
An Eclipse Plug-in for Model Checking∗

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala
Electrical Engineering and Computer Sciences

University of California, Berkeley, USA

Rupak Majumdar
Computer Science Department

University of California, Los Angeles, USA

Abstract

While model checking has been successful in uncover-
ing subtle bugs in code, its adoption in software engineer-
ing practice has been hampered by the absence of a sim-
ple interface to the programmer in an integrated develop-
ment environment. We describe an integration of the soft-
ware model checker BLAST into the Eclipse development
environment. We provide a verification interface for prac-
tical solutions for some typical program analysis problems
—assertion checking, reachability analysis, dead code anal-
ysis, and test generation— directly on the source code. The
analysis is completely automatic, and assumes no knowl-
edge of model checking or formal notation. Moreover, the
interface supports incremental program verification to sup-
port incremental design and evolution of code.

1. Introduction and Motivation

Model checking is a well known technique for ensuring
correctness of abstract models. However, its potential in im-
proving software quality has, until now, been largely unre-
alized. This is mainly because of three reasons. First, too
much effort is required in manually constructing an abstract
model. Second, such models often track too many program
facts, leading to state explosion and failure to scale to large
programs. Third, to the engineer, there still remains the bar-
rier of complicated formal notation that must be mastered.

During the last few years several new techniques have
evolved that, to a large extent, ameliorate the first two
problems. First, automatic counterexample-driven refine-
ment methods [3] can construct abstract models directly
from source code in a property guided manner. Second, non-
uniform abstractions [6] control the state space explosion,
and automatically select the minimal information required
to prove a property, thus allowing model checking analysis
to scale to large programs. However, little work has been

∗ This research was supported in part by the NSF grants CCR-0085949,
CCR-0234690, and ITR-0326577.

done to incorporate a model checker into the software de-
sign flow. The model checker is still a separate tool that the
engineer must master. To overcome this problem, we have
designed a plug-in for the model checker BLAST [6] into the
Eclipse Development Environment1, which allows the engi-
neer to apply sophisticated techniques for assuring software
quality through a simple, easy-to-use interface for common
program analysis tasks.

The dominant software quality assurance tool used to-
day is testing. Unfortunately, for complex systems, testing
is often inadequate as a tool to guarantee system reliabil-
ity. Testing cannot prove the absence of errors, only indi-
cate their presence. In contrast, model checking can provide
a certificate of correctness, which can serve as the guarantee
the engineer wants to have. Moreover, model checking does
not require generating and evaluating test sets manually. At
the same time, model checking may not scale to large pro-
grams and data intensive properties. Hence, we cannot sim-
ply replace testing by model checking. Rather we propose
to complement the quality assurance process by applying
model checking techniques in addition to traditional test-
ing. In our plug-in, model checking is used to support both
direct verification of correctness during program develop-
ment, as well as to generate test sets during the test phase.

Our interface to the model checker allows the program-
mer to apply the following analysis tasks during program
development and verification: assertion checking, reacha-
bility analysis, dead code analysis, and test case generation.

Assertions, or invariants, have been used traditionally
as a means to improve software quality by making pro-
grammer assumptions about correct executions explicit in
the program [7]. Annotating programs with assertions is an
important software engineering practice since many years.
First, they make hidden faults visible at run-time. Second,
they provide predicates for test generation, and often re-
duce test cases. Third, a proved assertion serves as program
documentation in later re-engineering. Assertions are there-
fore introduced by the programmer or tester, and serve as
lightweight specifications for correct behavior. Most lan-

1 http://www.eclipse.org

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04)
1092-8138/04 $ 20.00 © 2004 IEEE

guages already provide support to add assertions, which
are converted to run-time checks by the compiler. However,
the run-time checks may degrade the performance of the
program, so in practice, these checks are often turned off.
The model checker provides a technique to statically check
whether an assertion holds. Once we have proved that an as-
sertion holds, the corresponding run-time check could auto-
matically be removed during the compilation process.

Reachability of program locations is a basic program
analysis question: we ask if there is some execution of
the program that reaches a certain label. All safety verifi-
cation questions on a program can be reduced to reacha-
bility questions on an instrumented program. In fact, the
basic engine of the BLAST model checker implements a
program location reachability algorithm, and safety spec-
ifications are internally compiled to a reachability query.
The model checker provides precise answers to reachabil-
ity queries. The reachability query for location � returns a
feasible program execution trace to � if it is reachable, and
returns a proof that � is unreachable otherwise.2 Moreover,
if a location is reachable, the program trace provided by the
model checker can be used to generate an appropriate test
case. Executing the test case causes program execution to
reach the target location.

Dead (or unreachable) code analysis is associated with
program reachability: a program location is dead if there is
no execution of the program that reaches the location. Since
dead statements do not add functionality, and can waste
considerable amounts of memory [8], the analysis of un-
reachable code is an important task in software engineer-
ing. Dead code often indicates wrong use of predicates in
conditional branching, or obsolete code that has not been
deleted. In contrast to static control flow based tools, the
model checker can provide a precise analysis that checks
exactly which locations are unreachable. Again, for reach-
able locations, the tool generates appropriate test cases.

Test case generation asks, given a program location �, to
produce an input that takes the program execution to the lo-
cation �. Our plug-in provides test cases with node cover-
age criterion. In principle, we can handle other testing cri-
teria as well.

Supporting common program analysis tasks is only one
aspect of a software quality toolkit. Software evolves, and
the toolkit must provide support for evolving code. Do-
ing the analysis from scratch every time the code changes
is usually too expensive. To support repeated verification
during incremental software development efficiently, our
model checker provides an incremental verification facil-

2 In theory, the reachability problem for a language like C is undecid-
able, so our analysis is not guaranteed to terminate. In practice, we
find that non-termination is usually due to scalability, or limited ex-
pressive power of the predicate language, rather than to inherent un-
decidability issues.

ity [5]. The system stores the abstract model for each verifi-
cation task. When the model checker is invoked to re-check
a property on a later version of the program, it changes
the abstract model incrementally for the pieces of code that
have been modified.

2. Incremental Software Verification

Model Checking. BLAST is a verification tool for checking
safety properties of C programs based on an abstract-check-
refine loop [3] and lazy abstraction [6]. The abstract-check-
refine loop starts with a coarse abstraction of the program,
and iteratively checks the abstract program against the spec-
ification, refining the abstraction whenever there is a spuri-
ous bug in the abstract program owing to the imprecision of
the model. This goes on until the program is proved safe,
or a bug is found. Lazy abstraction is a tightly coupled im-
plementation of this iterative process that searches the ab-
stract space on the fly, and only refines the coarse abstrac-
tion along the path of the spurious bug, leaving the abstrac-
tion in other parts unchanged. This results in an inhomoge-
neous abstraction of the model, with fewer facts tracked at
each point. Lazy abstraction offers a significant advantage
in performance by keeping the abstract state space small,
and by avoiding repetition of work from iteration to itera-
tion within the loop.

Incremental Verification. In incremental program devel-
opment, code is developed in conjunction with tests, and
as code evolves, the tester writes new tests and ensures that
old tests still run (and produce the right output) [1] (“regres-
sion testing”). Similarly, in incremental verification, the en-
gineer writes a suite of properties that should hold of the
system, and when code changes, the old properties are ver-
ified again to ensure they still hold. However, since verifi-
cation by model checking is expensive, the verification en-
vironment must support incremental program development
by stepwise refinement by analyzing which properties may
be affected by a change in code, and by optimizing model
checking effort by saving information from previous runs.

The idea behind our approach of incremental verifica-
tion is similar to selective regression testing in that we want
to spend computational effort only for changed parts of the
program. Incremental verification in BLAST maintains the
verification tasks, and also information from previous ver-
ification cycles [5]. The tool maintains the status (success
or failure — i.e., whether the property holds or does not
hold) and the abstraction computed by the model checker
in the previous run for each verification task. The abstrac-
tion is a map from program locations to predicates over
program states. This information is reused in the follow-
ing way. When the code changes, the model checker finds
which parts of the previous proof of safety can be affected
by the change, and starts model checking from these parts,

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04)
1092-8138/04 $ 20.00 © 2004 IEEE

using the saved abstraction as the initial abstraction. The
lazy abstraction loop ensures that little work is done if the
saved abstraction is already precise enough to prove the
property for the new program, and that the abstraction is
refined for the changed program if direct reuse of the previ-
ous abstraction is not possible.

3. Verification Tasks

For effective verification, the engineer has to define a set
of properties, which has to be maintained for later reuse
(similar to regression tests). For testing, testing frameworks
(e.g., [4]) are available that make the definition and main-
tenance of tests easy by providing an interface for defin-
ing, managing, and running test suites. In order to be effec-
tive, the verification system should similarly provide an ef-
fective way to manage (i.e., create, verify, maintain) verifi-
cation tasks. Our plug-in provides an easy interface to the
programmer to define and use verification tasks. A verifica-
tion task specifies the object (source code files), the safety
property, and all parameters and results for one single in-
vocation of the model checking engine. Each verification
task maintains a status (checked, safe, unsafe, unchecked, or
changed). Different verification tasks can exist for one piece
of code, and the different tasks are executable independently
of each other. After each execution of a task, or each change
in the source code, the status is updated automatically. For
example, when a verification task is defined for the first
time, its status is unchecked. When it is executed, its sta-
tus changes to either checked and safe (the property holds),
or checked and unsafe (the property does not hold). When
the programmer updates part of the code, the status of a ver-
ification task changes to changed, and it must be executed
again to confirm whether the property holds.

The advantages of verification tasks are threefold.
(1) The specification of the program can be divided
into many small properties, each in its own verifica-
tion task. This gives more flexibility to the engineer
and allows reasonable run times. (2) Every verifica-
tion task can be executed separately and independently
from each other. This allows us to parallelize the veri-
fication effort and to store customized abstractions for
each part of the program. (3) The maintenance of infor-
mation from previous runs of the model checker enables
incremental verification.

A verification task contains the following information:
a name to identify the task, the type of the task (assertion
checking, reachability analysis, dead code analysis, or test
generation), the file containing the source code, the name of
the Eclipse project that contains the file, the function name,
and the verification status. The verification task manager
can be used to define, execute, and review results for dif-
ferent verification tasks. Figure 1 shows an actual example

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

int division(int dividend, int divisor) {
int remainder = dividend;
int quotient = 0;
L2: assert(divisor > 0);
L3: //assert(dividend > 0);
while (divisor <= remainder) {

remainder -= divisor;
++quotient;

}
return quotient;

}
int main(int argc, char *argv []) {

int d1, d2;
if (argc < 3) { exit(EXIT_FAILURE); }
d1 = atoi(argv[1]);
d2 = atoi(argv[2]);
L1: if (d2 <= 0) return 2;
printf("%d", division(d1, d2));
return 0;

}

Figure 2. Positive integer division [7]

of a verification task list and the context menu for the high-
lighted task.

In the following, we explain the different kinds of ver-
ification tasks. As a running example, we use a small al-
gorithm for positive integer division by reducing the oper-
ation to subtraction and increment [7]. Figure 2 shows the
source code of the program. The function main transforms
the command line arguments to integers and calls the divi-
sion function to get the result.

Assertion Checking. An assertion is a predicate that de-
fines an invariant for a particular program location, i.e., the
predicate has to be true every time the control flow reaches
this location. Assertions are introduced into source code us-
ing the assert(e) statement. The assertion checking ver-
ification task takes as input a name for the task, the file con-
taining the source code, the name of the Eclipse project, and
the name of a function foo from which program execu-
tion is assumed to start. Figure 3 shows the property dialog
of the plug-in for assertion checking. The assertion check-
ing task checks if there is some feasible program execution
to a failing assert statement. If there is no such execution,
all assertions in the program hold, and the status of the task
is automatically updated to safe. On the other hand, if the
model checker finds a feasible execution to an assert state-
ment such that the condition asserted does not hold, the sta-
tus is set to unsafe and the model checker provides an error
trace that indicates a possible path that leads to the assertion
being violated. Internally, assertion checking is mapped to
model checking in the following way. The assert function is
written as:

void assert (bool e) {
if (!b) { ERROR: __assert(); }

}

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04)
1092-8138/04 $ 20.00 © 2004 IEEE

Figure 1. Verification task list within the Eclipse plug-in

Figure 3. Dialog for verification task properties

The model checker analyzes the program to check if the lo-
cation labeled with ERROR can be reached on some execu-
tion path starting from the function foo defined in the ver-
ification task.

Consider an assertion verification task starting from
main in the example. BLAST proves that assertion di-
visor > 0 (at label L2) cannot be violated. The ab-
stract predicates divisor>0 and d2>0 are saved. Sup-
pose the user now adds the assertion dividend >0 (at
label L3) to ensure that the function terminates on all in-
puts. BLAST shows that this assertion may be violated. This
is because the function main explicitly checks that the di-
visor is greater than zero, but does not check the divi-
dend. The user can fix this bug by adding a second check
in main similar to L1. This time, the model checker starts
with the predicates divisor>0 and d2>0 and avoids
work to show divisor>0 still holds.

Reachability Analysis. The reachability question asks, for
a given function of a C program and a given location (de-

fined by a C label), whether there exists an execution of the
program leading to the specified location. The input to the
reachability verification task is a name for the task, the file
containing the source code, the name of the Eclipse project,
the name of a function foo from which the reachability
analysis will start, and a label L in the program (possibly
in a function different from foo. When executed, the sta-
tus of the task is changed to unsafe if the label L is reach-
able on some execution starting from the function foo, and
to safe if no such execution exists. In case the label is reach-
able, the model checker also outputs a feasible execution
trace from foo to the label L.

Internally, the BLAST model checker implements an al-
gorithm for reachability analysis that takes a reachability
query and returns safe (and optionally a proof) if the loca-
tion is not reachable, and unsafe (and an error trace to the
location) if it is reachable. The engineer can use this analy-
sis to prove that a bad location is not reachable, or to com-
pute a path to the location for debugging purposes. As a

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04)
1092-8138/04 $ 20.00 © 2004 IEEE

1

2

Block(remainder = dividend;quotient = 0;)

4

Pred(Not (divisor>0))

3

Pred(divisor>0)

9

FunctionCall(__assert())

Skip

6

Pred(Not (divisor<=remainder))

5

Pred(divisor<=remainder)

8

Block(return quotient;)

Block(remainder -= divisor; ++quotient;)

Figure 4. Control flow automaton (division)

positive application, reachability provides an example sce-
nario that causes program execution to visit a particular lo-
cation.

Dead Code Analysis. Dead (or unreachable) code analysis
is a special form of reachability analysis that finds pieces of
code that are never executed on any path. The input to the
dead code analysis verification task is a name for the task,
the file containing the source code, the name of the Eclipse
project, and the name of a function foo. The output of the
tool is a list of program locations that can be reached on
some actual execution path starting from foo, and a list
of program locations that are unreachable. For each reach-
able program location, the tool also provides an execution
trace leading to that location. Internally, this is translated to
a sequence of calls to the reachability engine for each node.
Again, the solution is exact, i.e., there are neither false pos-
itives nor false negatives.

Figure 4 shows the control flow automaton for function
division in our example, when we run dead code analy-
sis starting from main. Filled nodes are reachable and un-
filled nodes are not reachable. As expected, the call to func-
tion assert() (corresponding to the violation of the as-
sertion at L2) is unreachable.

Test Generation. Given a program location L, the test gen-
eration problem is to generate a sequence of input values
such that program execution with these input values reaches
L. The input to the test generation task is a name for the task,
the name of the project, the source files, and a function foo.
When the test generation task is executed, it generates a file
with test vectors, one for each program location reachable
from foo. Internally, the model checker runs a reachabil-
ity query for each location. If the reachability query gen-
erates a trace to the location, the test generator mines this
trace to generate a test case [2]. Executing the test case will
cause program execution to reach the target location. By de-
fault, BLAST generates a set of test vectors for node cover-
age. Additionally, a predicate can be given to restrict the lo-
cations to be covered.

On executing a test generation task starting from di-
vision, BLAST outputs three test vectors: (1,1) for the
path 〈1,2,3,5〉, which enters the body of the while loop,
(0,1) for the path 〈1,2,3,6,8〉, which does not enter
the while body, and (0,0) for the path 〈1,2,4〉, failing
the assertion divisor>0. The numbers refer to the corre-
sponding nodes in Figure 4. A test case for the failing asser-
tion is included, because we considered the function di-
vision in isolation.

4. Conclusion

We have shown how model checking can be used by
a software engineer by providing an environment where
the functional power of model checking is just a click
away. We demonstrated that BLAST can be integrated into
an external software development environment. We hide
the model checking internals behind a very simple set of
use cases: create several verification tasks, execute them,
take a look at the results. We provide three simple, but
common and useful types of verification tasks: checking
that all assertions are fulfilled, finding an example trace
to a program location, and finding all pieces of code that
can never be executed (dead code). Besides this, we in-
tegrated test generation into the user interface to provide
simple access to example executions. We applied these
tools to C programs up to 30 K lines of code in [2].
The implementation of the Eclipse plug-in and the in-
cremental model checking engine is freely available from
http://www.eecs.berkeley.edu/∼blast.

References

[1] K. Beck. Test Driven Development: By Example. Addison-
Wesley, 2002.

[2] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majum-
dar. Generating tests from counterexamples. In Proc. ICSE.
IEEE, 2004.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc. CAV,
LNCS 1855, pages 154–169. Springer, 2000.

[4] E. Gamma and K. Beck. JUnit: A cook’s tour. Java Report,
4(5):27–38, 1999.

[5] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. San-
vido. Extreme model checking. In International Symposium
on Verification: Theory and Practice, LNCS 2772, pages 332–
358. Springer, 2003.

[6] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Proc. POPL, pages 58–70. ACM, 2002.

[7] C. Hoare. Assertions: A personal perspective. IEEE Annals
of the History of Computing, 25(2):14–25, 2003.

[8] P. Sweeney and F. Tip. A study of dead data members in C++
applications. In Proc. PLDI, pages 324–332, 1998.

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04)
1092-8138/04 $ 20.00 © 2004 IEEE

