20
Tomas Vojnar 36 52 865 -6 799
Brno, Czech Republic 17 s 61 s 7 500 s 1 400 s 9 700 s
Symbiotic 2012-10-21
Juri Slaby — — — 0 —
Brno, Czech Republic 0 s
Threader 0.92
Andrey Rybalchenko — — — — —
Munich, Germany
Ufo 2012-10-22
Arie Gurfinkel 54 — 929 65 -208
Pittsburgh, USA 750 s 5 000 s 3 000 s 12 000 s
Ultimate 2012-10-25
Matthias Heizmann — — — 45 —
Freiburg, Germany 4 800 s



604 D. Beyer

Table 6. Overview of the top-three verifiers for each category

Rank Candidate Score Run Solved False Missed
Time Tasks Alarms Bugs

BitVectors
1 Llbmc 2012-10-23 60 36 32
2 Esbmc 1.20 24 480 27 3 2
3 CPAchecker-SeqCom 17 190 10

Concurrency
1 Threader 0.92 43 570 28
2 CSeq 2012-10-22 17 270 11
3 Esbmc 1.20 15 1 400 15 2

ControlFlowInteger
1 Ufo 2012-10-22 146 450 94
2 CPAchecker-Explicit 143 1 200 92
3 CPAchecker-SeqCom 141 3 400 91

DeviceDrivers64
1 Ufo 2012-10-22 2408 2 500 1 228
2 CPAchecker-Explicit 2 340 9 700 1 180
3 Blast 2.7.1 2 338 2 400 1 188

FeatureChecks
1 Predator 2012-10-20 166 6.0 98
2 Llbmc 2012-10-23 166 250 98
3 CPAchecker-SeqCom 159 160 94

HeapManipulation
1 Predator 2012-10-20 40 2.3 24
2 Llbmc 2012-10-23 32 310 20
3 CPAchecker-SeqCom 22 29 13

Loops
1 Llbmc 2012-10-23 112 540 74
2 Esbmc 1.20 94 5 000 74 1 2
3 Ufo 2012-10-22 54 750 64 10

MemorySafety
1 Predator 2012-10-20 52 61 35
2 Llbmc 2012-10-23 24 38 21
3 Esbmc 1.20 3 1 300 10 2

ProductLines
1 Ufo 2012-10-22 929 5 000 597
2 Llbmc 2012-10-23 926 3 600 595
3 CPAchecker-SeqCom 915 3 100 583

SystemC
1 Ufo 2012-10-22 65 3 000 51
2 CPAchecker-Explicit 61 3 500 44
3 CPAchecker-SeqCom 58 1 800 42

Overall
1 CPAchecker-SeqCom 2090 41 000 1 987 4
2 CPAchecker-Explicit 2 030 22 000 1 872 4
3 Esbmc 1.20 1 919 81 000 2 094 22 16



Second Competition on Software Verification 605

5 Results and Discussion

The results in this competition report represent the 2012 state-of-the-art in soft-
ware verification in terms of effectiveness and efficiency, as available and partic-
ipated. All presented results were approved by the competing teams.

The verification runs of the competition were (natively) executed on a dedi-
cated unloaded compute server with a 3.4 GHz 64-bit Quad Core CPU (Intel i7-
2600K) and a GNU/Linux operating system (x86_64-linux). The machine had
16 GB of RAM, of which exactly 15 GB were made available to the competition
candidate. Every verification run had a run-time limit of 15 min. The run time
in the tables is given in seconds of CPU time and all measurement values are
rounded to two significant digits. One complete competition run of all candidates
on all verification tasks required a total of 21 days of non-stop machine time;
several such competition runs were necessary.

Tables 4 and 5 show the total quantitative overview. The tools are listed in
alphabetical order. In every table cell for competition results, we list the score in
the first row and the CPU time for successful runs in the second row. The top-
three candidates are indicated by having their score formatted in bold face and
in larger font size. The entry ‘—’ means that the competition candidate opted-
out from the category. For the calculation of the score and for the ranking, the
scoring schema in Table 1 was applied.

Table 6 gives an overview of the top-three candidates for each category. The
run time is given in seconds of CPU usage for the verification tasks that were
successfully solved. The column ‘False Alarms’ indicates the number of verifica-
tion tasks for which the tool reported an error but the program was correct (false
positive), and column ‘Missed Bugs’ indicates the number of verification tasks
for which the verifier claims that the program fulfills the property although it
actually contains a bug (false negative).

Score-Based Quantile Functions for Quality Assessment. A total of six
verifiers participated in the category Overall, for which we can discuss the overall
performance over all categories together. (Note that the scores are normalized
as described in Sect. 3.) Figure 1 illustrates the competition results using the
quantile functions over all benchmark verification tasks. The function graph for
a competition candidate yields, with each data point (x, y), the maximum run
time y for the n fastest correct verification runs with the accumulated score x
of all incorrect results and those n correct results.

This new visualization is helpful in analyzing the different aspects of verifica-
tion quality, as outlined in the following.
Amount of Successful Verification Work. Results for verification tasks have
different value, depending on the ‘difficulty’ of the verification task and on the
correctness of the verification answer. This value is modeled by a community-
agreed scoring schema (cf. Table 1). The x-width of a graph in Fig. 1 illustrates
the value (amount) of successful verification work that the verifier has done. The
verifier Ufo 2012-10-22 is the best verification tool in this respect, because its



606 D. Beyer

Fig. 1. Quantile functions: For each competition candidate, we plot all data
points (x, y) such that the maximum run time of the n fastest correct verification
runs is y and x is the accumulated score of all incorrect results and those n correct
results. A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s. The graphs are decorated with
symbols at every 15-th data point.

quantile function has the largest x-width. This tool solved the most verification
tasks, as also witnessed by the large score entries in Tables 4 and 5.

Amount of Incorrect Verification Work. The left-most data point yields the total
negative score of a verifier (x-coordinate), i.e., the total score resulting from
incorrect verification results. The more right a verifier starts its graph, the less
incorrect results it has produced. The two CPAchecker-based candidates start
with a very low negative score, and thus, have computed the least value of
incorrect results, as also witnessed by the entry for category Overall in Table 6:
the verifiers reported wrong results for only 4 out of 2 315 verification tasks.

Overall Quality Measured in Scores. The x-coordinate of the right-most data
point of each graph represents the total score of the verification work (and thus,
the total value) that was completed by the corresponding competition candidate.
This measure identifies the winner of category Overall, as also reported in Table 6
(the x-coordinates match the score values in the table).

Characteristics of the Verification Tools. The y-coordinate of the left-most data
point indicates the verification time for the “easiest” verification task for the



Second Competition on Software Verification 607

verifier, and the y-coordinate of the right-most data point indicates the maximal
time that the verifier spend on one single successful task (this is mostly just below
the time limit). The area below a graph is proportional to the accumulated run
time for all successfully solved verification tasks. Also the shape of the graph
can give interesting insights: for example, the graphs for CPAchecker-SeqCom
and Esbmc 1.20 show the characteristic bend that occurs if a verifier, after
a certain period of time (100 s for CPAchecker-SeqCom and 450 s for Esbmc
1.20), performs a sequential restart with a different strategy.

Robustness, Soundness, and Completeness. The best tools of each cat-
egory witness that today’s verification technology has significantly progressed
in terms of overall robustness (avoiding incorrect results), soundness (avoiding
false negatives; missed bugs), and completeness (avoiding false positives; false
alarms). The last two columns of Table 6 indicate the number of false alarms
and missed bugs, respectively, for the top-three verifiers in each category.

6 Conclusion

The second edition of the competition on software verification was again well
received in the research community. The participation increased from ten to
eleven teams, the benchmark categories increased from seven to eleven, and the
total number of benchmarks increased significantly to 2 315 verification tasks, of
which 1 805 are expected to be correct, 492 contain a reachable error location,
and 18 contain a violation of a memory-safety property. The organizer and the
jury were making sure that the competition follows the high quality standards
of the TACAS conference, in particular to respect the important principles of
fairness, community support, transparency, and technical accuracy.

The results witness a significant progress of the state-of-the-art in develop-
ing new concepts for verification of software and in advancing the tool imple-
mentations that fully automatically perform the verification. The participating
verification tools were able to verify the majority of verification tasks. The top
verifiers are quite reliable in the categories that they are focusing on, in terms
of robustness, soundness, and completeness. There is no single technique that is
superior to all others. The competition candidates —SMT-based model checkers,
bounded model checkers, explicit-state model checkers, and program analyzers—
showed their different, complementing strength in the various categories.

Acknowledgement. We thank Karlheinz Friedberger for his support during
the evaluation phase and for his work on the benchmarking infrastructure.

References

1. Beyer, D.: Competition on Software Verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)



608 D. Beyer

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program Analysis with Dynamic Pre-
cision Adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008)

4. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software
Verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

6. Beyer, D., Löwe, S.: Explicit-State Software Model Checking Based on CEGAR and
Interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 146–162. Springer, Heidelberg (2013)

7. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer,
Heidelberg (2008)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794
(2003)

10. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A Tool for Verifica-
tion of Low-level List Manipulation (Competition Contribution). In: Piterman, N.,
Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 629–631. Springer, Heidelberg
(2013)

11. Falke, S., Merz, F., Sinz, C.: LLBMC: Improved Bounded Model Checking of C
Programs using LLVM (Competition Contribution). In: Piterman, N., Smolka, S.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 625–628. Springer, Heidelberg (2013)

12. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Sequentialization Tool for C (Com-
petition Contribution). In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 618–620. Springer, Heidelberg (2013)

13. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: Verifica-
tion with Interpolants and Abstract Interpretation (Competition Contribution).
In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 639–642.
Springer, Heidelberg (2013)

15. Heizmann, M., Christ, J., Dietsch, D., Ermis, E., Hoenicke, J., Lindenmann, M.,
Nutz, A., Schilling, C., Podelski, A.: Ultimate Automizer with SMTInterpol (Com-
petition Contribution). In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 643–645. Springer, Heidelberg (2013)

16. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: Proc. POPL, pp. 232–244. ACM (2004)

17. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

18. Jones, N.D., Muchnick, S.S.: A Flexible Approach to Interprocedural Data-Flow
Analysis and Programs with Recursive Data Structures. In: POPL, pp. 66–74
(1982)

19. Löwe, S.: CPAchecker with Explicit-Value Analysis Based on CEGAR and Inter-
polation (Competition Contribution). In: Piterman, N., Smolka, S. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 612–614. Springer, Heidelberg (2013)



Second Competition on Software Verification 609

20. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Handling Unbounded Loops with
ESBMC 1.20 (Competition Contribution). In: Piterman, N., Smolka, S. (eds.)
TACAS 2013. LNCS, vol. 7795, pp. 621–624. Springer, Heidelberg (2013)

21. Popeea, C., Rybalchenko, A.: Threader: A Verifier for Multi-threaded Programs
(Competition Contribution). In: Piterman, N., Smolka, S. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 635–638. Springer, Heidelberg (2013)

22. Shved, P., Mandrykin, M., Mutilin, V.: Predicate Analysis with BLAST 2.7 (Com-
petition Contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 525–527. Springer, Heidelberg (2012)

23. Slaby, J., Strejček, J., Trtík, M.: Symbiotic: Synergy of Instrumentation, Slicing,
and Symbolic Execution (Competition Contribution). In: Piterman, N., Smolka, S.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 632–634. Springer, Heidelberg (2013)

24. Wendler, P.: CPAchecker with Sequential Combination of Explicit-State Analysis
and Predicate Analysis (Competition Contribution). In: Piterman, N., Smolka, S.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 615–617. Springer, Heidelberg (2013)


	Second Competition on Software Verification (Summary of SV-COMP 2013) 
	Introduction
	Procedure
	Definitions and Rules
	Participating Teams
	Results and Discussion
	Conclusion
	References




