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Abstract: More and more software systems are developed using the object oriented paradigm. Thus, large
systems contain inheritance structures to provide a flexible and re-usable design and to allow for
polymorphic method calls. This paper gives a detailed overview about the impact of using inheritance on
measuring, understanding and using subclasses in such class systems. Usually, considering classes within an
inheritance relation is reduced to the consideration of locally defined members of a class. This view might be
incomplete or even misleading in some use cases. To provide an additional view on a given system we define
a tool-supported flattening process which transforms an inheritance structure to a representation in which all
the inherited members are explicit in each subclass. This representation provides additional insights for
measuring, understanding, and developing large software systems.

1 Introduction

Analysing, understanding and using large object oriented systems are very difficult tasks although there are tools
available that help to navigate through class systems for this purpose. Especially for systems with extensive use of
inheritance structures it is not easy to determine e.g. which methods are provided by a particular class due to the
inherited members. Usually, tools display only those members of a class which are declared in that class, not what the
class has inherited from superclasses. Thus, what you see is zoz what you really have !

This one view on a system might cause the following problems:

- A measurement process can consider only the members declared within the class. Because inherited members are not
considered the measurement values can lead to wrong interpretations.

- The analysis and understanding phase of a reverse engineering process for a large object oriented software system is
very time-consuming for determining a class' functionality.

- For using a class of a library it is essential to get an overview about the set of usable members. In the design and the
implementation phase of a forward engineering process the user of a class has no fast access to the really accessible
members of the class.

Our work presents an approach to create a flat version of a class system, 1.e. we eliminate the inheritance structure by

copying inherited members down to the subclasses by some language-dependent flattening functions. This process

considers the related concepts of overriding, overloading and polymorphism. We implemented such flattening functions in
our tool Crocodile [LeS198]. This Flattening process solves the problems mentioned above.

The language independent concept of flattening has to be adjusted to the special programming languages with respect to

the inheritance-related concepts (overriding, overloading and polymorphism). This task is not easy, especially for C++.

This paper tries to explain in detail how the flattening process has to work for C++ class systems.

The 1dea of representing a class as it really is, 1.e. considering all inherited attributes and operations, was introduced by

Meyer [Meye88]. He uses a function flat, which constructs the flat representation of a class. In the field of object oriented

measurement exists a concept called nberitance context [ErLe96]: It allows the selection of superclasses which have to be

copied into their subclasses. Thus, we can restrict the set of classes to be considered in the flattening process.

In Section 2 of this paper, the basic concepts of overloading, overriding and polymorphism are explained with respect to

the flattening process. This part explains these concepts for the language C++ in detail and introduces some

corresponding flattening functions. Section 3 explains how the flattening process has to work for large C++ class systems. The
different flattening functions of the previous section are transferred for use with large inheritance structures, including
multiple inheritance and inheritance chains. Section 4 shows some useful applications for the flattening concept.
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2 Opverloading, overriding and polymorphism in C++

For the explanation of some C++ concepts in detail, we want to give some examples. They consist of some UML class
diagrams (cf. [Oest97]) and - if necessary - source code parts. For our purposes, the method implementations are less
important than the question which methods and attributes are accessible in detail.

The problems of overloading, overriding and polymorphism only occur, if two method names (without parameters) are
identical. Attributes can not be overloaden but with conflicting names they can be overridden in some cases (see below).
In the following, we discuss overloading, overriding and polymorphism separately for attributes and methods, and we
distinguish the case where conflicting names occur from the case where the name is unique. To simplify the
introduction of our concepts we start to consider single inheritance. How our concepts are applied to systems with
multiple inheritance is explained in Section 3.

For each situation we define a special flattening function which copies some members, i.e. methods, attributes and use-
relations, into a subclass with respect to some given rules. The flattening functions have three parameters: the superclass,
the class where to copy members into (which has to be a direct subclass of the superclass) and the type of inheritance.

2.1 Attributes with unique names

Without name conflicts for attributes, the technique of flattening classes in an inheritance structure is simple: The
attributes of a superclass are copied into all subclasses, if they are still visible there. Whether they are still visible depends
on:

* the attribute's visibility type: Private attributes are always invisible within the subclasses. Protected attributes can
remain protected at maximum (but they even can be private). Public attributes can remain public at maximum (but
they even can be protected or private).

* the inheritance type: Inheritance itself has a visibility restriction in C++. The default inheritance type is public. In
this case, the visibility of all attributes remains unchanged (except private attributes, which change to invisible). The
protected inheritance changes public attributes’ visibility to protected and protected attributes’ visibility remains
unchanged. Through private inheritance, the visibility of public and protected attributes changes to private.

The following table summarises the changes of visibility (cf. [Schi98], pp. 420). Note that we do not consider the

possibilities to restore the original visibility by access declaration (|Schi98], pp. 436ft]) because we think that this strongly

reduces the understandability of a given program and this technique is deprecated in the current C++ standard.

is changed by Public member Protected member Private member
public inheritance to Public Protected Not visible
protected inheritance to Protected Protected Not visible
private inheritance to Private Private Not visible

Table 1: Visibility changes through inheritance

This copy technique for attributes from the superclass into the subclass is only correct, if there does not exist a separate
attribute declaration with the same name in the subclass.

Before defining the flattening function for attributes with unique names we have to think about wrapped attributes:
These are attributes that are not directly accessible, i.e. they have the visibility private, but are accessible through visible
get and set methods. A strictly used encapsulation principle in an object oriented design forbids direct access to any
attribute. The recommended construction is to access these attributes by special get and set methods. Our above
consideration of such wrapped attributes 1s important, because ignoring these attributes within the subclass does not
reflect the real situation: Imagine a class A with 10 private attributes and each attribute has one get method and one set
method. If then a class B inherits from this class and does not add, modify or delete anything there would be no reason
why class A and class B should be considered as different regarding their tasks. However, this would happen if no
flattening function would be applied. These wrapped attributes, too, have to be considered for the flattening process.
Therefore, we have to define a new visibility type that we call invisible:

An invisible member of class X is a member of X which is not visible in class X because of private
declaration in one of the superclasses of X, but there is an indirect way to access the member (through a
visible method of the superclass which provides access to the member).




Nevertheless, attributes can exist that have a private declaration within a superclass but in contrast to being invisible,
they have no indirect access method; these members are inaccessible:

An inaccessible member of class X 1s a member of X which 1s not visible and also not accessible 1n class X.
There exists no way (neither direct nor indirect) to use that member.

To copy the invisible attributes into the subclasses we have to add the class name to the names of the wrapped attributes
to avoid name clashes, 1.e. instead of attribute i we write A: : i .
Now we are able to define the flattening function for attributes with unique names:

flatten_unique_attribute_names (superclass, subclass, inberitance type): This flattening version copies all
relevant attributes of the superclass into the subclass if no attribute with the same name exists in the subclass. It
copies all wrapped attributes of the superclass, i.e. private attributes that are used by at least one method
within the superclass which again is inherited by the subclass, into the subclass. The visibility of the
wrapped attributes 1s set to inwisible and the class name is added to the attribute name. Inaccessible
attributes are not copied.

Figure 1 shows an example how flatten_unique_aitribute_names works. This example assumes that the method
print _AL() uses the attribute A3, i.e. A3 is a wrapped attribute. Because of this, it is copied into the new version of
class B (here, no visibility sign represents invisible). In this case the flattening function would copy three attributes
(methods are dealt with later).

A
A B
+Al:int
#A2 :int +Al:int +Al:int
-A3 :int #A2 :int +B1:int
+print_A1() : void -A3 :int H#A2 : !nt
#print_A2() : void +print_A1() : void #B2 :_Int
-print_A3() : void #print_A2() : void -B3 int
-print_A3() : void A:A3 int
+print_B1() : void
#print_B2() : void
-print_B3() : void
B
;S; Jint Fig. 1: Example for flatten_unique_attribute_names
sint
-B3 :int
+print_B1() : void
#print_B2() : void
-print_B3() : void A
. . L. +Al:int
2.2 Attributes with conflicting names #A2 - int
-A3 :int
Concepts like overloading, overriding and polymorphism are only applied to members with +print_A() : void
same name. Because attributes have no signature, ie. a return value or parameters,
overloading 1s not possible. The data type is not considered, i.e. it is not possible to have
two attributes in one scope with the same name but different data types.
Nevertheless overriding of attributes in some cases exists: If a subclass defines an attribute 5
with the same name as a visible attribute of a superclass, the subclass attribute overrides the
superclass attribute, i.e. that-one is no longer directly accessible. Bl int
Example (cf. Figure 2): Every object of type A has access to the attributes A: : AL, A : A2 +A1 : string
and A : A3 by only using A1, A2 and A3. Each object of type B has access to B: : B1, ;Q;_';t:mg
B::Al, B::A2, B::B2, B::A3andB::B3 byonlyusing Bl, Al, A2, B2, #A3 : string
A3 and B3. In this case B: : Al overrides A: : Al and B: : A2 overrides A: : A2. B3 : int _
However, it is still possible to access the overridden attributes by the use of the scope +print_BO : void

operator “::”. E.g., an object of class B can use the public attribute Al of class A by

<obj ect >. A : Al. Fig. '2:' Attribute
overriding



Because attributes can not be virtual in C++ the type of the object is very important. If we have the following code:

A* testl,;

B* test2;

t est 2=new B() ;

test 1=test?2

then the attribute Al of *t est 1 1s of type i Nt but the attribute AL of *t est 2 1s of type St ri ng!

For the later effect, it has to be decided, whether also attributes that are accessible by explicitly using the scope operator

have to be considered.

For the purpose of this paper, we do not consider the use of members via the scope operator due to the following

reasons:

»  For static members it is applicable to all classes independently of any inheritance relation between them.

*  The re-definition of an attribute within a subclass 1s a deliberate decision. Using the scope operator bypasses this
decision. We can not really imagine examples in which the use of both attributes, the inherited via scope operator
and the re-defined one, might make much sense.

* In real-life applications we analysed (cf. [LeRuSi00]) the scope operator is rarely used.

*  Using the scope operator improves the dependencies between particular classes. The re-use of a class is much more
difficult because it is not sufficient to reproduce all use-relations and inheritance relations but it is necessary to
adapt all code using the scope operator to the new environment.

Because of this, we do not need to define a further flattening function for attributes that have the same name because if

two such attributes exist, the one of the superclass can be ignored.

2.3 Methods with unique names

The flattening function for methods with unique names is similar to the flattening function for attributes with unique
names: the methods of a superclass are copied into the subclass. The conditions for their visibility are as explained in
Section 2.1.

As for attributes we have to think about wrapped methods, which are not directly accessible methods, i.e. they have the
visibility private, but they are accessible through other visible methods. This concept of private auxiliary methods is
often used to extract some specific functionality. To demonstrate the concept of wrapped methods let us imagine a class
A with 10 private methods and 1 public method that uses all 10 private methods. If a class B inherits from this class and
does not add, modify or delete any member there would be no reason why class A and class B should be considered as
different, because the provided functionality is the same. Nevertheless, this would happen if wrapped methods would
not be considered. Because of the functional equality of both classes of our example, all private methods that are used by
a non-private method have to be considered for the flattening process. Their visibility within the target class is changed
to invisible. Furthermore, we have to add the class name to the names of the wrapped methods to avoid name clashes,
1.e. instead of method A() we write A : A() .

Now we are able to define the flattening function for methods that do not cause name conflicts:

flatten_unique_method_names (superclass, subclass, inberitance type): This flattening version copies all
relevant methods of the superclass into the subclass if no method with the same name exists in the subclass.
The target visibility is chosen in correspondence to Table 1. It copies all wrapped methods of the
superclass, i.e. private methods that are used by at least one method within the superclass, into the subclass.
The visibility of the wrapped methods 1s set to invisible and the class name 1s added to the method name.
Inaccessible methods are not copied.

Applying flatten_unique_method_names to the original classes A
and B from Figure 2 yield the new versions of class A and B that

are displayed in Figure 3, if it is assumed that pri nt _A3() A

within class A is used by print_Al(). In this case, the AL int Bl int

flattening function copies three methods. #A2 :int #B2 @ int
-A3 . int -B3:int

+print_A1() : void
#print_A2() : void
-print_A3() : void

Fig. 3: Example for flatten_unique_method_names (cf. Figure 2)

+print_B1() : void
+print_A1()() : void
#print_B2() : void
#print_A2() : void
-print_B3() : void
A::print_A3() : void




2.4 Methods with conflicting names

Methods in general have a return value and several parameters. The type of the return value and the types of the
parameters together with their ordering are called signature [Meye97]. For our purpose we ignore the return value type
because it is not considered for overloading and overriding in C++ (cf. [Schi98])'.

2.4.1 Overriding
A method A: : ML is overridden within B by a method B: : ML if the following constraints are fulfilled:
= A : M and B: : ML are both visible within B; 1.e. A: : ML has at least the

visibility ‘protected’.
= A M has the same name as B: : ML. A
= A :M and B: : ML have the same number of arguments (also parameters
with default values (e.g. i Nt X=7) have to be counted) and every type t; at ~virtual print3(Str : char®) : void
position 1 of the parameter list A: : ML has to be equal to the type t; at fvirtual print2(x: int, y - int = 5) - int
.. . . +virtual printl(value : int) : void
position 1 of the parameter list of B: : ML.

Assuming a public inheritance between class A and B in Figure 4 yields the
following statements:
= void B::printl(int) overridesvoid A::printl(int)

= void B::print2(int, int) overrides B
int A:print2(int, int=5) because the return value is not
considered for overriding and the parameter lists are equal (including
default Values) +virtual print1(x : int) : void
) . . . #virtual print2(valuel : int, value2 : int) : void
= char* B: : print3(char*) does not override void svirtual print3(Str : char®) : chart

A:: print3(char*) because the latter one is not visible within class B.
In the next section, we have to examine overloading because it influences the
overriding mechanism.

2.4.2  Overloading

Since overriding is a kind of redefinition of a method, overloading allows the definition of similar operations with the

same name but different types or numbers of parameters. The definition of overloading 1s done in a similar way as for

overriding:

A method A:: ML overloads a method A:: M if the following constraints are

tulfilled:

= A : M has the same name as A: : M2.

= If A::M and A: : M2 have the same number of arguments n (parameters with : —
default values (e.g. i Nt X=7) are not counted): At least one type t; at position 1 of :z:zsz: mg : ::n&rl; t void
the parameter list of A: : ML has to be different to the type t; at position 1 of the virtual m(x - int, y - int) - int
parameter list of A' : M2 (1 < i < n). Thus, the mismatching parameter has
to occur before any default parameter.

In Figure 5, the method mis overloaded twice within class A

With respect to inheritance there is a very important point to remember if particularly

dealing with overriding or overloading - especially in C++ -, because it contrasts the

general overriding concept of Section 2.4.1: a method in a subclass will override all

methods with the same name from the superclass, never overload them. As shown in

Figure 5 class B inherits from class A and defines its own method n{): int. +m() : int

Within class B all other methods m from class A are overridden, ie. they are not

members of class B. Fig. 5: Overloading methods

Fig. 4: Overriding methods

! In more detail: Changing only the return type does not cause overloading because the difference has to be within the
parameter list. On the other hand it is not possible to override a method by changing the return type. Because this can
cause problems for polymorphic structures the compiler rejects these cases. Since software measurement is done for
compilable sources we can ignore this case.



So, whenever two methods from two classes in an inheritance relation have the same name, the flattening function must
not copy the method from the superclass into the subclass and, therefore, there is no need for an additional flattening
function.

2.5 Polymorphic use-relations

In this section we deal with polymorphism, in particular run-time polymorphism (in contrast to compile-time polymorphism that
can be achieved by overloading and that can be solved by the compiler) (cf. [Schi98]). The technique to implement this
kind of polymorphism is called late binding. This means that the determination which version of a function 1s called
when a message with appropriate name occurs is made at run-time and is based on the object type. In C++ this type of
late binding 1s only possible if an object is accessed via pointer (or via reference, which is an implicit pointer, [Schi98],
pp- 341) and if the called method is declared virtual. This can be shown by an example as shown in Figure 6:

Let us take the following example code:

A object_a; A

A *p_object_a;

B object_b;

It should be clear, that if the message ML(i nt) is sent to obj ect _a, the function +virtual mi(x :int) @ ing
+m2(x : int) : int

A :ml(int) is executed. The same message sent to Obj ect _b executes the
function B: : mL(i nt). It is important to notice, that this message-function pattern —
that describes which function is executed after a message is received — does not change

even after the assignment of 0bj ect _a=obj ect _b. The reason is the semantics of

the “=-operator: The method A& operator = (const A& of class A is called B

with object Obj ect _b as parameter and all attributes of Obj ect _a are set with the

values of the corresponding attribute of 0bj ect _b. In this case this is possible because virtual mI(x - ind) - int
obj ect _b is an A The reverse fails, i.e. the assignment Obj ect _b=obj ect _a +m2(x : int) : int

would not pass the compiler (because 0bj ect _a is not a B).

After an assignment of the reference of obj ect _a to p_obj ect _a the function
A :ml(int) is executed, if the message ML(int) is sent to p_object_a.
Changing only the assignment to p_o0bj ect _a=&obj ect _b causes the execution of
B::mil(int) if the message mML(i Nt) 1s received (because p_obj ect _a points to a B now). Additionally it 1s
important to notice, that in both cases the function A: : n2(i nt) is called after the message M2(i Nt ) is received,
because the method M is not declared as virtual in class A

While considering polymorphic structures it 1s not always possible to decide at compile-time which function will be
executed at run-time. Due to this, the static analysis of polymorphic use-relations between classes 1s often reduced to use-
relations between superclasses [LeS198]. The application of this technique for a method N8B of class C that has a pointer
to class A of Figure 7 would show a use-coupling between class C and class A but not between class C and class B. This
simplification might be wrong: If for example the pointer within M8 of class C would point to an object of class B -
which is possible because B is derived from A - the methods overridden (or implemented) in B can be used by the
pointer to class A

Fig. 6: Example for
possible
polymorphism

Because the static analysis of source code always considers only potential of use and not the actual frequency of use,
there should be a function flatten_polymorphic_use_relations that adds the use-relations into all methods of the subclass
that could be executed by method C: : nB. This flattening function depends not only on the superclass and subclass but
also on the class that uses methods of the superclass. The corresponding flattening function is defined as follows:

flatten_polymorphic_use_relations (superclass, subclass, client_class, inberitance’s type): This flattening version
adds these use-relations that cover calls of the client class to public methods of the subclass. This is done in
the following way:

A use-relation between a method my,, of the client class and a public method m,, within the subclass is
added if

= the inheritance’s type is public,

" My uses the method my,,, declared in the superclass,

= m 1s defined as virtual,

superc

* m,,,..1s overridden or implemented by m,, within the subclass.
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Figure 7 shows an example how flatten_polymorphic_use_relations works:

In the original structure there exists only a use-relation between C and A (namely C. : nB8() uses A: : ml(int) and
A :n2(int) ). After flattening a further userelation between C and B is added (namely C::nB() wuses
B: : mL(i nt)) because all conditions for possible polymorphic use of mL(i nt) are fulfilled. This is not the case for
B: : m2(i nt) because it is not defined as virtual within the superclass.

[

+virtual m1(x : int) : int—O<—— +m3() : void +virtual m1(x : int) : int +m3() : void
+m2(x : int) : int Q +m2(x : int) : int
B :: B
+virtual m1(x : int) : int—oO +virtual m1(x : int) : int
+m2(x : int) : int 0 +m2(x : int) : int 0

Fig. 7: Example for flattening of polymorphic use-relations

3 How to use the flattening process for large C++ systems

This section deals with the question how the different flattening versions are applied to large object oriented systems

written in C++, which can be characterised by the following points:

* In large C++ systems multiple inheritance is often used, i.e. one subclass has more than one direct superclass. How
should the flattening function be applied in such cases?

* Large Ct++ systems contain inberitance chains, i.e. a class inherits from another class which itself again inherits from
another class. In which order should the flattening functions be applied?

*  How to handle the different flattening versions if large class libraries are used or whole frameworks are instantiated?
To which parts should the flattening function be applied ?

3.1 Flattening and multiple inheritance

It is possible for a derived class to inherit directly from two or more superclasses. This concept is called multiple

inberitance ([Schi98], pp. 427). We distinguish two cases:

* Inheriting from all superclasses does not lead to any name conflict, i.e. neither there exists any public or protected
method nor any public or protected attribute that has the same name within the set of superclasses.

* Inheriting from all superclasses leads to some name conflicts.

A B C A B
+Al :int -Al:int +Al :int
#A2 : int Fprint_B1() : int #B1:int #AZ : int +print_B1() : int
-A3:int -print_A2() : void —A3.: int _
+print_A1() : void #print_B1(x : int) : void +print_A1() : void
#print_A2() : void #pnnt_AZ() : qu
-print_A3() : void -print_A3() : void D
-D1:int
+Al:int
C #A2 : int
#B1 :int
-AL:int +D1() : int
#B1 - int +print_A1() : void
D -print_A2()() : void #pr!nt_AZ() :_YO'd
print_B10)() : void +print B1():int
#print_B1(x : int) : void

-D1:int
+D1() : int

Fig. 8: Class structure with multiple inheritance and its flattened version
v



The former case is easier to handle, because all flattening functions can be applied sequentially in arbitrary order to every
superclass. Figure 8 shows an example of a class structure using multiple inheritance and the same class structure after
the flattening process.

In the case of name conflicts we distinguish two situations:
At least two classes that are inherited directly by another class have one member with the same name. The use of this
member within the inheriting class would cause name conflicts. Because of this, the members are still accessible only
by using the scope operator which is not considered in our context (cf. Section 2). This case can be handled as
multiple inheritance without occurring name conflicts. Thus, the flattening function does not copy members that

cause conflicts within the subclass.

One class is inherited several times. One example for this rbombus
like inberitance ([Stro98], pp.415) is presented in Figure 9. Since both
classes (B and C) inherit Al and A2, class D inherits these attributes ;ﬁ; :2:
two times. Usually, we handle this occurring name conflict in the -A3:int
same way as occurring name conflicts by members with same name
within different classes (see above). However, C++ offers a possibility 4

to prevent conflicts if using rhombuslike inheritance: The

A

definition of wirtual base classes. To avoid the multiple occurrence of

members of a class that is multiply indirectly inherited, all ° ©

inheritances of this class have to be defined as vi rt ual . This can +B1 :int +C1 - int

be accomplished by preceding the base class name with the keyword

virtual. Thus, 1f the definittion of «class B  would be 4 4
'‘class B: virtual public A and the one of class C
would be 'class C. virtual public A, then class D D
would have two unique attributes A1 and A2 which have also to be
considered for our purposes. Respecting this, the flattening function
copies only members with conflicting names if class A is virtually
inherited. Otherwise the flattening function does not copy the
members with conflicting names.

+D1:int

Fig. 9 : Rhombus-like inheritance

To include these special cases into the flattening process we need another
flattening function for multiple inheritance. To deal with several
superclasses we have to change the parameters of  the flattening function
Satten_multiple_inberitance(superclass_relations, subclass), with superclass_relations is a set of pairs (superclass,
inberitance_type), where inberitance_type corresponds to table 1.

3.2

flatten_multiple_inheritance (superclass_relations, subclass): This flattening function combines all the

flattening  tasks  provided by  the flattening  functions  flatten_unique_attribute_names,

Jlatten_unique_method_names and flatten_polymorphic_use_relations and extends their functionality to multiple

inheritance. This is done in the following way:

*  For every superclass of the subclass: Call the different flattening functions with the corresponding
inheritance type.

»  Before a flattening function copies a member into the subclass, it has to be checked if a name conflict
exists with potential inherited members of the other superclasses.

* If no name conflict arises, the member is copied. Otherwise, it has to be checked if the name conflict is
caused by virtual thombus-like inheritance that also leads to copying the member.

Flattening of inheritance chains

to

In real-life applications, inheritance can be used very often and there can be used long inheritance chains, i.e. the class,
of which another class inherits from, itself inherits from another class. Figure 9 from last section shows an example for
two inheritance chains of the length 2.
To be able to consider also members that are not a direct but an indirect superclass we have to define a function
flatten_deep (X) which has to be applied recursively to calculate the real flattened version of a class X:



flatten_deep (X): The following steps define the function flatten_deep (X):
1.) For each superclass Y; of X, do:
1.1) Call the function flatten_deep(Y; ), if Y, 1s not yet marked as flattened.

2.) If class X has at least one superclass:
2.1) Call the function flatten_multiple_inberitance(superclass_relations, X).

3.) Mark class X as flattened.

For our example in Figure 10, this means that for flatten_deep(X) at first we have to call flatten_deep(C). In step 1 of this
task we call flatten_deep(B) (which itself calls flatten_deep(A) but for this class flatten_deep does nothing but to mark it as
flattened) and flatten_deep (D) (which also does nothing but to mark it as flattened because the recursion ends). After
returning from these tasks the flatten_multiple_inberitance (step 2) can be called for class Cand at end for class X.

In Figure 10 the new class names are used only to demonstrate the set of classes from which class members are already
copied into the class, i.e. class BA has already members of class A in it.

A
_______ s | SmmmesseaseaeTes e |
' P! .
| BA | | D | | I
| | | CDBA

B

>
D
X

x —= o

XCDBA

Fig. 10: The flattening function applied to a large system
3.3 Flattening of library- or framework-based systems y—— -
Usually, a large system is based on a lot of prefabricated libraries or A | X :
frameworks. In many cases, the classes from libraries are re-used by I !
inheritance. In such systems two problems can occur: ‘ b
* The application of the flattening functions as explained in the previous I———J———-.

section might distort the view on the flattened classes because too much [ B :

information of the libraries and frameworks are flattened into a class. IT‘
*  For understanding or using of a particular set of classes it is essential to

have a flat view based only on the classes of the library or framework.

Classes from other libraries (e.g. system libraries) used by the class set are ¢

not interesting for this purpose. Z%
* If measurement should be applied to the system, it yields numbers

which should be interpreted and which should point out some D

anomalies and some hints for restructuring (cf. [LeRuSi00]). Of course,
such anomalies and hints make only sense for software parts for which
the developer 1s responsible. Generally, this is not the case for libraries
and frameworks supplied by someone else.

To use only parts of the system for which the developer is responsible or

interested in for flattening, two mechanisms are necessary:

*  The setting of a _focus set: The interest is focused only to classes that are part of the focus set [ErLe96]. The example of
Figure 11 shows a system consisting of a class library (grey classes) and self written application classes (white classes).

Fig. 11 System based on a class
library
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If only class C and D are set into the focus, then only both classes are flattened and e.g. only their measurement
values are presented.

*  The setting of an inberitance context: The flattening process for an inheritance chain is reduced to classes that are

contained in the inheritance context [ErLe96]. Thus, if the inheritance context is empty the system is used without
any flattening. If all classes are set into the inheritance context, all existing inheritance chains are fully flattened. To
come back to the example displayed in Figure 11: By setting class C into the inheritance context only the members
of class Care flattened into class D.
Please note that because of later performance reasons the inheritance context and the focus set should not be set
independently. After setting the focus set, the set of possible inheritance context’s classes is reduced to these classes
of which at least one class in the focus directly or indirectly inherits from (through non-focus classes that are already
part of the inheritance context). If for example in Figure 11 the focus is set to classes B and C it has no effect to set
class Cor D into the inheritance context.

The focus set and the inheritance context should be usable in a very interactive manner because in some cases it might
make sense to explore different settings. One such implementation is explained in the next section.

4  Applications of the flattening concept

This section discusses some useful applications of the flattening process. We recommend the use of flattening as an
additional view on the system for software measurement, for code understanding and for development of object oriented
systems.

To evaluate our concepts we used the tool Crocodile [LeS198]. Crocodile works on a database containing relevant data

about the object oriented system structure extracted from a given source code. The database contains all the information

about classes, attributes and methods, and also all the relations between them (regarding inheritance and method calls).

All flattening functions are applied on these data and insert attributes, methods, and use-relations into subclasses. The

only restriction we have to make is the inability to check whether a method of a class 1s used through a pointer variable

or a normal variable (cf. Section 2.5). Thus, we have to assume that all methods that can be used polymorphically in an
inheritance tree are called through a pointer variables.

After the extraction of all necessary data the next task is to set the contexts as explained in Section 3.3. This is done in

the following order:

1. All classes that are part of the class system for which the information is extracted can be set into the focus set. To
simplify this task for large projects, it is possible in a first step to set whole subprojects, which typically can be
identified by different subdirectories, into the focus set and afterwards to refine this selection on the class level. This
1s necessary to have only classes in the focus we are potentially interested in. E.g. in programs where code is
implemented for different operating systems it is wanted to set only one version into the focus set.

2. Depending on the focus set the inheritance context can be set, i.e. classes of which at least one class in the focus set
directly or indirectly inherits from. Because of the consideration of indirect inheritance through classes of the
inheritance context the set of possible classes that can be set into the focus set can be extended iteratively, 1.e. after
setting a non-focus class into the inheritance context its superclasses again can be set into the inheritance context.

These settings influence the flattening process because the different flattening functions are only called for classes that

are within the inheritance context. The flattening process itself is done by adding new members into Crocodile’s

database: For example a new attribute that a subclass gets from its superclass 1s inserted into the database by adding a

new attribute entry with the same name, the same use-relations of methods, the same location of implementation, but a

new class membership.

To get the possibility to try several context selections without the necessity to re-extract the data from source code,

Crocodile has two databases: One contains the original data and the other one contains the flattened data.

After the flattening process one can use the flattened representation, e.g. to calculate the measurement values on the basis

of the modified data, 1.e. the added members and use-relations are considered by the measurement values.

4.1 Impact on software measurements

Measuring object oriented systems without considering the possibility to distribute functionality and data over several
classes in an inheritance structure is only one view. In a case study (cf. [SiBe00]) we validated that the new "flattened
view" on a system might be helpful with respect to the following three points:
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1. In the non-flattened version we detected many classes whose interpretation of the measurement values would be
misleading. If the view on a system that is presented by the measurement values might suggest wrong interpretations,
a further view seems to be useful.

2. With the flattened version we detected many classes that showed some anomalies and that in fact would be good
candidates for restructuring,.

3. Considering the differences between the measurement values of the flattened and non-flattened version produces
another interesting view on a system. This information gives new insights into the kind of inheritance, e.g. if
inheritance is used only for source code sharing, for creating type hierarchies or specialisation.

4.2  Analysing and understanding class systems

To support analysing and understanding of a reengineering process for large software development projects our research
team has developed a tool for navigation in such object oriented systems [LeSiSt00]. One part of the tool is to provide
the syntactical structure of a system (CrocoBrowse). It is possible to click through the components on different levels
like packages, classes and members and also to look on the compositional hierarchy.

The tool gets more expressive power by providing also the additional view of the flattened class system. Thus, a user of
such a navigation tool has the advantage to switch between the two views on the system and he can choose the view that
helps him most for his purpose.

4.3  Using class libraries and frameworks

There exists another interesting application of the flattening concept for providers as well as users of object oriented
class libraries or frameworks. When using a particular class of a library or framework there always is the question: What
methods and attributes are provided by the class which might be more than the locally defined ones? If the class system
has long inheritance chains it is a very time-consuming task to find the relevant method name by only clicking through
the inheritance structure. With the additional choice of navigating on the flattened version the use of the library or
framework 1s more simple and more effective.

Another way to use the flattened version of a class system is to generate useful documentation about it because it is very
time-consuming to determine which functionality a class really has.

The flattening concept can also be used by software engineering environments (SEE) to provide some nice features. One
of them 1s the automatic method name extension (like presented in Visual C++ 6.0). Using the flattened representation
of a class system makes the SEE able to provide all accessible members (regarding all the tricky concepts like overloading
and overriding), which are directly usable by the user.
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