
CrocoPat: Efficient Pattern Analysis in Object-Oriented Programs

Dirk Beyer and Claus Lewerentz
Software Systems Engineering Research Group

Technical University Cottbus, Germany
{db | cl}@informatik.tu-cottbus.de

1. Introduction

The engineer in a design analysis process has two major
objectives: he has to comprehend the architecture and the
design of the system, and he has to assess the quality of the
software system. Both tasks need effective tool support for
todays large software systems.

In the comprehension process, the engineer has to iden-
tify structures which are important for the understanding of
the design. These structures can be described by patterns.
The most famous example for such patterns are the object-
oriented design patterns [6], which represent good design
solutions on a more abstract level, or anti-patterns, describ-
ing problematic program structures (cf. bad smells [5]). The
detection of such structures considerably supports design
comprehension.

In the context of this paper, patterns are formally de-
fined using the notion of partial subgraphs and their rela-
tional specification.

Patterns can be helpful also for quality assessment of
the design. By defining anti-patterns which represent prob-
lematic pieces of design and by identifying the instances of
such patterns automatically, the process of assessment can
be accelerated. Patterns for design weakness which should
be inspected are e.g. cycles in the call graph, role identity of
classes, degenerate inheritance, and ”curious” superclasses.
From recognized design weaknesses the engineer can derive
hints for the improvement of the quality in a restructuring
phase.

Automatic pattern-based recognition of design weakness
is a research topic since almost 10 years. Reports about ex-
periments with existing approaches reveal two major prob-
lems: A notation for easy and flexible specification of the
pattern is missing; only a restricted set of patterns is applica-
ble because of the limitations of the specification language.
Performance improvement is needed, because the compu-
tation time of existing tools is to high to be acceptable for
large real-world systems.

2. The tool CrocoPat

The tool CrocoPat satisfies the following three require-
ments: (1) The analysis is done automatically by the tool,
i.e. without user interaction. (2) The properties of a system
are specified in an easy and flexible way because the pat-
terns are described by relational expressions. On demand
the user is able to define new patterns he is interested in,
or to change existing patterns to solve specific problems.
(3) The tool is able to analyze large object-oriented pro-
grams (1’000 to 10’000 classes) in acceptable time.

In terms of graph theory, the tool CrocoPat does sub-
graph search. In terms of relational algebra, the tool
searches for tuples fulfilling a given predicative expression.
The approach is not bound to a specific meta model of the
program: the expressions are based on standard operators
and the tool does not use the meaning of the relations for
analysis. However, the call relation and the inheritance re-
lation on the three levels of packages, classes, and methods
are often sufficient for the design recovery (cf. [4]).

All relations are represented by binary decision dia-
grams (BDDs) [3]. BDDs give canonical and compact rep-
resentations of sets and allow for an efficient implemen-
tation of operations like intersection, union and existential
quantification. More details about the tool and the pattern
specification language are documented in [1].

3. Example applications

GoF design patterns [6]. The use of design patterns
indicate good design because these pattern are known to
support flexible and understandable structures. Thus, to
support design understanding it can be helpful to find in-
stances of design patterns within an object-oriented pro-
gram. For identifying all instances of the Composite pat-
tern the computation of all tuples (x, y, z, l) is necessary,
with x is a Client class, y is the Component class, z is a
Composite class, and l is a Leaf class of the pattern, i.e.
(x, y) ∈ Call ∧ (z, y) ∈ Inherit ∧ (z, y) ∈ Contain
∧ ((l, y) ∈ Inherit ∧ (l, y) �∈ Contain).

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Circle. A class x should be understandable indepen-
dently from the classes which call a method of class x. To
understand a class, we have to understand all classes which
it uses directly or indirectly. If one of those classes is the
class itself then the understanding is complicated. Circles
can be introduced during the evolution of a program if fur-
ther functionality is added. The experience shows that the
number of circles decreases during restructuring activities.
Thus, for analyzing the occurrence of circles in the call re-
lation we have to compute all tuples (x) with class x occurs
in a circle.

Role identity. Another interesting design analysis ques-
tion is whether there exist classes with identical roles,
i.e. two classes use the same classes and are used by the
same classes. Classes with identical roles occur in polymor-
phic design structures as subclasses or when an old class is
replaced by a new one, but the old class is not removed from
the object-oriented program.

Degenerate inheritance. The wrong use of inheritance
often leads to misunderstandings and bad design. Let X be
a class which implements an interface Y , and class S ’ex-
tends’ class X and ’implements’ interface Y . We have to
pay attention to such design structures because S does not
really implement the interface Y , rather it uses the imple-
mentation given by class X . One suggestion would be to
omit the ’implements’ relation to interface Y . The design
question is whether the direct inheritance is redundant or
not. We search for a set of classes {y, x, u} with the con-
dition (x, y) ∈ Inherit+ ∧ (u, x) ∈ Inherit ∧ (u, y) ∈
Inherit, i.e. a subclass inherits directly and indirectly from
a superclass.

Curious superclasses. The goal of separating the in-
terface from its implementation is that the interface (super-
class) should not know anything about their implementation
(subclass). Thus, we have to pay attention to superclasses
which call or contain instances of their subclasses.

4. Summary

CrocoPat is a new tool for efficient pattern-based analy-
sis of large object-oriented programs. Patterns can be flexi-
bly specified by expressions based on standard mathematics
provided by the tool language. It is easy to specify patterns
in different variants in a compact form, adapted to specific
situations.

The software system which is to be analyzed is inter-
preted in terms of relations, and the patterns are described
by relational expressions over these relations. The tool rep-
resents the abstract model of the program using a data struc-
ture based on binary decision diagrams, which are proved
to allow for an efficient recognition also for large systems
comprising several MLOC source code.

System No. of classes LOC Closure
Mozilla 4’818 3’236’875 73 s
JWAM 999 167’178 3.0 s
wxWindows 378 217’832 1.1 s

Table 1. Performance of transitive closure
computation for some example systems

The tool can help to improve the productivity of com-
prehension and assessment processes by using it in combi-
nation with other tools for program analysis. We use the
tool in combination with tools for software measurement
and navigation [2] and software visualization [7].

To demonstrate the performance of the tool, Table 1 re-
ports the computation times of constructing the transitive
closure of the call relation for some example systems. Each
row of the table indicates the name of the system, the num-
ber of classes of the system, the number of lines of code
(LOC) and the time needed to compute the transitive clo-
sure of the call relation (TC). The computation times are
obtained on a Pentium III processor with 850 MHz and
50 MB RAM for the BDD package. The most complex
operations are the computation of transitive closures and
complements of large relations. Both operations are not
supported by SQL-based approaches (cf. QualiT [2]) and
can not be computed efficiently using the Prolog-based ap-
proaches (cf. Goose [4]).

References

[1] D. Beyer and C. Lewerentz. CrocoPat: A tool for efficient
pattern recognition in object-oriented programs. Technical
Report I-04/2001, BTU Cottbus, 2003.

[2] W. R. Bischofberger. QualiT: User’s Guide and Reference
Manual. Software Tomography GmbH, http://www.software-
tomography.com, 2003.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transaction on Computers, C-
35(8):677–691, 1986.

[4] O. Ciupke. Automatic detection of design problems in object-
oriented reengineering. In Proceedings of the Technology of
Object-Oriented Languages and Systems (TOOLS 30), pages
18–32. IEEE Computer Society, 1999.

[5] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison Wesley Longman, 1999.

[6] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlis-
sides. Design patterns: Abstraction and reuse of object-
oriented design. In O. Nierstrasz, editor, Proceedings of the
7th European Conference on Object-Oriented Programming
(ECOOP 1993), LNCS 707, pages 406–431. Springer-Verlag,
Berlin, 1993.

[7] C. Lewerentz and A. Noack. CrocoCosmos – 3D-
visualization of large object-oriented programs. In M. Jünger
and P. Mutzel, editors, Graph Drawing Software. Springer-
Verlag, 2003.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

