Lazy Shape Analysis

Dirk Beyer Thomas A. Henzinger Grégory Théoduloz

Technical Report No. MTC-REPORT-2005-006
December 31, 2005

.(l {\. Ecole Polytechnique Fédérale de Lausanne

ECOLE POLYTECHNIQUE Faculté Informatique & Communications
FEDERALE DE LAUSANNE CH-1015 Lausanne, Switzerland

Lazy Shape Analysis

Dirk Beyer Thomas A. Henzinger @gory Tteoduloz
EPFL, Switzerland

Abstract verify programs that were previously too large for model
checking [1]. However, current implementations of model
Many software model checkers are based on predicatecheckers are not capable of dealing efficiently with the con-
abstraction. Values of variables in branching conditions are tents of the heap.
represented abstractly using predicates. The strength of this Shape analysis [10] is a static data-flow analysis that
approach is its path-sensitive nature. However, if the con- models the heap contents in a compressed way. It provides
trol flow depends heavily on the values of memory cells ona finite abstraction of the portion of the program state space
the heap, the approach does not work well, because it is dif-that is located on the heap. However, the method often pro-
ficult to find ‘good’ predicate abstractions to represent the duces a large amount of false positives due to its path-
heap. In contrast, shape analysis can lead to a very com-insensitive nature. Besides this, shape analysis is among the
pact representation of data structures stored on the heap.most expensive static analyses.
In this paper, we combine shape analysis with predicate ab- The contribution of this paper is to show how to increase
straction, and integrate it into the software model checker the effectiveness of model checking and the efficiency of
BLAST. Because shape analysis is expensive, we do not apshape analysis by combining the advantages of both tech-
ply it globally. Instead, we ensure that shapes are computedniques. By computing both predicate and shape informa-
and stored locally, only where necessary for proving the ver- tion, we increase the precision of the analysis, and thus ob-
ification goal. To achieve this, we extend lazy abstraction re- tain fewer false positives than either method on its own.
finement, which so far has been used only for predicate ab-The efficiency of pure shape analysis is improved, because
stractions, to shapes. This approach does not only increaseexpensive shape computations (such as abstract postcondi-
the precision of model checking and shape analysis takentions) are performed only at those control locations where
individually, but also increases the efficiency of shape anal- the shape information is necessary to prove the verifica-
ysis (we do not compute shapes where not necessary). Wion goal. To achieve this, we apply the ‘lazy abstraction’
implemented the technique by extendBigpsT with calls paradigm([6] to shapes. Lazy abstraction involves both lazy
to TvLA, and evaluated it on several C programs manipu- (on-the-fly) abstraction construction and lazy (only-where-
lating data structures, with the result that the combined tool necessary) abstraction refinement.

can now automatically verify programs that are not verifi- Lazy abstraction constructiomeans that an abstract
able using either shape analysis or predicate abstraction on reachability tree (ART) for the program is computed on-
its own. the-fly. Each node of the ART is labeled with both predi-

cate and shape information. The computation of a branch in

Classification: D.2.4 Software Engineering — Soft- the ART is terminated when the concrete states represented
ware/Program Verification F.3.1 Logics and Meanings of by the leaf are covered by another node in the tree. Thus,
Programs — Specifying and Verifying and Reasoning about the ART construction is path-sensitive and avoids the com-
Programs putation of joins.

Keywords: Software model checking, shape analysis, Lazy abstraction refinemenheans that predicate and
counterexample-guided abstraction refinement, predicateshape information is refined only along branches of the ART
abstraction, interpolation that represent spurious counterexamples, in order to remove
these false positives. InBsT [5], additional predicates are
discovered using Craig interpolation [8]. This method al-
lows the pin-pointing of necessary predicates to individual
program locations. A key novelty of this paper is that we

Counterexample-guided abstraction refinement [2] hasuse interpolation-based predicate discovery also to refine
dramatically increased the performance of software modelthe granularity of the shape analysis. Based on a computa-
checkers in the past few years, and has made it possible tdion of locally necessary predicates, in combination with an

1. Introduction

alias analysis and type information for the pointer variables, the program, in order to eliminate the spurious counterex-
our algorithm decides, individually for each location along ample in the next iteration. This is repeated until either the
a spurious counterexample, which predicates and pointergprogram is proven safe, or a program bug is found[[2, 1].

to observe, and how to refine the local shape abstraction, sq a7y abstraction refinement. The classical version of the
that the infeasible error path is removed. abstract-check-refine loop has two drawbacks: first, it is not

We implemented this algorithm inIBsT, using callsto pecessary to represent and analyze the state space that is not
TvLA for shape operations. We evaluated the method byyeachable, and second, it is not necessary to refine portions
applying it to several C programs that manipulate list data of the program that are already proved save. Lazy abstrac-
structures. About half of the programs could not be verified tjgn refinement integrates the steps of the abstract-check-
previously, neither by pure predicate-based model check-refine loop into an on-the-fly analysis that refines the predi-
ing (the old version of BAST) nor by pure shape analysis cate abstraction locally. The algorithm produces the refine-
(TvLA): either method on its own is not sufficiently pre- ment of the predicate abstraction on demand, i.e., it discov-
cise and leads to false positives, while the integrated ap-ers predicates only for a particular error path, and refines
proach succeeds in automatically proving the programs cor-the apstraction only at the locations along the error path that
rect. The other half of the programs can be verified with one need the new predicates to eliminate the error path [6].
of the two individual methods, but we use them to measure
the qverhead .Of our cpmbmed mplementaﬂon. We found of the analysis is the number of predicates in the abstrac-
that interpolation and iterated refinement adds about 20 %,. . ;

tion. To keep the number of predicates per location as small

to the cost of shape operations (but fewer of those are re- . : : . :
. . as possible, interpolation-based predicate discovery can be
quired, due to lazy analysis).

i /] used to produce precisely the predicates that are needed to
Related work. Fischer et al. implemented inBsTacom- gjiminate the infeasible path in the abstract reachability tree
bination of a lattice-based data-flow analysis with predi- (no more and no less). Given an error path and the corre-
cate abstraction [3], but they did not consider automatic sponding path formula that was used to prove the infeasibil-
refinement of their data-flow analysis. Gulavani and Raja- jty of the path, we wish to discover the predicates needed for
mani proposed a non-lazy CEGAR method for abstract in- gne |ocation. The path formula is split at the location into
terpretation, and they showed how it can be applied to shapeyyg formulas, a prefix that leads the program from the initial
analysis|[4]. However, their refinement is done globally, not ,rogram location to the considered location, and the post-
lazily, which we believe is crucial for the scalability of €x- iy that leads the program from the considered location to
pensive analyses such as shape analysis. Rinetzky, Sagiyne error location. Th€raig interpolantis a formula such
and Yahav experimented with a method speeding up shapgnat (1) it is implied by the prefix formula, (2) its conjunc-
analysis which is based on ignoring parts of the heap by jon with the postfix formula is unsatisfiable, and (3) it con-

constructing procedure summaries [9]. To the best of ourying only variables that occur in the prefix formula and in
knowledge, the integration of shape analysis into a lazy ab-pe postfix formulal[5,8].

straction framework is a novel contribution of this paper.

Craig interpolation. The crucial measure for the efficiency

2.2. Data-Flow Analysis by Shape Analysis

2. Existing Techniques
Shape analysis is a static analysis that represents un-

2.1. Model Checking by Predicate Abstraction bounded instances of recursive data structures by finite

structures, called shape graphs. A shape graph is an abstrac-
Counterexample-guided abstraction refinement (CE- tion of an instance of a heap data structure, obtained by blur-
GAR). The classical CEGAR algorithm starts with an ini- ring some information (e.g., about the data elements) and
tial (trivial) predicate abstraction, and refines the abstractionkeeping track of theshapeof the data structure, depend-
in every iteration. During one iteration, it explores the ab- ing on the abstraction level of the analysis. Shape graphs
stract reachability tree. If all abstract states are visited andare represented as three-valued logical structures, and the
all states are safe, the algorithm stops with answer ‘safe’abstract post operator is implemented as a predicate trans-
(and returns the abstract reachability tree as proof). If anformer [4,10].
(abstract) counterexample is found it has to be checked if ~ Figurg2(b) shows an instance of a list data structure con-
there exists a feasible (concrete) path through the programnsisting of five list elements, four with data valleand one
(which is reported as a bug), or if the counterexample is with data value3. The pointersa andp point to the first
‘spurious’ due to the too coarse abstraction, i.e., there is nolist element. Figuré 2(f) shows a shape graph that repre-
corresponding feasible concrete path through the programsents list instances where pointerandp point to the first
Then the concrete path is analyzed to discover new predi-list element and all data values except the last one have data
cates that need to be added to the abstract representation afaluel, resp.3. The list instance in Fig. 2(b) is an instance

of this shape graph. The shape graph is represented by the
unary predicates, p, 7, ,, sm, and the binary predicate.

The predicate(v) is true if the pointer variable is point-

ing to nodev (same forp(v)); the predicatex(v, u) is true

if the next pointer of node is pointing to node:; the pred-
icater, ,,(v) is true if nodev is reachable from pointes

via the next pointer relation, and the predicaie(v) is

false for a node that represents a single list element and has
valuel/2 for summary nodes. A summary node represents
one or more list elements (drawn as double-circled nodes in
the picture). E.g., the next pointer of a list element that is ab-
stracted by the second node may point to the same or may
point to the third node, and the next pointer of the first list
element may not point to all list elements that are repre-
sented by the second node. The dotted edges represent the
‘don’t know’ value (1/2) of the predicaten.

3. Overview and Example

CEGAR with shapes.The classical CEGAR algorithm is
extended by a heap abstraction, i.e., the abstraction consists
of a predicate abstracti@nda heap abstraction (cf. Fig. 1).
The initial predicate abstraction is the trivial predicate ab-
straction (only predicaterue), and the initial heap abstrac-
tion is the trivial shape class (representing every heap).

If the complete abstract reachability tree is explored and
no abstract state is unsafe, the algorithm stops and answers
‘safe’. If an error path is found, the path formula (without
heap predicated) is constructed and checked for satisfiabil-
ity. If the path formula is unsatisfiable, then the infeasibil-
ity is due to thepredicate abstractionand the interpolation
procedure will discover new predicates that are added to the
predicate abstraction to avoid this infeasible path in the next
iteration. The heap abstraction is not changed.

If the path formula is satisfiable, due to the incomplete-
ness of the path formula, this does not necessarily mean that
a bug is found. We construct the (more preciegjended
path formulathat takes also into account the may-aliasing
relation that can occur over nodes. If the generated path for-

1 typedef struct node {

2
3

int h;
struct node *n;

4} *List;
s void foo(int flag) {

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2 }

List a = (List) malloc(...);
if (& == NULL) exit(1);

List p = a;

while (random()) {
if (flag) p->h = 1;
else p->h = 2;

p->n = (List) malloc(...);
if (p->n == NULL) exit(1);
p = p->n;
}
p->h = 3;
/* Check it */
p=a
if (flag)
while (p->h == 1) p
else
while (p->h == 2) p
assert(p->h == 3);

p->n;

p->n;

(a) Example C program

AR

p

(b) Concrete list on heap

n

aaQnQnQ
p

|

r[a,n] r[a,n]
rla,n] r[p,n] r[p,n]
r[p,n] x->h=1 x->h=3
x->h=1

(c) Shape of the concrete list

Figure 2. Example program and two list rep-
resentations

mula is feasible, then the system is considered unsafe; othformula, and use the interpolant predicates to decide on how
erwise, we use the interpolation procedure for the new pathto refine the heap abstraction.

Current Heap Abstr. |

Model Checker

covered

Current Predicate Abstr. |
A add new
predicates

error found

refine
shape

Example. The function in Fig[2(a) generates first a list that
contains a sequence of data values eitr@r2 —depending

on agiven variablfag —, and that ends with data val@e
The second part of the function verifies that the list really
consists of a sequence of data valdesr 2 —again de-
pending on the flag—, and that it ends with data vaue

| safe | | Path Formula |unsat Interpolation
ysat
Interpolation

Figure 1. Abstraction refinement with heap
abstraction

Path-insensitivestatic analysiscannot prove this pro-
gram safe, because after the if statement in the first while
loop the analysis forgets the fact that the values in the list
depend on the flag. This is due to the join that would occur
in the corresponding shape lattice. Path-sensjtieeicate-

aHQLQ sentation). The number annotated to a value in a path for-
P mula corresponds to the number of the command that has
. >Th:3 written this value. Such a numbering encodes the history of
computation along the path. Since the path formula is un-

satisfiable, we know that the path is infeasible. To proceed,

(&) In second error path we add the node predicape>h=2 to theshape abstrac-

tion.
aHQLQ The third (infeasible) error path enters the first while
P T T loop, assumeflag=1 , setsp->h=1 , setsp->h=3 , as-

sumesflag=0 , skips the while loop of the else branch
and violates the assertion. The list represents the se-
quence(l, 3). The abstract state region associated with the
program location before the assertion is represented by the
Figure 4. Shape graphs when ERROR is predicatetrue on the one hand, and the shape graph in
reached Fig.[4(b) on the other hand. The current shape graph knows
the node predicateg->h=3 andp->h=2 , and therefore

based reachability analysisannot prove this program safe consists of two nodes, the first representing a list element
either, because the analysis does not keep track of the heapVith data value2 (node predicatg->h=2 is true) and the
i.e., which values are stored in the list. Te@mbination of ~ S€cond a list element with data valaeBut the predicate
predicate abstraction and shape analysiacks both pred- ~ abstraction does not keep track of predicitg , which
icate and shape information at the same time. When com-leads to the infeasible situation that in the first while loop
puting the successor of an abstract region, the method comthe predicate is assumed to beie and in the second part
putes the successor for each of the two abstractions, check8f the program the same predicate is assumed tfube.
that the successor region is non-empty, and ensures that th&0 proceed, we add the boolean predidttg to thepred-
two abstract region do not contradict each other. The analy-icate abstraction

sis starts with the trivial predicate abstraction and the trivial ~ The fourth (infeasible) error path enters the first while
heap abstraction. loop, assumeflag=1 , setsp->h=1 , setsp->h=3 , as-

The first (infeasible) error path that our new method Sumesflag=1 , skips the while loop of thehen branch
reports skips the first while loop, seps>h=3 , assumes and violates the assertion. The list represents the se-
flag=0 , skips the while loop of the else branch and vio- AUence(l,3). We add the node predicae>h=1 to the
lates the assertion. The list consists of one list elem@ht: ~ Shape abstraction
Pure predicate abstraction would yield a false-positive here, ~ The last iteration unfolds the remaining states or marks
due to the restricted path formula. The analysis of the errorthem covered, and thus constructs the complete reachability
path yields that we have to track the prediqateh=3 , i.e., tree that acts asafety certificateNote that if the program
we have to choose the shape class according to the type ofontained a second list that is created but never checked,
pointer variablep and track the shape for the data structure then the analysis would not track the shapes of that list,
thatp is pointing to. Alias analysis yield that also pointer ~ because the interpolants yield only predicates that are in-
needs to be tracked, and finally we add the node predicateeVitable for eliminating the infeasible error path.
p->h=3 to theshape abstraction

The second (infeasible) error path enters the first while 4, | azy Abstraction Refinement of Shapes
loop, assumeflag=0 , setsp->h=2 , setsp->h=3 , as-
sumesflag=0 , skips the while loop of the else branch
and violates the assertion. The list represents the seShape classesthe level of abstraction of the shape analy-
quence(2,3). The abstract state region associated with sis is defined by ahape classS = (P.ore; Pinstr> Pabs)
the program location before the assertion is represented bywhich consists of three sets of predicates: (1) a7agt.
the predicatetrue on the one hand, and the shape graph of core predicates, (2) a Bt of instrumentation predi-
in Fig.[4(@) on the other hand. The current shape classcates WithP.,.. N Piyser = &, Where every instrumentation
knows the node predicape>h=3 , but not the node predi- predicatep € P, has an associated defining formyia
catep->h=2 , and therefore consists of two nodes, the first over core predicates, and (3) a $&k; € Peore U Pinstr Of
representing a list element with data val4es (node pred- abstraction predicates. The set of all predicates of the shape
icatep->h=3 s false) and the second a list element with class is denoted b = Pcore U Pinstr.
data values. The path formula for this error path is given in The set of core predicates must contain the special unary
Fig.[d (some aliasing constraints are omitted for clear pre- predicatesm which has the valué for normal nodes and

x->h=2 x->h=3

(b) In third error path

Command Constraint

1: a:= malloc() true
2: pred(a #0) (a,1) #0
3: pi=a (p,3) = {a,1) A {(p,3)> h,3) = {{a,1)> h,1)

A, 3> 1,3) = ((a, 1)> 0, 1)

4: pred(flag =0) (flag,0) =0

5: p>hi=2 ({p,3)> h,5) = 2 A {{a,1)> R, 5) = 2

6: p>n:=malloc() —

7: pred(p>n#£0) —

8: p:=p>n —

9: p>h:=3 —

0: p=a (9, 10) = (a,1) A ({p, 10)> £, 10) = ((a, 1)> £, 5)
A {{p,10)> n,10) = ({a,1)>n,1)

11: pred(flag =0) (flag,0y) =0

12: pred(p> h # 2) ({p, 10)> h,10) # 2

13: pred(p>h#3) ((p,10)> h,10) # 3

14: ERROR

Figure 3. Path formula for the second infeasible error path

1/2 for summary nodes. Moreover, we distinct two spe- predicatep in P \ P’, the value ofp is 1/2 for all shape
cial subsets of the core predicates: the/Bgtof points-to nodes. We extend the operatorto sets of shape graphs
predicates and the sgf,,,4. of node predicates. points-to in the natural way. A shape regiai$, S) is coveredby
predicatept, (v) is a unary predicate that indicates whether a shape regioriS’, S’), denoted by(S, S) C (§/,5"), if

the pointer variablex points to nodev. A node predi- Tesus) (S7) = Tsesus) (S) U Ters(susy (S), wherel is
cate npred,(v) is a unary predicate that corresponds to the join of two sets of shape graphs as definedwmAr [7].
some boolean predicaie(from the predicate abstraction) The abstract semantics SPs is defined by

that holds for a variable that points to nodeThe boolean SPg((S, S),op) = (S, [op](S)), where[.] is defined
predicatep is parametric on some variable name. We denoteas in TvLA [7]. Depending on the operations, we ap-
by p[x] an instance of the predicatethat refers to variable ply TvLA’s operatordocusandcoercebefore (respectively
x. Node predicates represent the content of a structure eleafter) transforming a set of shape graphs.

ment, rather than the structure of the shape itself.

A shape clasS refinesa shape clas$’, writtenS < §/, 4.1. Extracting Interpolants from Extended Path
if (1) Plore € Peores (2) Plrsir S Pinstr, @and (3)P, . C Formulas
Pass- Theunionof two shape classesandS’ is the shape
class(Peore UPeores Pinstr U Pt Pabs UPgps) (W1.0.9., For a more precise analysis of the memory configura-
we requIrePeore N Py = @ aNAPinstr N Py = D). tion, we extend the path formulas that were previously used
A shape graphs = (V, Val) of a shape clas§ = in BLAST to recursive data structures.

(Peores Pinstrs Pabs) CONsists of a set of shape nodgs
and a valuation of the predicates (in a three-valued logic)

%SEP‘)/; f‘(;rn a_)p;gdic?t/ezp}.ln Peore U Pinsir OF ity m, resented as a set of control flow automata, a patf
T length tsize is a sequencepy;. . .;opie Of cOmmands,

Shape regions A shape regiorconsists of a shape claSs which can be either statements or assume predicates. In
and a sef of shape graphs. Given a shape clagbe shape the rest of this paper, we consider flat programs (i.e., pro-
regionTs = (S, {s1,2}) includes all possible shape regions gram with a single function). Our approach can be extended
(corresponding tdrue in the predicate abstraction), where to programs with several functions. The program variables
s1/2 Is the shape graph with a single shape node and theare either integer values or pointers to (possibly recursive)
constant functiori /2 as valuation for every predicate. The structures with fields that are integers and pointer to struc-
shape region_s = (S, @) corresponds tgalse in the pred- tures. We restrict Ivalues that can occur in a program to
icate abstraction. identandident> field, whereidentdenotes a variable iden-

Let S andS’ be two shape classes such tatx §'. tifier andfield denotes a name of a structure field. The func-
A shape graph’ of shape clas§’ can be extended to the tion F maps an Ivalue to the set of labels of the structure
shape graph = 75.5(s’) of shape clas§ such that the set pointed by the Ivalue if the Ivalue has a pointer type, and
of shape nodes is left unchangdd & V'), and for each to an empty set if the Ivalue has an integer type. The state-

Programs, Ivalues, paths and path formulasOur formal-
ization of programs is similar td_[5]. A program is rep-

ues to numbers. Thigalue renaming functiorsub.6.v is

value n= ident| ident> field defined bySub.6.p = (p,0(p)) and Sub.0.(p> f) =
command = statement | predicate ((Sub.6.p)> f,0((Sub.0.p)> f)) (pis a variable and is
statement = ident:= expression a field).

ident:= alloc()

To encode into the path formula the aliasing among
memory cells, we use the functiomay that maps a position
in the path and an Ivalue constant to the set of variable con-
stants that may have the same value ((@.[,) € may.l.c
if, after thel-th command of the path, the value emay
Figure 5. Grammar of a program be equal to the value of, after thel;-th command on the
path).

ments and predicates composing a program are given in Fig- . .
urelB P P gaprog g gPath formulas and constraints. The functionCon maps

. L _ a pair (6,T") consisting of an annotated Ivalue mémand
The semantics for a path is given in terms of the pair (6,) IStNg vau 2

i A tconditi tor- if the f a constraint mag': N — FOL, and a commandp,, to
strongest positcondition operator. it the ormylarepre- a pair (6/,T”) consisting of a new annotated Ivalue map
sents a state of the program aopl is a command, then

the f laSP s th t of tat and a new constraint map. Given a path, we compute re-
€ formulast.p.op represents the set of successor sta eS'cursively the result ofCon along the path by computing
The predicate abstraction for a path is given by a map

ping 11 : [1..tsizé — 2FOL from path locations to sets of (0,T1) = Con.(6.), ¢.y)).op; (wherel is the location

atomic predicates. For a formu{a the abstraction w.r.t. a of op, in the path). The mag, is a constant map t0 and
! . . o T’y is the empty map. The mdp differs fromé,,_;, only for
set of atomic predicateB is the strongest formula’ with 0 Pty map dp (1) ONY

tomi dicates fronP such thats implies ' Th annotated lvalues that may be modifieddpy, which are
a o;nlcsp;re '|c?hes l:r)ot Stl.JC f?ﬁa 'mp IeiéOP. ‘ne ?rf’ mapped td by 6;. The mapl’; results from the map'(;.;)
feorramourla Srlé IS oep aisstrzgcalk?srlrgctioi Svpflri‘) o,f Itf?e fore extended by mappingto the constraint derived fromp;.
1-$-0P; A } We derive the constraints from path commands similarl
mula SP.p.op;. We extendSP and SPy to paths in the P y

:) . . L to [5]. A major extension is necessary for assignments to
natural way. A patt is _SP-lnfeaslt?le(SPH—lnfeasmle i pointers. Since the structure may be recursive, we cannot
SP.true.t (SP.true.t) is not satisfiable.

i])) ‘unroll’ the data structure to equate all possibly reachable
To check whether a given error path is feasible (i.e., there e o1y cells, because this yields infinite formulas. Addi-
exists a corresponding feasible execution of the program).tionajly, we have to add aliasing constraints for cases where
we construct gpath formula(PF), which is the conjunc- geyerg| lvalue constants may point to the same memory cell.

tion of several constraints, one per instruction, such that-l-he formal definition of the functioon is given in Fig-
the_ RF is feasible iff_the path is feasible. The technique fo_r ure[§. The path formula is obtained by taking the conjunc-
building PFs from[[5] cannot be reused directly, because it tjon, of ol formulas in the final constraint map. Note that the

is restricted to programs without recursive data Structures.gj e of the formula is highly dependent in the precision of
Also, that approach cannot be extended trivially because itiq glias analysis.

would result in infinite formulas. However, since the num- . Jafinition ofCon refers to the following two func-

ber of memory cells possibly involved in the path formulais y,ng The functioreqvar returns a constraint correspond-

bounded, we can produce a finite, sound and complete paf[ri‘ng to the equality of two variables considering their fields
formula. The address of each structure on the heap that 'Sﬁ.”‘ any)

accessed on the path, was previously assigned to a pointe
variable at some point, because we consider a restricted seteqyar. (s;, 6;).(s, 62) = (Sub.f;.s; = Sub.fs.s5)

|
| ident:= ident
| ident:= ident> field
\ ident> field := ident

predicate ::= FOL formula ovelidents (variables)

of possible Ivalues. To be able to refer to those addresses

) .) A Sub.f;.(s;=> f) = Sub.fs.(sy>

in our constraint formulas, we use SSA-like renamed Ival- fe{(\)((51> /) 2.(52> 1))

ues. o

Lvalue constants, annotated lvalues and aliasingAn The functionclos® returns the constraint corresponding to a

Ivalue constants either (ident) (variable constant or predicate.
((ident [)=> field,!’) with [,I’ € [0..tsiz¢ and!’ > I.

An annotated Ivalueis either ident or (ident)= field. clos*.0.b.p = .

The labels [and I’ correspond to the position in the (clos*.0.b.p,) op (clos*.0.b.p1) if p = (p1 0P p2)
path where the annotated valuasy have been modified. ~(clos*.6.2b.p1) if p=(=p1)
The functionClean maps an Ivalue constant or an anno- eqvar.(vs, 0).(vz,0) if p = (v1 = v2)
tated Ivalue to the Ivalue by removing the labels. am- andb = true
notated Ivalue ma is a function from annotated Ival- Sub.6.p otherwise

Commandbyp, | New mapd’ andallocated’ Constraint (1)
s := expr 0'(s) =1 Sub.8'.s = Sub.f.ezpr
_ F(s1) =1 ,
S1 1= So Vf c F(Sl) . 9/(<81,l>'> f) -1 eqvar.(81,9).(82,9)
, SUb.el.Sl = Sub.G.(32-> f)
- ¢ (31) =1 ’
51 1= 89> f Vf e F(Sl) . 0/(<81,l>-> f) -1 A /\ (Sub.G.(32-> f) = C) = eqvar.(51,9).(C7 9)
cemay.(l-1).(Sub.6.(s2> f))
Sub.¢’. (81'> f Sub.6. S92
0'((s1,0(s1))> f) =1 ite.(c = Sub.0’.(s1> f))
Ve € may.(I-1).((s1,0(s1))> f, 1) : | A .(eqvar.(c,0").(s2,0))
$1> f 1= 82 VfeF(c):0'({c,)> f) =1 cemay. (I-1). <Sub 0.(s1> f)) (eqvar.(P 0').(c, 9))
Ve € may.(I-1).(s1,0(s1)) : ite.(c = Sub 0'.s1)
0'(c>f)=1 A .(Sub.0’.(¢c> f) = Sub.f.s3)
cemay. (- 1) Sub.6” .51 .(Sub.0’.(¢c> f) = Sub.0.(c> f))
0'(s) =1
s:=alloc() |VfeF(s): ¢(s,1)>f)=1 /\ (s, 1) # a)
allocated’ = allocated U {(s,1)} | acallocated
predicate(p) clos*.0.true.p

Figure 6. Definition of

Algorithm 1. Extract(t)

Input: an infeasible path = (op, : pc,);...; (op,, : pc,,)
Output: a mapll from the locations of to sets of atomic pred-
icates
ILpc, =@forl <i<n
(', F) = Con.(Go, Fo).t
IP := derivation of A, ., ., T'.i I false
fori:=1tondo
= /\1<j<i Iy
t= /\z+1<]<n I

@
|TF’(<P ¢)(P)

Y=
II.pc; := IL.pc; U Atoms(Clean(v)))

return H

Algorithm. Algorithm[]] first constructs the constraint map
(using functionCon) that represents the path formula for
the given path. Then it splits the (infeasible) path formula

Con for each command.

(0",T") = Con.(6,T).l.op,

states that our method #und i.e., our method does not
report infeasibility although a real bug exists. However, the
theorem does not state that our method is necessamity
plete There are cases where we cannot eliminate an infea-
sible path by refinement of the abstraction or of the shape
class. This is a general limitation of shape analysis with a
fixed set of shape classes as implementedvnAT[7], not

of our refinement method.

4.2. Shape Class Refinement Based on Inter-
polants

For a given program, we restrict the analysis to a finite
set of shape classes that can be used to analyze such a pro-
gram. We define thereafter the space of shape classes that
our approach considers and the way in which refinement

at every program location and computes the predicates thahmong shape classes occur.

are necessary to eliminate the infeasible error path, for re-
fining the abstraction in a way that makes the abstract path

also infeasible. For a given split of the path formula igto
andy™, and a proofP of unsatisfiability ofo~ A o, the
function ITP(¢ ™, 1) (P) returns the interpolant formuka
for the proofP and the formulag,~ andy™. The function
Atoms returns the set of atomic predicates of a formula.

Theorem 1 (Soundness)Let ¢t be a path of a prograr®.
The patht is SP-infeasible iff t isSP-infeasible forll =
Eztract(t).

The difference to the corresponding theoremlih [5] is

that our new theorem does not require the program to betracking definition(7”

Tracking definition and shape types.A tracking defini-
tion represents the pointers and predicates about the heap
that we track while analyzing the program.tracking def-
inition consists of the following three sets: (1) the gét

of tracked pointerswhich is the set of pointer variables
that may be pointing to some node in the shape, (2) the
setT, C T of separating pointerswhich is the set of vari-
ables for which we want the corresponding points-to pred-
icates to be an abstraction predicate, and (3) thePsef
node predicatesWe define a refinement relation for track-
ing definitions. A tracking definition(T, Ts, P) refinesa
T.,,P)if T C T, T, C T, and

s L s

free of recursive data structures. In particular, the theoremP’ C P.

A shape typeT consists of a C structure type and a 5. Evaluation on Example Programs
map from tracking definitions to shape classes, where the
map preserves the refinement relation. For instance, a shape
type for singly-linked lists could be associated with the Examples. We evaluated our method on six example
C type struct node {int data; struct node C programs that manipulate list data structures contain-
*next; };, and it would map a given tracking definition ing integers as data elements. The programple and
(T, T, P) to the shape class with the following predicates: simple _backw both create a list of an arbitrary number
the default unary predicatem, a binary predicatevext of 1s and traverse it to check that every elementis @he
for representing links between nodes in the list, for each difference between the two is the order in which the nodes
variable inT a points-to predicate, which is an abstraction are created.
predicate only for variables iff;, and the node predicates The programlist creates a list that begins with an ar-
from P. More precise shape types for singly-linked list can bitrary number ofls, proceeds with an arbitrary number
be defined by adding instrumentation predicates for track- of 2s, and ends with 8. Then, the list is traversed to check
ing, e.g., reachability and cyclicity. that the numbers occur in the correct order. The program
list _flag builds alistthat begins either witts or2s de-

Refinement. In Section[3 we described the overall algo-) : i
pending on a flag, and ends witt8athen the lists are tra-

rithm (cf. Fig[1) of our combined approach. The remaining)
step we need to explain is how to refine the shape abstracversed checking that the expected numbers are found. To

tion during the abstract reachability algorithm. As predi- Prove safety, this example (and the following two) requires

cate abstraction starts with the empty set of predicates, lazy/© track simultaneously a boolean predicgfie/ = 0) and
shape analysis starts with the empty tracking definiton. ~_Shape graphs.

Consider the shape tyfi2 The current tracking defini- The programalternating is similar tolist ~ ex-
tion is refined, if theextended path formula isnsatisfiable, ~ Cept that the list begins with alternating and2s, and
and a variable that occurs in an interpolant matches the €nds with a3. The programsplice builds the same list

C type of shape typ@&. For all such variables, we refine ~ asalternating . Then, the list is split into two differ-
the current tracking definition as follows: ent lists: the first list contains the nodes at odd positions and

i the second list contains nodes at even positions of the orig-
* We addp to the set of tracked pointers and to the set of jnq) Jist, without the lasB. Each new list is then checked

separating pointers. We close the set of tracked point-\yhether it contains only the same number.

ers under aliasing.
Implementation. The concepts presented in this paper are

e We add the atomic boolean predicates from the inter- 1o ented in BAsT version 3.0, which integratesvLA
polants in which a tracked pointer is dereferenced, 10 ¢, shane transformation and the foci library of &T 2.0
the node predicates. for the predicate interpolation.VLA (written in Java) is in-

The map of shape tygE maps the refined tracking defini- tegrated into BAST (written in OCaml) as a particular im-
tion to a shape class. Since the mapping preserves the replementation of a shape analysis module, so that, in princi-
finement relation, the new shape class is a refinement of theple, we are able to plug-in other shape analysis tools. The
current shape class. shape analysis is plugged-in ta BsT's on-the-fly analysis

The outcome of this refinement can be either 1) the in- by extending the abstract state region, which was a triple so
feasible error path is eliminated in the next iteration of the far (program counter, stack, predicate), by a shape region.
abstract reachability analysis, or 2) the refinement reaches/\Ve previously tried to integrate the shape analysisradi-
a fixed point, i.e., we already have all pointers and all node cated lattice—as described in[3]— but this method did not
predicates extracted from the path formula, and the infeasi-work well for the refinement, because the data-flow lattices
ble error path occurs still in the next iteration. In the former are always joined at join points in the control-flow graph
case, the refinement succeeds and the algorithm proceeds the predicate regions are not different. We rather want to
with the refined shape abstraction. In the latter case wedistinguish the states reached on different paths (unless cov-
conclude that the shape type is not precise enough and wered), for a more precise (more control-flow sensitive) anal-
choose a refined shape type, and the analysis is re-launcheysis.
with the new shape type. Table[] reports the results of our experiments. None of

Since the interpolation-based analysis precisely locatesthe programs was successfully verified byMBT’s pred-
where refinement is necessary, we can restrict the refineicate abstraction without shape analysis: the system is not
ment of the shape analysis to a local context, as done in [5]able to prove the program safe; rather it reports a false pos-
for predicate abstraction refinement. Also, this technique itive (column four in the table). Three examples can be
ensures that the algorithm never refines more than necesproved safe by pure shape analysis (without predicate re-
sary. finement and with tracking maximal shape information ev-

Table 1. Time for verifying singly-linked list manipulation programs in seconds on a 3 GHz Intel Xeon
processor (CFA = control flow automaton, LOC = lines of code,

refinement steps is given in parenthesis)

Fp = false positive, the number of

Program CFAnodes LOC Pred. abstr. Shape analysis PA & SA
simple 26 44 fFP0.16s(0) 0.48s 0.51s(1)
simple _backw 19 39 FP0.36s(4) 0.43s 0.58s(5)
list 34 54 FP0.15s(0) 3.74s 4.63s (3)
list _flag 35 62 FP0.15s(0) FP0.26 s 1.18 s (4)
alternating 30 58 FP0.20s (1) FP0.26 s 1.77s(5)
splice 42 84 FP0.68s(3) FP0.66 s 6.10 s (7)
erywhere, like in LA), but for the other three it fails due References

to missing control-flow sensitivity (column five).

The model checker BAST with lazy shape analysis
proves all example programs safe (last column). The run-
times show that the overhead for the refinement of the shape
abstraction for the first three programs (compared to pure [2]
shape analysis) does not significantly increase the run-time
of the analysis in these cases. In contrast, for the other three
programs for which the combination of shape analysis and (3]
predicate refinement is really necessary, the reported run-
time is much higher, because the other analyses are fast inl4
finding a false positive. Not surprisingly, the run-times for
list andsplice are higherthan the others, because their
shape analysis is more involved. However, it is interesting to
note that the shape refinement overhead is reasonably small,
although the path formulas are proportionally larger with in-
creasing size of the shape graphs. The first three examples

[1] T.Balland S. Rajamani. TheL8m project: Debugging sys-

tem software via static analysis. Rroc. POPL, pages 1-3.
ACM, 2002.
E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. Ptoc.
CAV, LNCS 1855, pages 154-169. Springer, 2000.

J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with

predicates. IfProc. ESEC/FSHpages 227-236. ACM, 2005.

] B. Gulavanin and S. Rajamani. Counterexample driven
refinement for abstract interpretation. RFroc. TACAS
Springer, 2006.

[5] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMil-

lan. Abstractions from proofs. IRroc. POPL, pages 232—

244. ACM, 2004.
[6] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy

abstraction. IrProc. POPL, pages 58—70. ACM, 2002.

are chosen such that they require the same amount of shapg§7] 1. Lev-Amiand S. Sagiv. VLA: A system for implementing

operations in both methods, to measure the overhead of lazy
shape analysis compared to shape analysis, without taking

advantage of the laziness.

The results of our experiments (including the C source
code of our examples, the error paths, and analy- [9]
sis log files), as well as a pre-compiled binary of
BLAST 3.0, are available on the supplementary web page

athttp://mtc.eptl.ch/ ~beyer/blast _sal

static analyses. Iffroc. SASLNCS 2280, pages 280-301.
Springer, 2000.

[8] K. L. McMillan. Interpolation and SAT-based model check-

ing. InProc. CAV LNCS 2725, pages 1-13. Springer, 2003.
N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural func-
tional shape analysis using local heaps. Technical Report
TAU-CS-26/04, Tel-Aviv University, 2004.

[10] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analy-
sis via 3-valued logic. IfProc. POPL pages 105-118. ACM,

1999.

http://mtc.epfl.ch/~beyer/blast_sa/

	Introduction
	Existing Techniques
	Model Checking by Predicate Abstraction
	Data-Flow Analysis by Shape Analysis

	Overview and Example
	Lazy Abstraction Refinement of Shapes
	Extracting Interpolants from Extended Path Formulas
	Shape Class Refinement Based on Interpolants

	Evaluation on Example Programs

