
Mining Co-Change Clusters

from Version Repositories

Dirk Beyer Andreas Noack

Technical Report No. IC/2005/003
January 26, 2005

Ecole Polytechnique Fédérale de Lausanne
Faculté Informatique & Communications
CH-1015 Lausanne, Switzerland

Mining Co-Change Clusters from Version Repositories

Dirk Beyer
Laboratoire de Modèles et Théorie de Calculs

Faculté Informatique & Communications
Ecole Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland
dirk.beyer@epfl.ch

Andreas Noack
Lehrstuhl Software-Systemtechnik
Institut für Informatik, Fakultät 1

Brandenburgische Technische Universität
D-03013 Cottbus, Germany
an@informatik.tu-cottbus.de

Abstract

Clusters of software artifacts that are frequently changed
together are subsystem candidates, because one of the main
goals of software design is to make changes local. The con-
tribution of this paper is a visualization-based method that
supports the identification of such clusters. First, we define
the co-change graph as a simple but powerful model of com-
mon changes of software artifacts, and describe how to ex-
tract the graph from version control repositories. Second,
we introduce an energy model for computing force-directed
layouts of co-change graphs. The resulting layouts have a
well-defined interpretation in terms of the structure of the
visualized graph, and clearly reveal groups of frequently
co-changed artifacts. We evaluate our method by compar-
ing the layouts for three example projects with authoritative
subsystem decompositions.

Classification: D.2.7 Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering, D.2.7 Distribution, Maintenance, and En-
hancement – Version control, G.2.2 Graph Theory, I.5.3
Clustering

Keywords: reverse engineering, program comprehen-
sion, software clustering, software visualization, software
evolution analysis, force-directed graph layout

1. Introduction

Grouping artifacts that are often changed together into
subsystems has significant benefits. Changing a member of
such a group is likely to trigger changes in other mem-
bers, and understanding one member of the group often im-
proves the understanding of other members. When such a
group forms a subsystem, changes and comprehension pro-
cesses are more likely to involve only one or few subsys-
tems, and are thus less expensive and error-prone. The ben-
efits are even larger when program sources are grouped not

only with other program sources, but also with documenta-
tion, test cases or configuration data.

The importance of decomposition in the comprehension
and modification of large software systems has lead to the
development of many approaches for the automatic and
semi-automatic clustering of software artifacts. These ap-
proaches can be classified with respect to two criteria: The
underlying model of the software system, and the notion of
clusters.

We introduce a new model of software systems which
is called co-change graph. It is an abstraction of version
control repositories. The vertices of the co-change graph
are software artifacts (such as files or methods) and change
transactions (e.g., commits in terms of CVS), and the edges
connect the change transactions with their participating ar-
tifacts.

Previously, clusterings of software artifacts have been
derived from file names [4, 34], directories in the file sys-
tem [2, 63], tokens occurring in source code and documen-
tation files [34, 47, 48], file ownership [2, 14], and in partic-
ular from syntactic relationships like calls or variable refer-
ences [2, 16, 18, 20, 34, 39, 46, 52, 56, 61, 66]. The change
history of the software system, as modeled by the co-change
graph, promises to be a valuable complement to these in-
formation sources for three reasons. First, past common
changes of software artifacts appear to be relevant to as-
sess the probability of future common changes, but are not
taken into account by the previous approaches. Second, the
co-change graph is not restricted to any particular kind of ar-
tifacts, while syntax-based models like call graphs only in-
clude program source code. Third, the co-change graph can
be extracted efficiently and inexpensively from repositories
of version control systems like CVS. In contrast, the extrac-
tion of syntactic relationships like calls requires advanced
tools that may produce considerably varying results [53], or
may not be available at all for more exotic programming
languages.

We introduce a new clustering method for co-change
graphs which differs from related approaches mainly in two
respects: First, the result of the clustering is not a partition
of the graph vertices into several clusters, but a layout of the
graph vertices (i.e., positions of the graph vertices in two-
or three dimensional space). Second, these layouts have a
clear interpretation.

In our layouts of the co-change graph, artifacts that are
often changed together are placed closely together, while ar-
tifacts that participate in few common change transactions
are placed at larger distances. Empirical studies have shown
that human viewers indeed interpret a close positioning of
vertices in a graph layout as relatedness of the correspond-
ing artifacts [13, 22]. Besides being easily comprehensible,
a graph layout has the advantage of containing more infor-
mation than a partition of the set of artifacts. For example,
a graph layout can show that an artifact lies at the center
of a cluster, at the border of the entire system, or between
two clusters, while a partitioning specifies only the mem-
bership of the artifact in a particular cluster.

The requirements for the graph layouts are systemati-
cally derived from our intuition of co-change clusters, and
the positions of the artifacts in the layouts have a clear inter-
pretation in terms of their common changes. Basically, two
groups of artifacts are placed closely to the degree that they
were changed together more often than random — a no-
tion of clusters similar to ratio cut graph partitioning [64],
which was introduced to software clustering by Mancoridis
et al. [49].

Our model of co-change in software systems and our
clustering method are detailed in Sections 2 and 3. Sec-
tion 4 evaluates the approach by reporting the results of its
application to three software systems. Related work on min-
ing version repositories and clustering is discussed in Sec-
tion 5.

2. The Co-Change Graph

This section introduces the co-change graph, our model
for common changes of software artifacts in version reposi-
tories. Its vertices are software artifacts and change transac-
tions, and its edges connect the change transactions with
their participating artifacts. The co-change graph can be
easily extracted from version repositories. Its simplicity and
its clear correspondence to the modeled software system
ensure the interpretability of results of its analysis, i.e.,
valid and efficient inferences of properties of the modeled
software system from (probably automatically determined)
properties of the model.

After the definition of the co-change graph in the first
subsection, the next two subsections discuss design consid-
erations and extensions. The last subsection describes the

Figure 1. Example co-change graph

process of extracting the co-change graph from repositories
of the version control system CVS.

2.1. Definition

A software artifact is an entity that belongs to a soft-
ware system, e.g., a package, a file, a function, a line of
code, a piece of documentation, or a test case. A version
is the state of a software artifact at a particular point in
time. Version control systems like CVS (Concurrent Ver-
sions System) [17] store versions of software artifacts in
a central repository. The users of a version control system
modify local copies of the software artifacts, and check-in
these changes to the central repository from time to time.
A change transaction is a coherent sequence of check-ins
of several software artifacts. Software artifacts that partici-
pate in the same change transaction are co-changed (com-
monly changed). Some version control systems, most no-
tably CVS, do not store the information which artifacts were
checked-in together. In this case, change transactions have
to be recovered using timestamps and other logged data.

The co-change graph of a given version repository is an
undirected graph (V,E). The set of vertices V of the co-
change graph contains all software artifacts and all change
transactions of the version repository. The set of edges E
contains the undirected edge {c,a} if and only if the arti-
fact a was changed by the transaction c.

Note that the co-change graph is bipartite, i.e., it contains
no edges that connect two change transactions or two soft-
ware artifacts. Figure 1 shows an example co-change graph
with three artifacts and two change transactions, of which
one changed three artifacts, and the other changed two arti-
facts.

For a vertex v of a co-change graph, the number
|{u ∈V | {u,v} ∈ E}| of its adjacent vertices is called the
degree of v and denoted by deg(v). For transaction vertices,
the degree gives the number of artifacts that participate in
the transaction, and for artifacts, the degree gives the num-
ber of their changes.

2

2.2. Variants

In the following we point out and justify two decisions
we made in our definition of the co-change graph. The first
decision is to give all edges the same weight, and the sec-
ond decision is to include both artifacts and change transac-
tions into the set of vertices, instead of only artifacts.

2.2.1. Weighted Co-Change Graph The weighted co-
change graph (V,E,w) is an extension of the co-change
graph by a weight function w : E → ℜ (where ℜ is the set
of real numbers). The weight function assigns to each edge
a real number, which can be interpreted as the relative im-
portance of the corresponding change.

The standard co-change graph defined in the previous
subsection can be considered as a special weighted co-
change graph where every edge has the weight 1. Because
every edge corresponds to a change of an artifact, it mod-
els that every change of an artifact is equally important.

An alternative hypothesis is that every change transac-
tion is equally important. This can be modeled by giving
each edge to a transaction c the weight 1/deg(c). Then each
transaction c contributes deg(c) edges each with a weight of
1/deg(c), yielding a total weight of 1 for the transaction.

According to our experience and intuition, this model
weights co-changes in small change transactions too high.
A change transaction of n artifacts corresponds to 1

2 n(n−1)
co-changes of pairs of artifacts. If the transaction has the
weight 1, then every co-change has a weight of 2

n(n−1) .
This means, for example, that a co-change in a transaction
of 5 files is 19 times as important as a co-change in a trans-
action of 20 files.

Compromises between the two weighting functions 1
and 1/deg(c), for example 1/

√

deg(c), make the interpre-
tation of the model more difficult because both the impor-
tance of an artifact change and the importance of a change
transaction depend on the degree of the change transaction.
Thus we prefer the simplest alternative of giving each edge
the weight 1.

2.2.2. Condensed Co-Change Graph Because we are
mainly interested in co-changes of artifacts, an obvious idea
is to remove the transaction vertices from the model, and
retain only the artifact vertices. The condensed co-change
graph for a given version repository is a weighted, undi-
rected graph (V,E,w), where the set of vertices V contains
all software artifacts in the repository, the set of edges E
contains the edge {a,a′} if and only if the artifacts a and a′

were commonly changed by a change transaction, and the
function w : E → ℜ assigns a weight to each edge.

We have chosen the name ’condensed’ to convey the in-
tuition of eliminating the change transaction vertices and
the corresponding edges. This loss of information about

(a) Co-change graph

(b) Condensed co-change graph

Figure 2. Example co-change graph and the
corresponding condensed co-change graph

change transactions is the obvious disadvantage of the con-
densed model. It promises to be offset by greater simplic-
ity, but the following discussion shows that the model does
not live up to this promise because it requires complicated
edge weighting.

Giving each edge the weight 1 does not reflect how often
two artifacts were commonly changed. The naive improve-
ment is to weight each edge between two artifacts with the
number of times that the artifacts were commonly changed,
as done in [24, 31, 67]. But this is also problematic, because
it weights large transactions much higher than small trans-
actions: Adding a change transaction of n artifacts increases
the weights of 1

2 n(n−1) edges by 1, so the importance of a
change transaction is proportional to the square of the num-
ber of its participating artifacts. In other words, this weight-
ing scheme (as well as its more complicated variant in [7])
does not reflect that a common change of two artifacts in
a small transaction provides more information than a com-
mon change of two artifacts in a large transaction.

So we have to include the degree of the change trans-
actions into the weighting function. More precisely, the
weight which is added to an edge for a transaction c has to
follow a function which is monotonically decreasing in the
size deg(c) of the transaction. The model conforms best to
the standard co-change graph if the function is 2

deg(c)−1 , be-

3

cause then each transaction c has the weight deg(c). (It adds
2

deg(c)−1 to the weight of deg(c)(deg(c)−1)
2 edges.)

Figure 2 contrasts a co-change graph (Fig. 2(a)) with
the corresponding condensed co-change graph (Fig. 2(b)).
Artifact1 and Artifact2 are connected with weight 1, con-
tributed by Co-Change1, and with weight 2, contributed by
Co-Change2; the overall weight of the edge is 3. The other
edges are weighted with 1, contributed by Co-Change1. The
example illustrates that a higher edge weight between two
artifacts can be caused by a higher number or by a smaller
size of the common change transaction of the two artifacts.

The clustering of the artifacts for the condensed co-
change graph with these edge weights is approximately the
same as for the standard co-change graph. We prefer the
standard co-change graph, because it is simpler (due to the
absence of edge weights), and the availability of the trans-
action vertices improves the traceability of analysis results
to the repository.

2.3. Possible Extensions

2.3.1. Low-Level Artifacts Usually, version control sys-
tems store artifacts of one particular level of detail (e.g., files
for CVS). Instead of using this default level, one could ex-
tract common changes for artifacts on a lower level of ab-
straction, such as classes and functions. This can be imple-
mented by analyzing the delta information from the reposi-
tory (cf. [68, 69] for the mapping of changes to functions).
However, this extension depends on the type of the high-
level artifacts (program source code, documentation, data),
and is therefore not detailed here.

2.3.2. High-Level Artifacts The interpretation of file-
level analysis results is tedious for large systems with thou-
sands of files. A co-change graph for high-level artifacts
(e.g., directories) can be obtained from a co-change graph
for lower-level artifacts (e.g., files) with a transformation
called lifting: A high-level artifact a participates in a change
transaction c if and only if one of its contained low-level ar-
tifacts participates in c.

2.3.3. Importance of Changes Additional information
about the importance of changes can be included in the co-
change graph as edge weights. For example, the intuition
that the importance of a change to a file is proportional to
the number of changed lines can be formalized by weighting
each edge between an artifact and a change transaction with
the number of changed lines. Such extensions are promis-
ing, but they should be introduced only after the basic model
has been evaluated. That they are much simpler to integrate
when the model contains transaction vertices is another rea-
son for our decision to prefer the standard co-change graph
over the condensed co-change graph.

Figure 3. Extraction of the co-change graph
from a CVS repository

2.4. Extraction from CVS Repositories

The main problem in the extraction of the co-change
graph from CVS repositories is that change transactions are
not explicitly stored, because CVS breaks down its com-
mit transactions into sequences of RCS check-in operations.
However, change transactions can be inferred from avail-
able log data with reasonable certainty. In our experiments,
we consider a sequence of changes of files as change trans-
action if the changes have the same user login, the same log
message, and timestamps that differ by at most 180 s.

Figure 3 shows a complete tool chain for the extrac-
tion of co-change graphs from CVS repositories. The com-
mand cvs log extracts user logins, log messages, and times-
tamps of changes from the repository, and stores it in a
CVS log file. The tool cvs2cl1 [8, pp. 247] implements the
above heuristic to recover change transactions from the log
file, and generates a file in the GNU ChangeLog format.
Other transaction recovery tools use similar heuristics (e.g.,
[33, 68, 69]). Finally, a calculator for relations like Croco-
Pat [11] generates the co-change graph from the recovered
transactions, and optionally computes edge weights or lifts
the graph to obtain more abstract models.

3. Clustering Layout of Co-Change Graphs

Our goal in the analysis of co-change graphs is to iden-
tify clusters of artifacts that are frequently changed together.
Such groupings can be naturally represented by layouts of
the artifacts in two- or three-dimensional space, such that
heavily co-changed artifacts are placed closely together,
while artifacts that participate in few common change trans-
actions are placed at larger distances.

Energy-based (or force-directed) graph layout methods
liken graph vertices to physical objects that exert forces on
each other [10, Chapter 10], [15]. Graph vertices that are
connected by an edge attract, to ensure that they are placed
closely. All pairs of graph vertices repulse, to ensure that
non-related vertices are placed at larger distances. The re-
sulting graph layout is an energy-minimal state of the force
system.

1 Available at http://www.red-bean.com/cvs2cl

4

http://www.red-bean.com/cvs2cl/

Energy-based graph layout methods have two parts: An
energy model which assigns a real number (interpreted as
energy) to each graph layout, and an algorithm that searches
a layout with minimal energy. There exist several proven
solutions for the second aspect, of which we use an effi-
cient algorithm introduced for the simulation of astrophys-
ical systems by Barnes and Hut [9], and first applied for
computing graph layouts by Quigley [58].

The contribution of this section concerns the first aspect
of energy-based methods. In the first subsection, we sys-
tematically derive requirements for the layout of co-change
graphs. In the second subsection, we present an energy
model whose minimum energy layouts fulfill these require-
ments, and thus have a clear interpretation in terms of the
co-changes of the represented artifacts.

3.1. Requirements for Clustering Layouts of Co-
Change Graphs

Intuitively, our requirements for layouts of co-change
graphs are small distances between artifacts that participate
in many common change transactions, and greater distances
between artifacts that participate in few common change
transactions. The goal of this subsection is to formalize this
intuition.

Consider a co-change graph G = (V,E), and a partition
of its set of vertices V into two disjoint sets V1 and V2 (i.e.,
V1 ∪V2 = V and V1 ∩V2 = /0). We require that V1 and V2

should be placed closely in the layout to the degree that
co-changes between V1 and V2 occur more often than ran-
dom, or equivalently, that their distance is proportional to
the degree to which they are co-changed less often than ran-
dom. More formally, the distance of V1 and V2 in the layout
should be the quotient of the expected number of edges be-
tween V1 and V2 in a random graph, and the actual number
of edges between V1 and V2 in G. (Remember that the edges
in the co-change graph represent changes of artifacts, and
an edge that connects a vertex in V1 with a vertex in V2 rep-
resents a change that involves both V1 and V2.)

The remainder of this subsection derives a formula for
the required distance between V1 and V2 from this statement.
Therefore, it defines a random graph model, and calculates
the expected number of edges between V1 and V2 in this ran-
dom graph model.

First we introduce two notations. The total degree
∑v∈Vi

degG(v) of all vertices of Vi in G is denoted by
degG(Vi) (i ∈ {1,2}). Note that degG(V1) + degG(V2) =
2|E|. The number of edges

∣

∣{{u,v}∈E | u∈V1,v∈V2}
∣

∣ be-
tween V1 and V2 in G is called the cut between V1 and V2 and
denoted by cutG(V1,V2).

Consider a random graph R with the same set of ver-
tices V and the same number of edges |E| as G, where
each of the 2|E| end vertices of the edges is randomly cho-

sen from V1 with the probability degG(V1)
2|E| and from V2 with

the probability degG(V2)
2|E| . These probabilities are chosen such

that the expected total degrees of V1 and V2 in R conform to
the total degrees in G, namely degG(V1) and degG(V2). The

expected cut between V1 and V2 in R is degG(V1)degG(V2)
2|E| . So

the required distance of V1 and V2 in the layout of G, which
was defined to be the quotient of this expected cut in the ran-
dom graph and the actual cut in G, is degG(V1)degG(V2)

2|E|cutG(V1,V2) .
How are the terms of this formula related to our intu-

ition? Clearly, the distance between V1 and V2 should de-
crease with cutG(V1,V2), the number of changes involving
both V1 and V2. However, the same number of common
changes (say cutG(V1,V2) = 10) means heavy co-change if
V1 and V2 are involved in few changes (say degG(V1) =
degG(V2) = 20), but almost complete independence if V1

and V2 are involved in a very large number of changes (say
degG(V1) = degG(V2) = 2000). So the distance should in-
deed be monotonic increasing with degG(V1) and degG(V2).
The term 2|E| in the denominator is constant for a given
graph (while the other terms depend on the partition of V
into V1 and V2), and thus changes only the scaling of the
layout.

3.2. The Edge-Repulsion LinLog Energy Model

An energy model specifies what is considered as a good
graph layout. It maps graph layouts to real numbers (inter-
preted as energy) such that smaller numbers mean better
layouts. For our visualizations, we use the edge-repulsion
LinLog energy model:

U(p) = ∑{u,v}∈E ||pu − pv||

+ ∑{u,v}∈V (2) −deg(u)deg(v) ln ||pu − pv||

In this formula, p is a layout (i.e., a mapping of the ver-
tices to positions in two- or three-dimensional space), pu

and pv are the positions of the vertices u and v in the lay-
out p, and ||pu − pv|| is the Euclidean distance of u and v
in p. Remember that deg(v) is the number of edges of a ver-
tex v.

The first term of the sum can be interpreted as attrac-
tion between vertices that are connected by an edge, be-
cause its value decreases when the distance of such vertices
decreases. The second term can be interpreted as repulsion
between all pairs of (different) vertices, because its value
decreases when the distance between any two vertices in-
creases. The repulsion of each vertex v is weighted by its
number of edges deg(v). Through this weighting, the sec-
ond term is more naturally interpreted as repulsion between
all pairs of edges than between all pairs of vertices. (More
precisely, the repulsion acts not between the entire edges,
but only between their end vertices.) So the basic idea be-
hind the edge-repulsion LinLog model is that the edges (in

5

the co-change graph: changes of artifacts) cause both attrac-
tion and repulsion.

For each vertex, the number of attracted vertices is its
degree, and its repulsion is weighted with its degree, too.
So each vertex has consistently —in terms of attraction and
repulsion— an influence on the layout proportional to its
degree. This can be visualized by setting the size of a ver-
tex to its degree, as in the figures in Section 4. In the co-
change graph, the degree —and thus the importance in the
layout— of artifact vertices is the number of change trans-
actions they participate in, and the degree of change trans-
action vertices is the number of artifacts that participate in
the transaction. However, this can be adapted using suitable
edge weights, as discussed in the Sections 2.2 and 2.3.

Basically, layouts with minimum edge-repulsion LinLog
energy indeed fulfill the requirement identified in the pre-
vious subsection, that disjoint sets of vertices V1 and V2

have a distance proportional to degG(V1)degG(V2)
2|E|cutG(V1,V2) . (For a proof

and more technical details, we refer to our works on graph
layout [55].) However, this holds precisely only for one-
dimensional layouts, and only approximately for higher-
dimensional (e.g., two-dimensional) layouts. Still, the one-
dimensional case is a good approximation when the dis-
tances within the sets V1 and V2 are small compared to the
distance between the sets. Although such an approximate
statement about the correspondence between the layout and
the analysis goal is not as satisfactory as a precise state-
ment, it is a significant advance over the situation for other
energy models, where there are no such statements at all.

4. Evaluation

We evaluate our clustering method by applying it to the
CVS repositories of three software systems and comparing
the results to authoritative decompositions. The clustering
results are layouts —not partitions— which have the disad-
vantage that similarity measures for partitions (as proposed
in [43, 50, 65]) are not applicable, but the advantage that we
can present and discuss the results.

The three software systems have different sizes, num-
bers of developers, and project durations, and include arti-
facts in various programming languages. Because the eval-
uation requires the knowledge of good decompositions, we
chose systems that we are familiar with. Table 1 gives for
each system the overall size (in lines of text), the number
of files, the total number of changes of files, the number
of commits, the number of users who committed changes,
and the project’s duration as reflected in the repository. (All
numbers were obtained with the tool StatCvs2.)

2 Available at http://statcvs.sourceforge.net

Table 1. Characterization of the example
projects

Project CrocoPat 2.1 Rabbit 2.1 Blast 1.1
Lines 114 000 317 000 3 970 000
Files 60 740 3 900
Changes 800 6300 6800
Commits 140 1 200 900
Users 1 9 8
Months 8 52 40

The co-change graphs were extracted on file level be-
cause this enables the application of the same, programming
language independent, process and tool chain for all reposi-
tories. The layouts of the co-change graphs were computed
automatically using the Barnes-Hut algorithm and the edge-
repulsion LinLog energy model (introduced in Section 3.2).
For comparison, we show layouts obtained with the com-
monly used Fruchterman-Reingold energy model [29] (dis-
cussed in Section 5.2).

The transaction vertices and the edges are elided in the
visualizations, and only the artifact vertices are shown, be-
cause drawing all edges makes the visualization unreadable.
(In an interactive tool they can be shown selectively on de-
mand.) The vertices are displayed as circles, with the area
being proportional to the number of transactions the arti-
fact was involved in. Different sizes of corresponding ver-
tices in the Fruchterman-Reingold layouts result from dif-
ferent scaling. (Very small circles were always enlarged
to a certain minimum size to ensure their visibility.) The
color of the circles reflects the subsystem membership of the
corresponding artifact in the authoritative decomposition.
Groups of artifacts of the authoritative composition were
also (manually) annotated with the names of the subsystems
in boxes (gray), to identify them in the text (for grayscale
printouts). To avoid overlapping, the names are annotated
only for some artifacts. We provide VRML files, which en-
able navigation through the layouts and contain the com-
plete names of all artifacts, as well as the co-change graphs
used for our experiments, on a supplementary web page3.

The first three subsections of this section evaluate
the edge-repulsion LinLog layouts of the three soft-
ware systems. The fourth subsection shortly discusses the
Fruchterman-Reingold layouts.

4.1. CrocoPat 2.1

CrocoPat 2.1 is an interpreter for the language RML (Re-
lational Manipulation Language)4. It takes as input an RML
program and relations, and outputs resulting relations. The

3 Available at http://mtc.epfl.ch/∼beyer/co-change
4 Available at http://www.software-systemtechnik.de/CrocoPat

6

http://statcvs.sourceforge.net/
http://mtc.epfl.ch/~beyer/co-change/
http://mtc.epfl.ch/~beyer/co-change/
http://www.software-systemtechnik.de/CrocoPat

Figure 4. Artifacts in the CrocoPat repository (Edge-repulsion LinLog)

Figure 5. Artifacts in the CrocoPat repository (Fruchterman-Reingold, for comparison)

7

Figure 6. Artifacts in the Rabbit repository (Edge-repulsion LinLog)

repository contains C++ program source code, specifica-
tions for the lexical and syntactical analysis of RML pro-
grams, SQL scripts, shell scripts, example RML programs,
and test relations. It does not include any third party pack-
age.

The authoritative decomposition has four major sub-
systems: program source code, example RML programs
(green), test relations (red), and scripts for extracting re-
lations from relational databases (magenta). The program
source code subsystem is again divided into three subsys-
tems: build utilities and main program (blue), RML syntax
tree (yellow), and BDD package (cyan).

On a global perspective, the layout shows three major
clusters of files: The top right cluster contains exactly the
test relations (red), the left cluster contains most of the ex-
ample RML programs (green), and the large central clus-
ter contains the remaining files. We discuss the latter two
groups in turn.

The left cluster is divided into two subclusters, which be-
long to two different stable versions of CrocoPat, namely,
version 1.3 and version 2.1. A change in the RML syntax

between these two versions required changes and renamings
in the RML files. The two files run-wcre.sh and syntax.txt
are positioned between the RML programs and program
source code for the RML syntax tree. They are indeed re-
lated to both subsystems: run-wcre.sh is a shell script that
runs CrocoPat on some of the old RML programs, and
syntax.txt is a readable representation of the RML gram-
mar for the tool distribution.

The large central cluster contains mainly program
source code, but also some other files, which are discussed
in the following. A subcluster at the top of the central clus-
ter shows scripts for extracting relations from relational
databases (magenta), which were co-changed with the pro-
gram source code and are thus placed close to it. The lay-
out shows correctly that these scripts belong together, but it
does not clearly show that they should be separated from the
program source code, to which they are semantically unre-
lated. The build files (e.g., dependencies, Makefile) are lo-
cated at the bottom of the large central cluster. These files
are closely related to the program sources, and the author-
itative decomposition assigns them to the same subsystem

8

Figure 7. Artifacts in the Rabbit repository (Fruchterman-Reingold, for comparison)

as the main program crocopat.cpp (blue). This is correctly
reflected by the layout. Finally, the large central cluster
contains three example RML files (test.pat, bool.pat and
int.pat, green). The layout suggests to assign these exam-
ple RML files to the program source subsystem, which dif-
fers from the authoritative decomposition, but makes sense,
because each of these files is a test case for close program
source files.

The program source code in the large central cluster is
not clearly divided into subclusters, but the placement from
bottom to top reflects CrocoPat’s layered architecture: The
main program crocopat.cpp (blue) starts the RML lexer
relLex.l and parser relYacc.y (yellow), the parser builds the
RML syntax tree (also yellow), and the syntax tree uses the
BDD package (cyan) to calculate with relations.

Besides the interpretation of clusters of files in the lay-
out as subsystem candidates, the positions of files in the lay-
out allow further inferences. For example, the RML parser
specification relYacc.y is placed closer to the example RML
program files in the left than the main program croco-

pat.cpp. They are indeed related, because changes of the
RML syntax require modifications of both, parser and RML
programs. This dependency, as well as several dependencies
mentioned earlier, relate artifacts in different languages, and
thus could not be detected with syntax-based analyses.

In conclusion, the clustering layout correctly reflects the
authoritative decomposition, with two main exceptions. Of
these two exceptions, the placement of test cases in the cen-
tral cluster is semantically justified, but the placement of the
database extractor in the central cluster is not. This suggests
that historical co-changes should not be over-interpreted for
artifacts that were changed rarely (as shown by the small
size of the circles).

4.2. Rabbit 2.1

Rabbit 2.1 is a model checking tool for modular timed
automata5. It is a command line program which takes a

5 Available at http://www.software-systemtechnik.de/Rabbit

9

http://www.software-systemtechnik.de/Rabbit

Figure 8. Artifacts in the Blast repository (Edge-repulsion LinLog)

model and specification file as input and writes out verifi-
cation results. The repository contains C++ code, timed au-
tomata models, specification examples, and process docu-
ments such as todo and done lists. There is no third party
code involved.

The authoritative decomposition has six subsystems, of
which the first four contain C++ source code: the syntax
tree for specifications (green), the syntax tree for models
(red), the matrix representation of models (magenta), the
BDD representation of models (blue), example models (yel-
low), and miscellaneous artifacts including process docu-
ments (cyan).

Figure 6 shows only the central part of the layout, some
groups of example specifications and models were left out
due to space (cf. the supplementary web page for the com-
plete visualization in VRML). The layout correctly groups
the four C++ source code subsystems, with some excep-
tions discussed in the following.

As a first exception, the files reprConfig.h and
reprAutomaton.h (both red, center) are placed between the
BDD representation cluster (blue) and the matrix represen-

tation cluster (magenta), although they belong to the syntax
tree for the model in the authoritative decomposition. Here,
the placement is correct, and the authoritative decomposi-
tion is problematic: The BDD representation and the matrix
representation are used alternatively via a common inter-
face, which consists of these two files. In the authoritative
decomposition, this common interface could be assigned
neither to the BDD subsystem nor to the matrix subsystem,
so it was assigned to the even less appropriate syntax tree
subsystem.

A second difference between the layout and the author-
itative decomposition are build files, for example, the three
dependency files (cta/dependencies, bdd/dependencies,
and ddm/dependencies). On the one hand, they belong to
different source code subsystems, and should be placed
closely to the respective clusters. On the other hand, build
files are usually changed together, thus should be clustered.
The layout reflects these conflicting forces: it places the
build files in the center, stretched out to the source code
clusters.

10

http://mtc.epfl.ch/~beyer/co-change/

Figure 9. Artifacts in the Blast repository (Fruchterman-Reingold, for comparison)

Besides the representation interface and the build files,
some other files of the source code subsystems are placed
in the wrong cluster (for example the green files in the red
cluster), or outside the main clusters (for example the files
around ddmVecPlain.h in the left). As the small size of their
representation shows, these files were changed very rarely.
For such files, the available co-change information is insuf-
ficient to reliably assign them to a subsystem.

Besides the separation of the four main source code sub-
systems, the layout allows some further inferences about
the structure of Rabbit. For example, the magenta cluster of
matrix representation code contains two sub-clusters, one
top left, and one bottom right. This complicated data struc-
ture is indeed divided into a high-level part (automata and
configurations) and a low-level part (transition, state, trace,
which constitute an automaton, and region, polyhedron, ma-
trix, constraint, which constitute a configuration).

The yellow group of example models (top right) is rel-
atively close to the C++ code. The example models are in-

deed related to the program files, because they are test cases
which were changed together with the tested code. As men-
tioned earlier, there are other groups of examples, which are
not shown because their distances from the central part of
the layout are much greater.

The process documents (cyan, bottom right) include the
project’s todo and done list, which are drawn large because
they were changed frequently. They were rarely changed to-
gether with the source code but mostly in separate reflec-
tion phases, as shown by their large distance to the remain-
ing files.

In summary, the main clusters in the layout roughly
correspond to Rabbit’s actual subsystems. Some clusters
are fuzzy and not clearly separated, but Rabbit (like most
other real-world software systems) is not composed of
perfectly cohesive, mutually independent subsystems, thus
clean clusters would not reflect its actual structure.

11

4.3. Blast 1.1

Blast is a model checker for C programs6. It consists
of a collection of command line programs and a graphical
user interface, and it also includes several third party pack-
ages. The repository contains source code in the program-
ming languages Ocaml, C, C++ and Java, regression tests,
example C programs, and example specification files.

We can only present an abstract view of the system in
Figure 8, due to its considerable size. The figure shows
more than 3600 artifacts, and some of the dense groups
in the figure consist of several hundred artifacts. A zoom
into the groups reveals further details within the subsys-
tems (cf. the supplementary web page for a scalable visu-
alization in VRML).

The authoritative decomposition consists of 12 subsys-
tems. Some of the 12 different colors in Figure 8 are very
similar and thus difficult to distinguish.

Four of the main clusters correspond to the four third
party packages, namely the C parser front-end Cil with
example files (magenta, left), the integrated decision pro-
cedure solver package ICS (orange, top), the BDD pack-
age CUDD (purple, top), and the compiler infrastructure
C-Breeze (light blue, top left). Each of these third party
packages was basically (except some configurations and ex-
tensions for integration) inserted into the repository in one
huge transaction.

Three other large clusters correspond to the actual model
checker, split into the current (pscr package, green, right)
and an earlier development branch (src package, green, bot-
tom right), and the package for Blast’s specification lan-
guage (spec package, red, bottom).

The central part of the layout shows a cloud of files with
some denser accumulations. Three of the accumulations
correspond to the Craig interpolation package Foci (cyan,
top), Blast’s GUI package (yellow, top left), and the proof
generating theorem prover Vampyre (magenta, center). The
remaining files are documentation (light green, center left)
and test cases (blue, center). The widely spread placement
of the documentation and test files blurs the separation of
the clusters in this area, but is justified because the files are
indeed related to several subsystems.

4.4. Fruchterman-Reingold Layouts

The Figures 5, 7 and 9 show the same co-change graphs
as the Figures 4, 6 and 8, but the layouts were computed
with the Fruchterman-Reingold energy model [29] instead
of the edge-repulsion LinLog energy model.

For the purpose of identifying subsystem candidates,
the Fruchterman-Reingold layouts have two basic disad-

6 Available at http://www.eecs.berkeley.edu/∼blast

vantages. First, they separate clusters less clearly. This is
because the Fruchterman-Reingold energy model (as other
popular energy models [23, 42, 21]) is not primarily de-
signed for clustering, but for producing readable layouts
with uniform edge lengths. Second, the layouts have a
strong bias to place nodes with high degree (i.e., artifacts
that were involved in many change transactions, and are rep-
resented by large circles) in the center and nodes with low
degree at the borders. The reason is that nodes with high de-
gree attract more nodes than nodes with low degree, but the
repulsion of nodes is independent of their degree. The con-
cept of edge repulsion in the edge-repulsion LinLog energy
model avoids this bias.

5. Related Work

5.1. Mining Version Repositories

During the last years, mining information from version
control repositories has become an increasingly important
research area [38]. The aspect of common changes of ar-
tifacts has attracted particular attention. The work of Eick
and Wills [24] and Ball et al. [7], who visualized a vari-
ant of what we call condensed co-change graph, is dis-
cussed in Section 2.2. The tool ROSE suggests and pre-
dicts likely future changes based on the analysis of past
co-changes [67, 69]. It provides for a given artifact a pri-
oritized list of other artifacts which are most likely to co-
change with it. In contrast, our visualizations are not pri-
marily interpretable with respect to the co-changes of sin-
gle artifacts, but with respect to more global co-change pat-
terns on the level of groups of artifacts.

Other researchers combine co-changes with related in-
formation, such as change reports or problem reports [28],
to detect strongly coupled modules [30, 31, 40] or to track
features [26, 27]. The latter approach is also related to our
work in that it visualizes co-change information, but its vi-
sualizations lack interpretability and clarity through the use
of a complicated ad hoc weighting scheme and of multi-
dimensional scaling for computing layouts (see the discus-
sion in Section 5.2). In the tool Hipikat [19], co-changes
are only one of several heuristics used to identify links be-
tween all kinds of documents created in a software project,
like source code in version control repositories, bug and fea-
ture descriptions in bug tracking systems, messages in mail-
ing lists, and design documents on web sites.

Hassan and Holt proposed several heuristics to pre-
dict change propagation and a framework to study their
performance [37]. In their empirical evaluation, the co-
change-based heuristic outperformed the code-structure
based heuristic (Call, Use, Define). Sayyad-Shirabad et al.
proposed to use classification learning for the generation of
prediction models [60]. The method classifies pairs of files

12

http://mtc.epfl.ch/~beyer/co-change/
http://www.eecs.berkeley.edu/~blast

as relevant or not relevant, and the learning algorithm uses
syntactic and text-based attributes from source files and as-
sociated problem reports. The training examples are classi-
fied by past co-changes, i.e., a pair of files is related if it
was commonly changed. A relevant pair of the learned rela-
tion predicts that a change of one file of the pair propagates
a change of the other file.

Hassan and Holt studied changes to derive statements
about software complexity [36]. They hypothesize that ”a
software system becomes complex to manage and main-
tain when its change history becomes too complex to
comprehend”. An approach for mining ’frequently applied
changes’ (FACs) is discussed in [59]. Based on cvs diff and
clone detection techniques, pieces of code which are of-
ten checked-in are mined. It is argued that these code frag-
ments can be general solutions to frequently recurring prob-
lems, such as refactoring patterns. Bieman et al. consider
frequent changes of a class as indication of architectural
importance, but also of chronic problems due to bad de-
sign [12]. Mockus and Votta designed a program which au-
tomatically classifies maintenance activities to understand
reasons for changes [51]. The classification is based on
textual descriptions of changes from version repositories.
Graves and Mockus used statistical data from version repos-
itories in combination with time sheet data from the finan-
cial support system in order to assess predictors for the ef-
fort of code changes [35].

Loosely related to the mining of version repositories are
pure visualization approaches like [6, 32], which do not aim
at detecting hidden patterns in the data themselves, but at
amplifying the human abilities to detect such patterns.

5.2. Clustering Techniques

Clustering is the classification of objects into groups
based on some notion of similarity or relatedness. Diverse
applications have induced the development of many tech-
niques for automatic clustering (see [25, 41] for surveys).
In the underlying data model of many clustering techniques,
objects are represented as vectors, and their pairwise simi-
larity is specified by a similarity function. In contrast, we
model objects as graph vertices and their relationships as
graph edges, thus our clustering approach belongs to the
subfield of graph clustering.

Of the large body of literature on graph clustering
(see [1, 57] for surveys), we focus our discussion on work
that is related to ours with respect to its three main charac-
teristics: We cluster software artifacts, our notion of clus-
ters is based on cuts, and we compute clusters with energy-
based methods.

5.2.1. Software Clustering Almost all techniques for the
graph-based clustering of software artifacts have been de-
veloped for graph models of the static structure of soft-

ware systems. That most of these techniques are designed
specifically for directed graphs is the lesser problem, be-
cause the edges of a co-change graph can easily be de-
fined as directed (e.g., from artifacts to change transac-
tions). The main problem is the reliance on particular se-
mantics of the graph vertices and edges. For example, dom-
inance analysis or the computation of strongly connected
components are useful for call graphs [18], but their appli-
cation to (directed) co-change graphs makes no sense. (All
their strongly connected components have exactly one ver-
tex.) More general and potentially applicable to co-change
graphs are similarity-based techniques (e.g., [61]) and con-
cept analysis (discussed, e.g., in [3]). The only two soft-
ware clustering approaches with a significant relation to our
work are Bunch [49], which belongs to the cut-based graph
clustering techniques discussed in the next paragraph, and
the work of Eick and Wills [24], who use an ad hoc energy
model for weighted graphs to reveal graph clusters.

5.2.2. Normalized Cuts as Graph Clustering Criterion
The cut between two disjoint sets of graph vertices is the
number of edges that connect both sets (as defined in Sec-
tion 3.1). Several researchers have proposed the minimiza-
tion of certain normalized forms of the cut as clustering
criterion. The normalization of the cut with the maximum
possible number of edges between the two sets of ver-
tices is called the ratio of the cut [64], and is also used in
Bunch [49]. However, the ratio of the cut is biased when the
degrees of the graph vertices are very nonuniform [55]. That
is why we chose in Section 3.1 to normalize the cut with the
expected number of edges in a random graph model, as done
earlier (but without a systematic derivation) in [62].

5.2.3. Energy-Based Graph Clustering Many energy
models have appeared in the literature on automatic graph
drawing (most prominently, [23, 42, 29, 21]). The goal of
these energy models are readable layouts of graphs in a
particular drawing convention where edges are drawn as
straight lines. This drawing convention is not applicable to
typical co-change graphs because they are so dense (see Ta-
ble 1) that showing all edges creates heavy clutter.

The above mentioned energy models enforce that the
edge lengths are as uniform as possible, but this contra-
dicts our goal of separating clusters of strongly connected
vertices, which requires some long edges between the clus-
ters and much shorter edges within the clusters (as shown
in [54]). All mentioned energy models easily generalize to
graphs with weighted edges (in which case they are sim-
ilar to multidimensional scaling [44]). Given appropriate
edge weights, their minimum energy layouts reveal clus-
ters, but this means putting clusters in (in the form of edge
weights) to get clusters out. In contrast, the goal of our edge-
repulsion LinLog energy model is not purely the represen-

13

tation of given knowledge in two or three dimensions, but
to some degree also the discovery of new knowledge.

A distinguishing feature of energy-based clustering com-
pared to other clustering approaches is that it does not pro-
duce partitions or dendrograms, but layouts. Layouts have
the advantages of being easily comprehensible and contain-
ing more information, because they can also show, e.g., that
a vertex is rather between two clusters than belonging to
one of these clusters, or how clearly two clusters are sep-
arated. Theoretical connections between conventional clus-
tering and the creation of layouts show that both approaches
are closely related [5, 45].

6. Conclusion

This paper introduced a new method for clustering soft-
ware artifacts, based on historical co-changes and inter-
pretable graph layout. First, we defined the co-change graph
as underlying formal model, which has —in comparison to
syntax-based models— the advantages of being inexpen-
sively extractable and not restricted to program source code
or certain programming languages. Second, we systemat-
ically derived requirements for the layout of co-change
graphs, and introduced an energy model for computing such
layouts. We evaluated the method on three example soft-
ware systems with different types of documents and source
code in several programming languages. The clusters in the
resulting layouts basically conformed to the authoritative
decompositions of the software systems, and revealed fur-
ther interesting details that cannot be represented in a pure
partitioning. However, the method is not reliable for arti-
facts that were changed very rarely. For such artifacts, his-
torical common changes have to be combined with other in-
formation to improve their assignment to subsystems.

References

[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist
partitioning: A survey. Integration, the VLSI Journal, 19(1-
2):1–81, 1995.

[2] P. Andritsos and V. Tzerpos. Software clustering based on
information loss minimization. In Proceedings of the 10th
Working Conference on Reverse Engineering (WCRE 2003),
pages 334–344. IEEE Computer Society, 2003.

[3] N. Anquetil. A comparison of graphs of concept for reverse
engineering. In Proceedings of the 8th IEEE International
Workshop on Program Comprehension (IWPC 2000), pages
231–240. IEEE Computer Society, 2000.

[4] N. Anquetil and T. Lethbridge. Extracting concepts from file
names: A new file clustering criterion. In Proceedings of
the 20th International Conference on Software Engineering
(ICSE 1998), pages 84–93. IEEE Computer Society, 1998.

[5] Y. Aumann and Y. Rabani. An O(logk) approximate min-
cut max-flow theorem and approximation algorithm. SIAM
Journal on Computing, 27(1):291–301, 1998.

[6] T. Ball and S. G. Eick. Software visualization in the large.
IEEE Computer, 29(4):33–43, 1996.

[7] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your ver-
sion control system could talk ... In Proceedings of the ICSE
’97 Workshop on Process Modelling and Empirical Studies
of Software Engineering, 1997.

[8] M. Bar and K. Fogel. Open Software Development with CVS.
Paraglyph Press, Scottsdale (AZ), 3rd edition, 2003.

[9] J. Barnes and P. Hut. A hierarchical O(N log N) force-
calculation algorithm. Nature, 324:446–449, 1986.

[10] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Pren-
tice Hall, Upper Saddle River, NJ, 1999.

[11] D. Beyer and A. Noack. Crocopat 2.1 introduction and
reference manual. Technical Report UCB//CSD-04-1338,
Computer Science Division (EECS), University of Califor-
nia, Berkeley, 2004.

[12] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualization. In
Proceedings of the 11th International Workshop on Program
Comprehension (IWPC 2003), pages 44–53. IEEE Computer
Society, 2003.

[13] J. Blythe, C. McGrath, and D. Krackhardt. The effect of
graph layout on inference from social network data. In
F.-J. Brandenburg, editor, Proceedings of the Symposium
on Graph Drawing (GD 1995), LNCS 1027, pages 40–51,
Berlin, 1996. Springer-Verlag.

[14] I. T. Bowman and R. C. Holt. Reconstructing ownership ar-
chitectures to help understand software systems. In Proceed-
ings of the 7th International Workshop on Program Compre-
hension (IWPC 1999), pages 28–37. IEEE Computer Soci-
ety, 1999.

[15] U. Brandes. Drawing on physical analogies. In M. Kauf-
mann and D. Wagner, editors, Drawing Graphs: Methods
and Models, LNCS 2025, pages 71–86. Springer-Verlag,
Berlin, 2001.

[16] G. Canfora, A. Cimitile, and M. Munro. An improved algo-
rithm for identifying objects in code. Software: Practice and
Experience, 26(1):25–48, 1996.

[17] P. Cederqvist et al. Version Management with CVS. Free
Software Foundation, 2004.

[18] A. Cimitile and G. Visaggio. Software salvaging and the
call dominance tree. Journal of Systems and Software,
28(2):117–127, 1995.

[19] D. Cubranic and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proceedings of
the 25th International Conference on Software Engineering
(ICSE 2003), pages 408–418. IEEE Computer Society, 2003.

[20] J. Davey and E. Burd. Evaluating the suitability of data
clustering for software remodularization. In Proceedings of
the 7th Working Conference on Reverse Engineering (WCRE
2000), pages 268–276. IEEE Computer Society, 2000.

[21] R. Davidson and D. Harel. Drawing graphs nicely us-
ing simulated annealing. ACM Transactions on Graphics,
15(4):301–331, 1996.

14

[22] E. Dengler and W. Cowan. Human perception of laid-out
graphs. In S. H. Whitesides, editor, Proceedings of the 6th
International Symposium on Graph Drawing (GD 1998),
LNCS 1547, pages 441–443, Berlin, 1998. Springer-Verlag.

[23] P. Eades. A heuristic for graph drawing. Congressus Numer-
antium, 42:149–160, 1984.

[24] S. G. Eick and G. J. Wills. Navigating large networks with hi-
erarchies. In Proceedings of IEEE Visualization 1993, pages
204–210, 1993.

[25] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis.
Hodder Arnold, London, 4th edition, 2001.

[26] M. Fischer and H. Gall. Visualizing feature evolution of
large-scale software based on problem and modification re-
port data. Journal of Software Maintenance and Evolution:
Research and Practice, 16(6):385–403, 2004.

[27] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE
2003), pages 90–99. IEEE Computer Society, 2003.

[28] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In Proceedings of the International Conference on Software
Maintenance (ICSM 2003), pages 23–. IEEE Computer So-
ciety, 2003.

[29] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placement. Software – Practice and Experi-
ence, 21(11):1129–1164, 1991.

[30] H. Gall, K. Hajek, and M. Jazayeri. Detection of logi-
cal coupling based on product release history. In Proceed-
ings of the International Conference on Software Mainte-
nance (ICSM 1998), pages 190–197. IEEE Computer Soci-
ety, 1998.

[31] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. In Proceedings of the
6th International Workshop on Principles of Software Evo-
lution (IWPSE 2003), pages 84–94. IEEE Computer Society,
2003.

[32] H. Gall, M. Jazayeri, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In Pro-
ceedings of the International Conference on Software Main-
tenance (ICSM 1999), pages 99–108. IEEE Computer Soci-
ety, 1999.

[33] D. M. German. Mining CVS repositories, the softChange ex-
perience. In Proceedings of the 1st International Workshop
on Mining Software Repositories (MSR 2004), pages 17–21,
2004.

[34] J.-F. Girard, R. Koschke, and G. Schied. A metric-based ap-
proach to detect abstract data types and state encapsulations.
Automated Software Engineering, 6(4):357–386, 1999.

[35] T. L. Graves and A. Mockus. Inferring change effort from
configuration management databases. In Proceedings of
the 5th International Software Metrics Symposium (MET-
RICS 1998), pages 267–273. IEEE Computer Society, 1998.

[36] A. E. Hassan and R. C. Holt. The chaos of software develop-
ment. In Proceedings of the 6th International Workshop on
Principles of Software Evolution (IWPSE 2003), pages 84–
94. IEEE Computer Society, 2003.

[37] A. E. Hassan and R. C. Holt. Predicting change propaga-
tion in software systems. In Proceedings of the 20th Inter-
national Conference on Software Maintenance (ICSM 2004),
pages 284–293. IEEE Computer Society, 2004.

[38] A. E. Hassan, R. C. Holt, and A. Mockus. Proceedings of the
1st international workshop on mining software repositories
(MSR 2004), 2004.

[39] D. H. Hutchens and V. R. Basili. System structure analysis:
Clustering with data bindings. IEEE Transactions on Soft-
ware Engineering, 11(8):749–757, 1985.

[40] J. Itkonen, M. Hillebrand, and V. Lappalainen. Application
of relation analysis to a small Java software. In Proceedings
of the 8th European Conference on Software Maintenance
and Reengineering (CSMR 2004), pages 233–239, 2004.

[41] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Computing Surveys, 31(3):264–323, 1999.

[42] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. Information Processing Letters, 31(1):7–
15, 1989.

[43] R. Koschke and T. Eisenbarth. A framework for experimen-
tal evaluation of clustering techniques. In Proceedings of the
8th IEEE International Workshop on Program Comprehen-
sion (IWPC 2000), pages 201–210. IEEE Computer Society,
2000.

[44] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage
Publications, Beverly Hills, CA, 1978.

[45] N. Linial, E. London, and Y. Rabinovich. The geometry of
graphs and some of its algorithmic applications. Combina-
torica, 15(2):215–245, 1995.

[46] P. E. Livadas and T. Johnson. A new approach to finding
objects in programs. Journal of Software Maintenance: Re-
search and Practice, 6(1):249–260, 1994.

[47] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An informa-
tion retrieval approach for automatically constructing soft-
ware libraries. IEEE Transactions on Software Engineering,
17(8):800–813, 1991.

[48] J. I. Maletic and N. Valluri. Automatic software cluster-
ing via latent semantic analysis. In Proceedings of the 14th
IEEE International Conference on Automated Software En-
gineering (ASE 1999), pages 251–254. IEEE Computer So-
ciety, 1999.

[49] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A clustering tool for the recovery and maintenance
of software system structures. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM
1999), pages 50–59. IEEE Computer Society, 1999.

[50] B. S. Mitchell and S. Mancoridis. Comparing the decom-
positions produced by software clustering algorithms using
similarity measurements. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM 2001),
pages 744–753. IEEE Computer Society, 2001.

[51] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proceedings of the 26th
International Conference on Software Maintenance (ICSM
2000), pages 120–130. IEEE Computer Society, 2000.

15

[52] H. A. Müller and J. S. Uhl. Composing subsystem struc-
tures using (k,2)-partite graphs. In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM 1990),
pages 12–19. IEEE Computer Society, 1990.

[53] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S.-C.
Lan. An empirical study of static call graph extractors.
ACM Transactions on Software Engineering and Methodol-
ogy, 7(2):158–191, 1998.

[54] A. Noack. An energy model for visual graph clustering. In
G. Liotta, editor, Proceedings of the 11th International Sym-
posium on Graph Drawing (GD 2003), LNCS 2912, pages
425–436, Berlin, 2004. Springer-Verlag.

[55] A. Noack. Visual clustering of graphs with nonuniform
degrees. Technical Report 02/04, Institute of Computer
Science, Brandenburg University of Technology at Cottbus,
2004.

[56] S. Patel, W. Chu, and R. Baxter. A measure for compos-
ite module cohesion. In Proceedings of the 14th Interna-
tional Conference on Software Engineering (ICSE 1992),
pages 38–48, 1992.

[57] A. Pothen. Graph partitioning algorithms with applications
to scientific computing. In D. E. Keyes, A. Sameh, and
V. Venkatakrishnan, editors, Parallel Numerical Algorithms,
pages 323–368. Kluwer, 1997.

[58] A. J. Quigley and P. Eades. FADE: Graph drawing, cluster-
ing, and visual abstraction. In J. Marks, editor, Proceedings
of the 8th International Symposium on Graph Drawing (GD
2000), LNCS 1984, pages 197–210, Berlin, 2001. Springer-
Verlag.

[59] F. V. Rysselberghe and S. Demeyer. Mining version control
systems for FACs (frequently applied changes). In Proceed-
ings of the 1st International Workshop on Mining Software
Repositories (MSR 2004), pages 48–52, 2004.

[60] J. Sayyad-Shirabad, T. Lethbridge, and S. Matwin. Mining
the maintenance history of a legacy software system. In Pro-
ceedings of the 26th International Conference on Software
Maintenance (ICSM 2003), pages 95–104. IEEE Computer
Society, 2003.

[61] R. W. Schwanke. An intelligent tool for re-engineering soft-
ware modularity. In Proceedings of the 13th International
Conference on Software Engineering (ICSE 1991), pages
83–92. IEEE Computer Society, 1991.

[62] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transaction on Pattern Analysis and Machine In-
telligence, 22(8):888–905, 2000.

[63] V. Tzerpos and R. C. Holt. ACDC: An algorithm for
comprehension-driven clustering. In Proceedings of the 7th
Working Conference on Reverse Engineering (WCRE 2000),
pages 258–267. IEEE Computer Society, 2000.

[64] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hier-
archical design. IEEE Transactions on Computer-Aided De-
sign, 10(7):911–921, 1991.

[65] Z. Wen and V. Tzerpos. An effectiveness measure for soft-
ware clustering algorithms. In Proceedings of the 12th IEEE
International Workshop on Program Comprehension (IWPC
2004), pages 194–203. IEEE Computer Society, 2004.

[66] A. S. Yeh, D. R. Harris, and H. B. Reubenstein. Recov-
ering abstract data types and object instances from a con-
ventional procedural language. In Proceedings of the 2nd
Working Conference on Reverse Engineering (WCRE 1995),
pages 227–236. IEEE Computer Society, 1995.

[67] T. Zimmermann, S. Diehl, and A. Zeller. How history justi-
fies system architecture (or not). In Proceedings of the 6th
International Workshop on Principles of Software Evolution
(IWPSE 2003), pages 73–83. IEEE Computer Society, 2003.

[68] T. Zimmermann and P. Weigerber. Preprocessing CVS data
for fine-grained analysis. In Proceedings of the 1st Inter-
national Workshop on Mining Software Repositories (MSR
2004), pages 2–6, 2004.

[69] T. Zimmermann, P. Weigerber, S. Diehl, and A. Zeller. Min-
ing version histories to guide software changes. In Proceed-
ings of the 26th International Conference on Software Engi-
neering (ICSE 2004), pages 563–572. IEEE Computer Soci-
ety, 2004.

16

	Introduction
	The Co-Change Graph
	Definition
	Variants
	Weighted Co-Change Graph
	Condensed Co-Change Graph

	Possible Extensions
	Low-Level Artifacts
	High-Level Artifacts
	Importance of Changes

	Extraction from CVS Repositories

	Clustering Layout of Co-Change Graphs
	Requirements for Clustering Layouts of Co-Change Graphs
	The Edge-Repulsion LinLog Energy Model

	Evaluation
	CrocoPat 2.1
	Rabbit 2.1
	Blast 1.1
	Fruchterman-Reingold Layouts

	Related Work
	Mining Version Repositories
	Clustering Techniques
	Software Clustering
	Normalized Cuts as Graph Clustering Criterion
	Energy-Based Graph Clustering

	Conclusion

