Rabbit: Verification of Real-Time Systems

Dirk Beyer

Software Systems Engineering Research Group
Technical University Cottbus, Germany
db@informatik.tu-cottbus.de

Abstract. This paper gives a short overview of a model checking tool for Cottbus Timed Automata, which

is a modular modeling language based on timed and hybrid automata. For timed automata, the current
version of the tool provides BDD-based verification using an integer semantics. Reachability analysis as
well as refinement checking is possible. To find good variable orderings it uses the component structure of
the model and an upper bound for the BDD size. For hybrid automata, reachability analysis based on the
double description method is implemented.

Keywords. Formal verification, Real-time systems, Timed automata, BDDs

1 Introduction

Nowadays, software engineering research of real-time systems has to investigate methods for formal
specification and verification. Our research group works on formal methods and tries to define de-
velopment processes for systems like production cells or real-time algorithms. As basic formalisms
we chosehybrid automatgdHen96] andtimed automat4gAD94] because they have a well-founded
theoretical basis. Reachability analysis of such models has been implemented in several tools, e.g.
HyTech, Kronos and Uppaal. From our point of view, two major problems are the lack of concepts
for modeling large systems and the exploding consumption of time and memory by the verification
algorithms. We address these issues with our Radbitproviding the following features:

— Modular modeling using an extension of timed and hybrid automata called Cottbus Timed Au-
tomata (CTA) [BR98]. Automata describing the behavior of the system are encapsulated by mod-
ules. Communication with other modules is possible via shared variables and synchronization
labels declared within aimterface Each interface component has a particular access mode (read
only, exclusive write, etc.) to restrict the use of variables and synchronization labels. Replicated
subsystem components do not have to be multiply defined. They are instantiated from a common
template moduleSubsystem descriptions can be grouped to build hierarchical structures. An ex-
tension of the formalism leads tocampositional semanticge. we can define the semantics of
a CTA module on the basis of the semantics of its components [BRO1].

— Reachability analysis.The tool provides efficient reachability analysis for timed automata using
a BDD representation based on an integer semantics. We use the modular structure to compute
variable orderings allowing for efficient representation of the transition relation (resp. the set of
reachable configurations). The reachability analysis for hybrid automata is based on the double
description method (DDM) [FP96].

— Refinement checking.To make verification of large systems tractable, the notation allows to
replace specific modules by more abstract versions. To prove the correctness of this replacement,
we have to check whether two modules have the same behavior respecting external synchroniza-
tion labels. The tool checks the refinement relation by checking the existence of a simulation
relation.

— Framework architecture. The tool is built following the idea to have a platform for model
checking of timed as well as hybrid systems. It is capable to use other representations, also from
foreign libraries. Currently, the tool chooses dynamically the BDD representation if the model
consists of (closed) timed automata. Otherwise, having a model consisting of hybrid automata,
the tool uses the DDM library.

c;>=1, ci:=0

@

~_

c;>=1, ¢c;:=0

Fig. 1. The 'two state’ automatore(is a clock,u; andi; are constants).

— Representation libraries.To get fast BDD operations we implemented our own library without
any additional overhead like general purpose BDD libraries. We implemented a library for the
Double Description Methods (DDM) representation [FP96] similar to the one used by HyTech.

Other existing approaches, e.g. MOCHA, CHARON and MASACCIO, address similar issues
but are based on modeling formalisms different from timed automata. MOCHA is basedative
moduleqand partially ortimed moduleks It provides refinement checking, but only for the untimed
case [AHM"98]. CHARON is a modeling language based on hierarchic hybrid modules {ABH
Currently, there is no model checking tool available for CHARON models. MASACCIO is a for-
mal model for hybrid dynamical systems for modeling continuous components based on differential
equations [HenO0O].

2 Reachability Analysis

Safety properties can be verified by model checking, especially reachability analysis. The main prob-
lem is the exploding consumption of time for the computation and memory for the representation of
the reachable configurations. The data structure for sets of configurations is of vital importance. Sets
of configurations of timed automata consist of locations and associated sets of clock assignments over
d clocks which are subsets H{i. For the symbolic representation of setdasfationsbinary deci-

sion diagrams (BDDs) are widely used. To get a uniform representation of locations and clock assign-
ments as BDDs we formally defined arteger semanticef so-calledclosed timed automatavhose

clock constraints do not contain the relaticngnd>. Thus, we need to consider only integer clock
assignments. We proved its location equivalence (i.e. the sets of reatdttiensare equivalent) to

the usual, continuous semantics [BeyO1b]. Proofs of the location equivalence using integer semantics
for models different from timed automata can be found in literature [Pop91,HMP92,AMP98].

A discretization of time which is location equivalent to the continuous semantics exists for all
timed automata [GPV94]. They use fractions of 1 as time steps which depend on the number of
clocks within the model. It means that the time step is very small for a large number of clocks and
thus, there is a very large state space. For such a discrete semantics, §&B¢ontains a proof of
the location equivalence to the continuous semantics.

However, we restrict ourselves to the subclass of closed timed automata to allow for a discretiza-
tion which is particularly simple and enables efficient reachability analysis. For DBMs and similar
data structures, this does not lead to significant performance improvements. This restriction is of
technical nature, and we did not found examples within our application area of production cells and
real-time algorithms for which it is difficult to construct models using only non-strict constraints with
integer constants.

In the context of this paper, we give only a rough illustration of our modeling notation. Figure 2 is
the textual representation of two automata from Figure 1. The modular structure of the AND model,
which is more representative for the instantiation mechanism, is given in [BeyO1b].

Usually, the transition relation is represented as implicit union of a timed transition relation and
discrete transition relations for each synchronization label. Our experiments have confirmed that

1 MODULE TwoState {

2 INPUT

3 I: CONST;

4 u: CONST;

5 INITIAL STATE(twoState) = one AND c¢ = O;
6
7
8

AUTOMATON twoState {
STATE one { INV c+ 1<=u

9 TRANS { GUARD ¢ >= |;
10 DO c =0;

11 GOTO two;

12 }

13

14 STATE two { INV c+1<=u

15 TRANS { GUARD ¢ >= |;
16 DO c =0;

17 GOTO one;

18 }

19 }

20 }

21 LOCAL

22 c: CLOCK(13); / (u + 1)

25 MODULE System {

26 LOCAL

27 =9 : CONST;

28 u =12 : CONST;

29 INST automatonl FROM TwoState WITH {
30 | AS |;

31 u AS u;

32}

33 INST automaton2 FROM TwoState WITH {
34 | AS |

35 u AS u;

Fig. 2. The textual representation of the 'two state’ model.

applying suchpartial transition relations sequentially is more efficient than using the union of
these relations as monolithic transition relation [R5)].

When using several partial transition relations, we have to determinerties of their appli-
cation. The intermediate sets of reached configurations in the reachability algorithm depend on this
ordering, and therefore the size of the intermediate BDDs. A bad ordering of the partial transition
relations can result in intermediate BDDs that are much bigger than the final BDD of all reachable
configurations. Always computing the fixed point using only discrete transitions before applying time
transitions is a successful strategy to avoid this problem.

Variable Ordering. Using the BDD representation we have to find good variable orderings. We
start with an initial ordering and then we apply a heuristic to increase the quality of the ordering. We
take the pre-order linearization (parent node first, then its children together, recursively applied) of
the CTA model as initial variable ordering. This implies that we consider the modeler’s decision to
encapsulate some components together within one module, i.e. local components of a module are as-
signed to neighboring positions within the variable ordering. Then we apply another heuristic, which
optimizes the ordering respecting an estimate for the size of the BDD representing the reachable set
of configurations. This estimate is based on an upper bound for the size of the BDD for the transi-
tion relation [Bey01b]. It reflects the two most important characteristics for good variable orderings:
(1) Communicating components have neighboring positions within the ordd@hgomponents
which communicate with many other components precede these other components within the order-
ing. In difference to the most existing BDD applications we prefer to use that static ordering instead
of dynamic reordering, which consumes a lot of run-time. Compared with the BDD-based version of
Kronos [BMPY97] and Wang’s tool [Wan00], our strategy for variable ordering leads to a significant
performance improvement.

We illustrate the dramatic influence of the variable ordering on the size of the BDDs representing
the reachable set. Figure 3 gives the shape of the BDD for the set of all reachable configurations for

8 Fischer processes. The large one (light grey) uses the ordering 'k at last’ (which invalidates one of
the characteristics for good orderings) and the small one (dark grey) uses 'k in front’. We visualize a
BDD in the following way: each pixel represents one BDD node and each horizontal line represents
all the nodes for one bit of a variable (one level within the BDD graph), that means a long horizontal
line represents a BDD level with a lot of BDD nodes.

-*

Fig. 3. The BDD shape for the set of all reachable configurations for two different variable orderings
(Fischer8).

For a model with a simple communication structure like Fischer’s protocol it might be obvious to
obtain good variable orderings. To motivate the need for automatic, estimate-based variable ordering
we give another example: Figure 4 shows two BDDs for the reachable set using a production cell
model which consists of 45 timed automata with 22 clocks. In the first experiment we used the
variable ordering regarding the modular structure of the model, but the estimate-based heuristics is
not applied. Therefore, the knowledge of the modeler about the coupling between components is
respected and the resulting variable ordering is better than a random ordering. It demonstrates how
the BDD grows very fast within the last components (large, light shape). If we apply our heuristics,
we get a significantly better variable ordering (small, dark shape). This estimate-based computation
of the variable ordering is done automatically by our tool.

Fig. 4. The BDD shape for the full reachable set for two different variable orderings fqrtdic-
tion cell model.

3 Refinement Checking

The restricted applicability of reachability analysis due to the high time complexity of the analysis
for large models leads to the need of refinement checking for verification. We implemented an algo-
rithm for checking the existence of a simulation relation to investigate the capabilities of refinement
checking for Cottbus Timed Automata.

Language inclusion is undecidable for timed automata [AD94]. Although it is decidable for
closed timed automata, trace inclusion is of intractable time complexity. Therefore, we use a sim-
ulation relation for the algorithmic analysis within our tool implementation. This is justified by the
assumption that the two modules between which the refinement relation should exist have a similar
structure, which is mostly fulfilled using stepwise refinement within the development process.

A labeled transition syster® simulates a labeled transition systémif () can match every step
of P by a step with the same label. We use the concept of safety simulation relation as described in
[DHWT92].

The algorithm of our simulation check works as follows: Firstly, we compute the composition for
P and(). Secondly, we compute the set of reachable configurations of this composition. We consider
this set of tuplegp, ¢) as the initial relation for trying to build a simulation relation betwdeand
Q. Then, in each cycle of a fixed point iteration we assume that it is the simulation relation and we
check whether all configurations of the set are fulfilling the simulation condition mentioned above.
If there are "bad’ configurations we have to invalidate our assumption that it is already the simulation
relation and we eliminate them from the relation. If we reached the fixed point (i.e. our assumption
was true), we got the simulation relation.

More details about our implementation of refinement checking are given in [BeyOla].

4 \Verification Results

To demonstrate the performance of Rabbit, we examine the verification task for some example mod-
els.

4.1 Reachability Analysis

Fischer's protocol. For Fischer's protocol for timing-based mutual exclusion (the simplified version
which permits only one process to enter the critical section) we verified the mutual exclusion property
for n processes. The first and second row in Table 1 show the computation times we obtained using
publicly available versions of Kronos and Uppaal. These tools use difference bound matrices to
represent sets of clock assignments, and thus, the computation times seem to be at least exponential
in n, while the computation time of our tool seems to be polynomial using a good variable ordering
(third row). A BDD-based version of Kronos is able to verify 14 processes as reported in [BMPY97],
which also looks like exponential growth of computation time. Better results (than in the table) for
Uppaal are reported in [LPY95], but still exponential (20 seconds for 6 processes, 150 seconds for
7 processes). Wang reports verification of 17 processes in 15,330 seconds on a Pentium Il with
366 MHz and 256 MB memory [WanO00]. Figure 5 compares Rabbit with Wang’s tool, which uses a
BDD-like data structure called DDD.

No. processes 4 5 6 7 8 10 12 1 160 32 64 12
Kronos 3.0 1911 MO
Uppaal 0.5 13. 657 MO
Rabbit 03 04 08 1. 23 4.0 8.9 13.§ 22.7 208 1920 1268

Table 1. Computation time for verification of Fischer’s protocol, given in seconds of CPU time on a
SUN Ultra-Sparc 1 with 200 MHz processor. 'MO’ means memory overflow.

14000 1

12000

10000 J l/////
| e

6000

Computation time
(in seconds)

4000 1

2000)

40 60 80 100 120 140

Number of processes

| —— Rabbit —=— DDD Wang |

Fig. 5. Computation times for the verification of the mutex propeRis¢her’s protocol).

AND circuit. Table 2 shows the results applying our tool to compute the whole set of reachable
configurations of the AND model. The BDD-based version of Kronos needs 324.7 seconds for the
AND model with 4 inputs, also obtained using a SUN Ultra-Sparc 1 [BMPY97].

Number of input signals 2 4 8 16
Rabbit 0.5 6.0 79 1208.7
Table 2. Time for computation of all reachable configurations of the AND model, given in seconds
of CPU time on a SUN Ultra-Sparc 1 with 200 MHz processor.

Two state automata.In Table 3 we demonstrate that not only the variable ordering but also
the strategy of the algorithm is of crucial importance for the efficiency. We use the little 'two state’
example from [BMPY97] as presented in Figure 1. The number of reachable configurations for the
composition of several automata, each automaton with one clock, are given in the first row. The
second row contains the results obtained using our on-the-fly algorithm and the third row indicates
the explosion of the representation for the intermediate results within the computation if storing all
the states. On-the-fly computation means to check all reachable configurations without storing the
whole set.

Number of components 4 8 16 32 6

Number of reachable configurations 3.3 -10°| 1.1-10'| 1.2.10%%| 1.5-10%*| 2.2-10%
Time, on-the-fly computation 2.2 4.5 11 30 9

Time, storing all configurations 3.0 17 MO

Table 3. Time for computation of all reachable configurations of thve state example (foru; =

12,1; = 9).

Figure 6 indicates the fast growing of the representation for the intermediate sets (i.e. the largest
intermediate BDD before a time transition is taken) within the computation if storing all the config-

urations. Although the components have no communication between each other, their configurations
depend on each other because of the time transition. The on-the-fly version benefits from the fact
that the configurations on a particular point in time are independent from each other (maximal BDD

size is less than 100 nodes, cf. Figure 7). We have to refer to a more formal paper for a detailed
description and the proof of termination for our on-the-fly algorithm [BNO1].

140000 7
120000
100000
80000
60000
40000
20000
0

nodes

Number of BDD

0 10 20 30 40 50 60 70 80 90 100

Number of steps to reach fixed point

Fig. 6. The number of nodes of the BDD during thél-set computatiorfTwoState§.

500 7
400
300
200

100
, eftaditedh AN AMtbet A thatins

0 10 20 30 40 50 60 70 80 90 100

Number of BDD
nodes

Number of steps to reach fixed point

Fig. 7. The number of nodes of the BDD during the computation of the reachable configurations
usingon-the-fly computatiofifwoState8.

4.2 Refinement Check

Production cell. To validate the practical relevance of our tool using a more realistic case study, we
developed a CTA model of a production cell, which is similar to the Lewerentz/Lindner production
cell [LL95]. This system consists of 20 machines and belts with 44 sensors and 28 motors. We
modeled the system as modular composition of several belts, turntables and machines, including 45
timed automata with 22 clocks.

For the measurement of the throughput, i.e. how long does a piece need to go through the pro-
duction cycle, we modeled each belt to be able to measure the time of transportation using a clock.
For the verification process we can fade out some details of the machines. To verify a safety property,
e.g. 'the drilling machine must be off if the transport belt is not off’, we verify at first that the timed
version of the transport belt implements an untimed version by checking the existence of a simulation
relation. Now we can verify the safety property of the model using that smaller untimed version for
transport belts. Table 4 compares the measurements for the following concrete verification tasks: In
the first experiment we analyzed the safety property of the system using a timed model for the sensor
instances. In the second experiment we analyzed the system using an untimed version for the sensors.
It shows that an abstraction within one small part of the system has a big impact on the computation
time. The last row presents the computation time for the simulation check. Because the sensor model
is a small part of the whole system this verification task does not need much time.

Simple mutex protocol. For illustration we use the verification of a very simple protocol for
mutual exclusion. Each process has three statagitical, wait andcritical. Going fromuncritical

Verification task Computation time
System using 'TimedSensor’ to model sensofs 1099
System using 'UntimedSensor’ to model sensors 556
'TimedSensor’ refines 'UntimedSensor’ \ 0.5

Table 4. Verification of a safety property for thgroduction cell.

to wait it sends a signannounceo its scheduler. The scheduler has to decide whether the process
can use the exclusive resource. If yes, then the scheduler sends theskgatledgéo the process.

Now the process can use the resource in its critical section. Sending argigaakto the scheduler

the process frees the resource. Each scheduler controls (encapsulated) two children (either a process
or a scheduler again), and the scheduler itself behaves exactly like a process to its environment. Thus,
we can build up a tree consisting of schedulers (nodes) and processes (leafs).

For the verification of the mutual exclusion property we could verify the product automaton for
the flattened composition using reachability analysis, but it becomes unfeasable using a lot of pro-
cesses. Applying an inductive proof we can verify the mutual exclusion property for an initial number
of processes using reachability analysis (start of induction). For one process it is trivial even without
any tool. Assuming that the property is fulfilled for two children (inductive hypothesis) we can con-
clude that the property is also fulfilled for the scheduler that contains these two children (inductive
step). For the inductive step we use the existence of a simulation relation between the scheduler and
the children, i.e. the scheduler implements the child. The verification that 'SchedulerWith2Processes’
refines 'OneProcess’ needs 0.5 seconds computation time.

4.3 Status of the project

The tool implementation of reachability analysis is completed for both representations, DDM
and BDD. The current version of Rabbit contains refinement checking for (closed) timed au-
tomata. The objective of the flexible architecture is to serve as a framework for further explo-
ration of algorithms and data structures belonging to verification of hybrid and timed systems. The
tool Rabbit and the related papers are available fratp://www-sst.informatik.tu-
cottbus.de/Rabbit

Because of the lack of examples reflecting real-world systems, we built a Fischer-Technik model
of a production cell consisting of 20 machines and belts with 44 sensors and 28 motors. Our work is
now focused on validating different verification methods for the CTA model of this system. Another
question within this context is whether it is possible to analyze ’large’ hybrid systems in a way that
we at first derive a timed version of the model by proving the refinement relation between timed and
hybrid modules to get a more abstract model. Then we can use the efficient analysis of (closed) timed
automata or we have to do further abstraction steps. An open research task is to investigate efficient
representations combining the advantages of BDDs with the advantages of difference bound matrices
(DBM).

Acknowledgments

We thank Andreas Noack for his valuable work within his diploma thesis, and we thank Heinrich
Rust and Claus Lewerentz for discussions.

References

ugene Asarin, Marius Bozga, Alain Kerbat, Oded Maler, Amir Pnueli, and Anne Rasse. Data-structures
ABK T97] E Asarin, Marius B Alain Kerbat, Oded Maler, Amir P li dA R D
for the verification of timed automata. In O. Maler, editBroceedings of the 1st International Workshop on
Hybrid and Real-Time Systems (HART'IMCS 1201, pages 346—360. Springer-Verlag, 1997.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automatdheoretical Computer Scienc£26:183—-235,
1994.

[AGHT00] R. Alur, R. Grosu, Y. Hur, V. Kumar, and |. Lee. Modular specification of hybrib systems in CHARON. In
Proceedings of the 3th International Workshop on Computation and Control (HSCC, Zi@8purgh, PA,
2000.

[AHM T98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran. MOCHA: Modularity in
model checking. IrProceedings of the 10th International Conference on Computer-aided Verification (CAV
1998) LNCS 1427, pages 521-525. Springer-Verlag, 1998.

[AMP98] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in timed automata and digital
circuits. In R. de Simone and D. Sangiorgi, editdPspceedings of the 9th International Conference on
Concurrency Theory (CONCUR'98)NCS 1466, pages 470-484. Springer-Verlag, 1998.

[BeyOla] Dirk Beyer. Efficient reachability analysis and refinement checking of timed automata using BO®Ys: In
ceedings of the 11th Advanced Research Working Conference on Correct Hardware Design and Verification
Methods (CHARME 2001, Livingstoi)NCS 2144. Springer-Verlag, Berlin, 2001.

[BeyO1b] Dirk Beyer. Improvements in BDD-based reachability analysis of timed automata. In Jose Nuno Oliveira
and Pamela Zave, editoRroceedings of the 10th International Symposium of Formal Methods Europe (FME
2001, Berlin): Formal Methods for Increasing Software ProductiMitCS 2021, pages 318-343. Springer-
Verlag, Berlin, 2001.

[BMPY97] Marius Bozga, Oded Maler, Amir Pnueli, and Sergio Yovine. Some progress on the symbolic verification of
timed automata. In O. Grumberg, editBroceedings of the 9th International Conference on Computer Aided
Verification (CAV’97) LNCS 1254, pages 179-190. Springer-Verlag, 1997.

[BNO1] Dirk Beyer and Andreas Noack. Efficient verification of timed automata using BDDs. In Stefania Gnesi and
Ulrich Ultes-Nitsche, editor®2roceedings of the 6th International ERCIM Workshop on Formal Methods for
Industrial Critical Systems (FMICS 2001, Paripages 95-113. INRIA, Paris, 2001.

[BR98] Dirk Beyer and Heinrich Rust. Modeling a production cell as a distributed real-time system with Cottbus Timed
Automata. In Hartmut léhig and Peter Langendér, editors,Tagungsband Formale Beschreibungstechniken
fur verteilte Systeme (FBT 1998, Cotthysges 148-159. Shaker Verlag, Aachen, 1998.

[BRO1] Dirk Beyer and Heinrich Rust. Cottbus Timed Automata: Formal definition and semantics. In Charles Rattray,
Miroslav Sveda, and Jerzy Rozenblit, editdPspceedings of the 2nd IEEE/IFIP Joint Workshop on Formal
Specifications of Computer-Based Systems (FSCBS 2001, Washingtonp&g€s)75-87, Stirling, 2001.

[DHWT92] David L. Dill, Alan J. Hu, and Howard Wong-Toi. Checking for language inclusion using simulation pre-
orders. In A. Skou K. Larsen, editdRroceedings of the 3rd International Workshop on Computer Aided
Verification (CAV’91) LNCS 575, pages 255-265. Springer-Verlag, 1992.

[FP96] Komei Fukuda and Alain Prodon. Double description method revisitedCombinatorics and Computer
ScienceLNCS 1120, pages 91-111. Springer-Verlag, 1996.

[GPV94] Aleks Gillu, Anuj Puri, and Pravin Varaiya. Discretization of timed automataPioceedings of the 33rd
IEEE Conference on Decision and Contrphges 957-958, 1994.

[Hen96] Thomas A. Henzinger. The theory of hybrid automataProceedings of the 11th Annual IEEE Symposium
on Logic in Computer Science (LICS 199p3ges 278-292, 1996.

[Hen00] Thomas A. Henzinger. Masaccio: a formal model for embedded componenBoceedings of the First
IFIP International Conference on Theoretical Computer Science (TCS2000)S 1872, pages 549-563.
Springer-Verlag, 2000.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clock8®deedings of the
19th International Colloquium on Automata, Languages, and Programming (ICALPLOES 623, pages
545-558. Springer-Verlag, 1992.

[LL95] Claus Lewerentz and Thomas Lindner, editorformal Development of Reactive SystemsNCS 891.
Springer-Verlag, Berlin, Heidelberg, 1995.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and symbolic model-checking of real-time
systems. IrProceedings of the 16th IEEE Real-Time Systems Symposium (RTH8ES) 7687, 1995.

[Pop91] Louchka Popova. On time petri nelsurnal of Information Processing, E|R7(4):227-244, 1991.

[RABT95] Rajeev K. Ranjan, Adnan Aziz, Robert K. Brayton, Carl Pixley, and Bernhard Plessier. Efficient BDD algo-
rithms for synthesizing and verifying finite state machinesMorkshop Notes of the IEEE/ACM International
Workshop on Logic Synthesis (IWLS'95995.

[Wan00] Farn Wang. Efficient data structure for fully symbolic verification of real-time software systems. In S. Graf
and M. |. Schwartzbach, editoBroceedings of the 6th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2Q00)S 1785, pages 157-171. Springer-Verlag, 2000.

