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Abstract. In today’s engineering of object oriented systems many different
metrics are used to get feedback about design quality and to automatically
identify design weaknesses. While the concept of inheritance is covered by
special inheritance metrics its impact on other classical metrics (like size,
coupling or cohesion metrics) is not considered; this can yield misleading
measurement values and false interpretations. In this paper we present an
approach to work the concept of inheritance into classical metrics (and with it
the related concepts of overriding, overloading and polymorphism). This is
done by some language dependent flattening functions that modify the data on
which the measurement will be done. These functions are implemented within
our metrics tool Crocodile and are applied for a case study: the comparison of
the measurement values of the original data with the measurement values of the
flattened data yields interesting results and improves the power of classical
measurements for interpretation.

1 Introduction

The measurement of object oriented systems seems to be a powerful tool for the
qualitative assessment (cf. [5]). The availability of about 200 object oriented metrics
[14] – i.e. metrics which are defined on object oriented systems -- and many books
that consider the measurement of object oriented software, confirm this assumption.
In general, these metrics can be classified into coupling, cohesion and size metrics.
Inheritance is covered as a separate concept with its own metrics (e.g. depth of
inheritance, number of children, number of parents, cf. [9]). However, most metrics
for size, coupling and cohesion within the object oriented area ignore inheritance.

This paper shows another view: we demonstrate the impact of inheritance on other
classical metrics, like size, coupling or cohesion metrics. The basic idea is the
following: imagine a class A with 20 public methods, and a class B that inherits from
class A and adds 15 additional public methods. Ignoring inheritance might yield the
interpretation that class A is greater or even more complex than class B (as suggested
by the measurement values for number of public methods: 20 for class A and 15 for
class B). This is false when considering the functional size of a class as the set of
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methods that a client class can use. This set remains unchanged for class A but
increases to 35 methods for class B.

To examine this phenomenon in more detail we have to consider in depth the
concept of inheritance and all concepts that might be touched by it, i.e. overriding,
overloading and polymorphism. The idea of representing a class as it really is, i.e.
considering all inherited attributes and operations, was introduced by Meyer [10]: his
function flat constructs the flat representation of a class. In the field of object oriented
measurement this concept is called inheritance context [3]: it allows for a selection of
superclasses to be flattened into a subclass. With respect to measurement this includes
flattening the associations between classes: Particularly in polymorph structures client
classes are often coupled only with the interface class. Subclasses of the interface
class are not coupled with the client class. Upon using the flattening process every
client class with the possibility of calling operations of any subclass, is now also
coupled with it.

Although it is very straight forward to consider flattening in measurement it had
not been yet examined in detail, but nearly mentioned as a theoretic possibility (cf.
[1], Section 4.2.4) or treated by various rare used metrics without a substantial
knowledge of their behaviour or implementation details (e.g. number of methods
overridden by a subclass, number of methods inherited by a subclass, or number of
methods added by a subclass, cf. [9]). One point might be the necessity of adjusting
the concept of flattening to each of the special programming languages with respect to
the inheritance related concepts of overriding, overloading and polymorphism. This
task is not easy, especially for C++.

This paper gives a brief overview of how the flattening has to work for C++
projects. For more details of how multiple inheritance or inheritance chains is treated
see [13].

By applying flattening to large C++ systems we want to examine two points:
1. How are measurement values of classical size, coupling and cohesion metrics

changed; and,
2. How can the quantitative analysis of the flattening itself be interpreted (e.g. how

many methods, attributes or associations have to be copied into a subclass).
This examination is done by calculating five classical metrics for a case study. Firstly
we use the usual technique, i.e. we ignore the inheritance structure; and secondly we
flatten all classes before measuring them. We show that there are clear differences
between the two approaches and that the quantitative analysis of the flattening itself
gives many important hints for understanding the system.

This paper is structured as follows: in Section 2, the basic concepts of overloading,
overriding and polymorphism are explained with respect to our flattening functions.
We give an overview of these concepts for the language C++ and introduce some
corresponding flattening functions. Section 3 shows the impact of flattening on
measurement values of five classical metrics, and Section 4 explains how the
quantitative analysis of the flattening itself can be interpreted to get a better
understanding of the system and some worth suggestions for restructuring. The paper
closes with a summary.



Impact of Inheritance on Metrics in Object-Oriented Systems         3

2 Overloading, Overriding, and Polymorphism in C++

Extending the simple addition of functionality into subclasses (cf. Section 1), we have
to consider the concepts of overloading, overriding and polymorphism, because they
might not only add but also modify functionality. These concepts only occur, if two
method names (without considering parameters) are identical. Attributes can not be
overloaded but they can be overridden in some cases (see below). Such situation
where two members (either attributes or methods) with the same name (either locally
declared or inherited) are visible in one class we call name conflict.

In the following, we discuss overloading, overriding and polymorphism separately
for attributes and methods, and we distinguish the cases where name conflicts occur
and where the name is unique.

For each situation we define a special flattening function which copies some
members, i.e. methods or attributes, into a subclass with respect to some given rules.
All flattening functions have three parameters: a superclass, the class where to copy
members into and which is a direct subclass of the superclass, and the type of
inheritance.

2.1 Attributes without Conflicting Names

Without name conflicts for attributes, the technique of flattening classes within an
inheritance structure is simple: the attributes of a superclass are copied into all
subclasses, if they are still visible there, which depends on the attribute’s visibility.

Before defining the flattening function for attributes with unique names we have to
think about wrapped attributes, which are attributes that are not directly accessible,
i.e. they have the visibility private, but they are accessible by visible get and set
methods. The encapsulation principle of object oriented design advises against the
direct access to any attribute. The recommended construction is to access these
attributes by special get methods and set methods. Our consideration of attributes
above is blind to attributes used in this way, although ignoring these attributes within
the subclass does not reflect the real situation: imagine a class A with 10 private
attributes and each attribute has one get method and one set method. If then a class B
inherits from this class and does not add, modify or delete anything there would be no
reason why class A and class B should be considered as different. However, if
measured separately, this would happen if no flattening or even if our previous
flattening function would be applied. Therefore, also these wrapped attributes have to
be considered for the flattening process. This kind of visibility we call invisible (i.e.
not visible but indirectly accessible) in contrast to inaccessible (i.e. not visible and not
accessible).

Now we are able to define the flattening function for attributes that do not have
name conflicts:

flatten_unique_attribute_names (superclass, subclass, inheritance type): This
flattening version copies all attributes (visible and invisible ones) of the superclass
into the subclass if an attribute with the same name does not exist in the subclass. The
attribute’s visibility in the target class depends on the inheritance type and the
attribute’s visibility.
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2.2 Attributes with Conflicting Names

In some cases overriding of attributes exists: If a subclass defines an attribute with the
same name as a visible attribute of a superclass, the subclass’ attribute overrides the
superclass’ attribute, i.e. it is no longer directly accessible but only by the use of the
scope operator. For the later effect on measurement, it has to be decided, whether also
attributes that are accessible only by explicitly using the scope operator have to be
considered or not. For the purpose of this paper, which is to show the impact of
inherited members on measurement values, we do not consider the use of members
via the scope operator because of the following reasons:

1. For static members it is applicable to all classes independently of any inheritance
relation between them.

2. The re-definition of an attribute within a subclass is a deliberate decision. Using
the scope operator bypasses this decision. We can not really imagine examples
in which the use of both attributes, the inherited via scope operator and the re-
defined one, might make much sense.

3. In real-life applications we analysed (cf. [7]) the scope operator is not used very
frequently.

4. Using the scope operator increases the dependencies between the particular
classes. The reuse of a class is much more difficult because it is not sufficient to
reproduce all use-relations and inheritance relations but it is necessary to adapt
all code using the scope operator to the new environment.

Because of this we do not need to define a further flattening function for attributes
that have the same name, because if two such attributes exist, the one of the
superclass can be ignored.

2.3 Methods without Conflicting Names

The flattening function for methods with unique names is similar to the flattening
function for attributes with unique names: the methods of a superclass are copied into
the subclass if they are still visible there.

As done for attributes we have to think about wrapped methods, which are methods
that are not directly accessible, i.e. they have the visibility private, but are accessible
through other visible methods. This concept of private auxiliary methods is often used
to extract some specific functionality. For our purpose all private methods that are
used by a non-private method have to be considered for the flattening process. Their
visibility within the target class is changed to invisible. Now we can define the
flattening function for methods that do not have name conflicts:

flatten_unique_method_names (superclass, subclass, inheritance type): This
flattening version copies all methods (visible and invisible ones) of the superclass into
the subclass if no method with the same name exists in the subclass. The method’s
visibility in the target class depends on the inheritance type and the method’s
visibility.
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2.4 Methods with Conflicting Names

Methods within a subclass can overload (for the definition of similar operations in
different ways for different data types or numbers) or override (for a redefinition of a
method) a method of a superclass. It overrides if the signatures [11] are identical and
it overloads if the names are equal but at least one parameter is different (for details
cf. [13]).

With respect to inheritance there is a very important point to remember if dealing
with overriding and overloading in C++: a method in a subclass will override all
methods with the same name from the superclass, but not overload them! So,
whenever two methods from two classes in an inheritance relation have the same
name, the flattening function must not copy the method from the superclass into the
subclass and, therefore, there is no need for an additional flattening function.

2.5 Polymorphic Use-Relations

In this section we deal with polymorphism, in particular run-time polymorphism (in
contrast to compile-time polymorphism that can be achieved by overloading and that
can be solved by the compiler) (cf. [12]). The technique to implement this kind of
polymorphism is called late binding. This means that the determination which version
of a function is called when a message with appropriate name occurs is made at run
time and is based on the caller’s object type. In C++ this type of late binding is only
possible if an object is accessed via pointer (or via reference, which is an implicit
pointer, [12], pp. 341) and if the called method is declared virtual.

If considering polymorphic structures it is not always possible to decide at
compile-time which function will be executed at run-time. Due to this, the static
analysis of polymorphic use-relations between classes is often reduced to use-
relations between superclasses [8].

Because the static analysis of source code always considers only potential of use
and not the actual frequency of use, there should be a function
flatten_polymorphic_use_relations that copies the use-relations into all methods of
the subclass that could be executed by calling a method in a superclass. This
flattening function depends not only on the superclass and subclass but also on the
class that uses methods of the superclass [13].

The corresponding flattening function is defined as follows:

flatten_polymorphic_use_relations (superclass, subclass, inheritance’s type): This
flattening version adds use-relations that cover calls of the client class to public
methods of the subclass. This is done in the following way:
A use-relation between a method musingc of the client class and a public method msubc of
the subclass is added if
the inheritance’s type is public,
� musingc uses the method msuperc, declared in the superclass,
� msuperc is defined as virtual,
� msuperc is overridden or implemented by msubc within the subclass.
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3 Impact of Flattening on Size, Coupling, and Cohesion Metrics

The flattening functions are implemented within the metrics tool Crocodile ([8], [13])
that allows to measure large object oriented systems and to apply the flattening
functions. This section demonstrates the impact of the flattening process on some
typical object oriented metrics. At first we describe a case study in detail and give a
quantitative overview how much information was added to the flattened version.
Afterwards we explain very briefly some typical metrics (two size, one coupling and
two cohesion metrics) that we used for our exploration. Some diagrams show the
differences between the measurement values of the normal and the flattened source
code data. Afterwards we analyse these value changes in detail and give some specific
interpretations, which show, that the values obtained from the flattened version reflect
the intuition more appropriately than the traditional values.

3.1 Description of the Case Study

As case study, we used the source code of the Crocodile metrics tool itself. We know
the sources in detail and so we are able to evaluate the results; it is written completely
in C++; it uses inheritance -- which is not true for all C++ projects, especially for
those originally written in C -- ; it is based on a GUI framework; and it uses a library
for data structures. This integration of external components is typical for today’s
software products and demonstrates the necessity of a selection mechanism for the
flattening process because not all superclasses have to be flattened in all subclasses
[13].

The analysed system consists of 113 files and 57 classes. It has a maximum
inheritance depth of 4, has 18 inheritance relations, and does not use multiple
inheritance.

These numbers showed to be invariant against the flattening functions because no
classes, files, or inheritances are added. The table below gives a quantitative overview
about the classes: the first column describes the kind of considered objects, the second
counts its occurrences in the original data, the third counts its occurrences in the
flattened data and the last shows the percentage increase of the occurrences in the
flattened data.

Table 1. Quantitative overview on original and flattened sources

Original sources Flattened sources % Increase
Methods 589 706 +20%
Attributes 226 314 +39%
Use_Method_Relations 666 692 +4%

To demonstrate the impact of the flattening process on the measurement values for
classical metrics we chose five typical object oriented metrics, i.e. two size metrics,
one use-based coupling metric and two use-based cohesion metrics. In Sections 3.2. to
3.4. we show how the values for these classical metrics change by our flattening
functions. In Sections 4.2. to 4.4. we interpret these changes in detail and give some
specific interpretations.
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3.2 Impact of Flattening on Size Metrics

Two widespread-used size metrics for object oriented source code are the number of
methods (NoM, cf. NOM in [4], number of instance methods in [9]) as indicator for
functional size and the number of attributes (NoA, cf. NOA in [4], number of instance
variables in [9]) as indicator for size of encapsulated data.

The impact of flattening on the metric NoM is shown by the distribution of the
proportional changes within the system (cf. Figure 1). The x-axis is divided into
intervals of percentage of the measurement value changes before and after flattening;
the y-axis shows the count of classes having a measurement value change within the
interval. As displayed the measurement values remain unchanged for 39 classes (0%
changing of the values). These are exactly the classes that have not any superclass. On
the other side the range of change is between 101 and 200 percent for 12 classes and
between 1401 and 1500 percent for one other class !

The same kind of diagram for the metric NoA is shown in Figure 2; to be able to
display proportional changes also for classes having no attributes before flattening,
we set these proportional changes to the value: number of added attributes * 100.

Fig. 1. Distribution of proportional measurement value changes for NoM

As in the previous Figure the values did not change for 39 classes because they have
not any superclass. The other values are changed a lot again.

As demonstrated for both metrics, number of methods (NoM) and number of
attributes (NoA), it is clear that size metrics are very sensitive to our flattening
process: Over 31 % of the measured values changed, one up to 2.900 % ! Thus,
ignoring inheritance for size metrics might yield misleading numbers which in turn
might yield false interpretations. Some classes which seem to be very small (and thus
easy to understand and to maintain) are in fact very large (and thus difficult to
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understand and to maintain) because they get (and need) a lot of functionality and
data from their superclasses.

Fig. 2. Distribution of proportional measurement value changes for NoA

3.3 Impact of Flattening on Coupling Metrics

The coupling between entities – in our case classes – covers their degree of relation
with respect to a special system abstraction. Very often the entities plus their use-
relation (e.g. RFC or fan-out in [4]) give this abstraction.

As a typical example for this class of metrics we chose the metric number of
externally used methods, i.e. the count of distinct external methods called by methods
within a class (efferent coupling to methods, effCM). The distribution of the
proportional changes of the original and flattened version is shown in Figure 3; the
classes that have a measurement value of 0 before flattening are treated like in the
visualisation of the NoA values.

For this metric only the measurement value of one class that has a superclass did
not change.

As shown before, also in this category of metrics, many low measurement values
increase: Nearly 30 % of the measurement values changed, three up to 400 % ! Only
upon using the flattening functions the usual reduction of coupling to superclasses
within an inheritance relation is extended to coupling to the subclasses. Because use-
based coupling is an important indicator for class understanding and class clustering
(e.g. into subsystems, cf. [7]) these changes of measurement values have a strong
impact. Thus, ignoring inheritance for coupling metrics might give a misleading
picture of a system which again might suggest false restructuring actions.
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Fig. 3. Distribution of proportional measurement value changes for effCM

3.4 Impact of Flattening on Cohesion Metrics

The third important category of metrics for object oriented systems is the area of
cohesion, i.e. to which degree the members of an entity belong together. We examine
two different types of cohesion for two different abstraction levels: at first we use the
well-known inner class cohesion measure LCOM [2], which assumes cohesion within
a class to be based only on attribute use-relations. Secondly we use a generic distance
based cohesion concept developed at our metrics research team [6]. Here we
instantiated it on the class level in such a way that cohesion between classes is based
on method-to-method use-relations plus method-to-attribute use-relations: The more
two classes use from each other the smaller is their distance.

For the LCOM measure, we got the distribution diagram of the measurement value
changes as displayed in Figure 4. Again, the increase of the measurement values is
obvious, which suggests a weaker class cohesion. However, the validation of this
result within the system can not be made: The problem is the very specific point of
view to cohesion for LCOM, i.e. cohesion is based only on attribute use-relations:
Due to flattening many methods are copied into the subclass. With them, the used
private attributes are copied as wrapped attributes. Of course no newly implemented
method within the subclass has direct access to this attribute, i.e. the LCOM value
increases. The solution to consider only non-wrapped attributes within subclasses also
increases the LCOM values because then some methods do not use any attribute of the
subclass.
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Fig. 4. Distribution of proportional measurement value changes for LCOM

The main result of these measurement changes is that attribute-based cohesion
decreases heavily for classes having at least one superclass.

The opposite -- which is an increase of cohesion -- is the result of the second view
on cohesion: The changes of the measurement values can not be displayed as above
because the cohesion measurement values are not measured for classes but for pairs of
classes, which for example can be used as geometric distances within a visualisation
(cf. Section 4.4). The flattening of one class X might change all measurement values
of class pairs where X is part of. For the given 57 classes there exist 572 values. The
frequency of relative changes for the two versions is displayed within Figure 5.
Most distances remain unchanged (2995) or increase only minimal (122; cumulated
within the interval ]0.05..0] to 3117). The most obvious changes are the decreases of
distances (~4% of the distances), i.e. the cohesion increases. This comes from the
added coupling to subclasses. Ignoring this fact might yield the false interpretation
that a class X is only cohesive to a used superclass Y but not to Y’s subclasses, which
in turn might suggest the false subsystem creation, i.e. to separate Y’s subclasses from
class X.

On the other side, the flattening can also decrease cohesion: If a class X heavily
interacts with the whole functionality of a class Y that has a superclass, one might
assume a high degree of cohesion. The flattening process, however, reveals that class
X uses only a little part of the functionality of class Y because the latter one inherits a
lot of functionality from its superclass. Thus, cohesion decreases.

As shown in this section, also cohesion metrics are sensible to the flattening
process. Thus, ignoring inheritance for cohesion metrics might give a misleading
impression about the cohesion of the system.
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Fig. 5. Frequency of relative changes for class cohesion metric within both versions

4 Quantitative Analysis of the Flattening Process Itself

The last section demonstrates how heavily the flattening process changes several
kinds of software measures and how misleading the separate consideration of
inheritance for the other metrics might be. In this section we do not examine only the
value changes over the whole system but try to interpret them; additionally, we try to
interpret value changes for single classes that might give additional information.
Thus, the quantitative analysis of the flattening functions itself -- i.e. how many
members gets a subclass -- can be seen as a new kind of metrics that gives a new kind
of information.

At first we try to interpret the value changes for the whole system. Afterwards for
every metric we show a ranking list of the classes for which the flattening process
changed the values most, and give an interpretation.
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attributes. This has the following reasons:
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2. The partial implementations within the superclasses use some private attributes
but never private methods: the functionality of methods that are flattened into
subclasses is low and does not need any private auxiliary method but only some
private attributes.

Thus, it is possible to characterise the pre-dominant use of inheritance within a system
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typical inheritance metric like depth of inheritance, number of children or number of
parents (cf. [9]).

4.2 Quantitative Analysis of the Results of Flattening on Size Metrics

To get an overview on the effects on some specific measurement value changes a
trend diagram is shown: there only those measurement values are displayed which
changed by applying the flattening process. For each changed class the value before
and after flattening are shown in grey or black respectively. The measurement pairs
are ordered by their relative increase. We renamed all classes in all diagrams from
class1 to class57.

Fig. 6. Measurement values of NoM before and after the flattening process

In Figure 6 we contrast the measurement values of the non-flattened classes with the
flattened classes for the metric NoM. We only discuss the results for the classes with
the most extreme values. The highest relative increase is 15: class53 has 2 methods
before the flattening process and has 30 methods after the flattening process. This
class is a subclass of the parser class FlexLexer that comes with the flex library
package and defines the interface of the class for the lexical analyser. In fact, our
subclass does not add or modify anything but defines its own constructor and
destructor. In this case, inheritance is used only to change the given class name. Thus,
the flattened version corresponds to our knowledge that class53 is a very large
class that offers a lot of functionality.

The same measurement visualisation is used for the metric NoA in Figure 7:
as for NoM, the impact of flattening is clear: 12 classes of the non-flattened version
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40, 48, 5, 6, 7, 13, 14, 15, 53) -- are changed in a way that they have
at least one attribute, i.e. they seem to be more than only a container of functions. On
the other side, there are two classes with 29 attributes (classes 53 and 56): Both
classes again belong to the parser functionality of the analysed system: A thorough
analysis of this situation revealed, that the inheritance used is very debatable and
should be renovated.

Fig. 7. Measurement values of NoA before and after the flattening process

4.3 Quantitative Analysis of the Flattening Process on Coupling Metrics

As above we contrast the value changes of the non-flattened classes (grey bars) to the
flattened classes (black bars) for the metric effCM (cf. Figure 8).
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implemented methods of the superclass have couplings to subclasses implementing
the pure virtual methods. Only the “flattened” measurement reflects the coupling to
all inheritance sub-trees. Neglecting these additional couplings could yield the false
clustering to separate some concrete implementations from the interface and also from
a client class. This view on a system based on potential use-coupling changes
measurement values in a very interesting way because it shows coupling that is not
necessary for compiling (all four superclasses of the last example are compilable
without including any other class of the analysed system) but for runtime (otherwise
there would be linker errors).

60
Fig. 8. Measurement values of effCM before and after the flattening process

4.4 Quantitative Analysis of the Flattening Process on Cohesion Metrics

In Figure 9 the measurement values of LCOM are displayed for usual and for the
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this visualisation is shown for the usual system; in Figure 11 the flattened version is
presented.

50 0
Fig. 9. Measurement values of LCOM before and after the flattening process

Fig. 10. Distance based cohesion before Fig. 11. Distance based cohesion after
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The first impression is that the flattened version has more clusters of classes like
classes {41, 48, 38 (partly hidden)}, {5, 6, 7, 8}, {55,50 (hidden)} or
{56, 53 (partly hidden)}. The latter cluster is the one whose cohesion values
increase most, i.e. the distance decreases from 0.958 to 0.001 (cf. the interval –0.95 to
–1 within Section 3.4). This are the same classes that attracted our attention in the
interpretation of the NoM and NoA values (classes 53 and 56). In fact, a class that
inherits from another class and adds or modifies nearly nothing is very cohesive to its
superclass because they are nearly identical. They provide the same functionality,
they have the same coupling, etc.

On the other side there exists one class pair whose distance increases from 0.605 to
0.939, i.e. their cohesion decreases (class53 with class54 having no superclass,
i.e. that is not mentioned in the other considerations). In this case the client class54
has an object of the subclass class53 as member and uses some functionality from
it. However, class53 inherits a lot of functionality from its superclass that is not
used by class54, i.e. the cohesion between class53 and class54 decreases.
Unfortunately, the superclass of class53 is a reused class adapted by inheritance. A
good restructuring would be to reduce at least the visibility of methods of the
superclass that are not used within class53 or to reuse the class by aggregation.

5 Summary

Measuring object oriented systems without considering the possibility to distribute
functionality and data over several classes within an inheritance structure is only one
view. We have motivated the view in which every class is changed to its flattened
presentation, i.e. inherited members are also considered, because it gives another
interesting view on a system. Afterwards we have presented a concept for the
programming language C++ that explains, how this flattening process should work in
detail. There we concentrated on how to handle inherited attributes, inherited
methods, how to resolve polymorphism, and how corresponding flattening functions
have to be defined.

These concepts are implemented in the metrics engine Crocodile allowing us to get
experience with our new flattening concept. Within our case study we validated our
hypothesis that this new view on a system might be helpful by the following three
points:

1. Within the non-flattened version, we detected many classes whose interpretation
of the measurement values would be misleading. If the view on a system that is
presented by the measurement values might suggest false interpretations, a
further view seems to be useful.

2. With the flattened version we detected many classes that indeed showed some
anomalies and that indeed would be good candidates for restructuring.
Nevertheless, there also exist constraints in this version that made us marking
some outliers as difficult and not necessary to change, e.g. using standard classes
like FlexLexer.

3. Considering the differences between the measurement values of the flattened
and non-flattened version produces another interesting view on a system. This
information gives new insights into the kind of inheritance, e.g. if inheritance is
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used only for source code sharing, for defining an interface or for creating type
hierarchies.

Because of the very interesting results of this work we will investigate in porting our
concepts to other object oriented languages like Java. First experiences of the
application to large Java projects like JWAM (cf. http://www.jwam.de) looks very
promising, especially for the visualisation within our generic cohesion concept.
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