
Lazy Shape Analysis

Dirk Beyer Thomas A. Henzinger Grégory Théoduloz

Technical Report No. MTC-REPORT-2005-006
December 31, 2005

Ecole Polytechnique Fédérale de Lausanne
Faculté Informatique & Communications
CH-1015 Lausanne, Switzerland



1



Lazy Shape Analysis

Dirk Beyer Thomas A. Henzinger Grégory Th́eoduloz
EPFL, Switzerland

Abstract

Many software model checkers are based on predicate
abstraction. Values of variables in branching conditions are
represented abstractly using predicates. The strength of this
approach is its path-sensitive nature. However, if the con-
trol flow depends heavily on the values of memory cells on
the heap, the approach does not work well, because it is dif-
ficult to find ‘good’ predicate abstractions to represent the
heap. In contrast, shape analysis can lead to a very com-
pact representation of data structures stored on the heap.
In this paper, we combine shape analysis with predicate ab-
straction, and integrate it into the software model checker
BLAST. Because shape analysis is expensive, we do not ap-
ply it globally. Instead, we ensure that shapes are computed
and stored locally, only where necessary for proving the ver-
ification goal. To achieve this, we extend lazy abstraction re-
finement, which so far has been used only for predicate ab-
stractions, to shapes. This approach does not only increase
the precision of model checking and shape analysis taken
individually, but also increases the efficiency of shape anal-
ysis (we do not compute shapes where not necessary). We
implemented the technique by extendingBLAST with calls
to TVLA , and evaluated it on several C programs manipu-
lating data structures, with the result that the combined tool
can now automatically verify programs that are not verifi-
able using either shape analysis or predicate abstraction on
its own.

Classification: D.2.4 Software Engineering — Soft-
ware/Program Verification F.3.1 Logics and Meanings of
Programs — Specifying and Verifying and Reasoning about
Programs

Keywords: Software model checking, shape analysis,
counterexample-guided abstraction refinement, predicate
abstraction, interpolation

1. Introduction

Counterexample-guided abstraction refinement [2] has
dramatically increased the performance of software model
checkers in the past few years, and has made it possible to

verify programs that were previously too large for model
checking [1]. However, current implementations of model
checkers are not capable of dealing efficiently with the con-
tents of the heap.

Shape analysis [10] is a static data-flow analysis that
models the heap contents in a compressed way. It provides
a finite abstraction of the portion of the program state space
that is located on the heap. However, the method often pro-
duces a large amount of false positives due to its path-
insensitive nature. Besides this, shape analysis is among the
most expensive static analyses.

The contribution of this paper is to show how to increase
the effectiveness of model checking and the efficiency of
shape analysis by combining the advantages of both tech-
niques. By computing both predicate and shape informa-
tion, we increase the precision of the analysis, and thus ob-
tain fewer false positives than either method on its own.
The efficiency of pure shape analysis is improved, because
expensive shape computations (such as abstract postcondi-
tions) are performed only at those control locations where
the shape information is necessary to prove the verifica-
tion goal. To achieve this, we apply the ‘lazy abstraction’
paradigm [6] to shapes. Lazy abstraction involves both lazy
(on-the-fly) abstraction construction and lazy (only-where-
necessary) abstraction refinement.

Lazy abstraction constructionmeans that an abstract
reachability tree (ART) for the program is computed on-
the-fly. Each node of the ART is labeled with both predi-
cate and shape information. The computation of a branch in
the ART is terminated when the concrete states represented
by the leaf are covered by another node in the tree. Thus,
the ART construction is path-sensitive and avoids the com-
putation of joins.

Lazy abstraction refinementmeans that predicate and
shape information is refined only along branches of the ART
that represent spurious counterexamples, in order to remove
these false positives. In BLAST [5], additional predicates are
discovered using Craig interpolation [8]. This method al-
lows the pin-pointing of necessary predicates to individual
program locations. A key novelty of this paper is that we
use interpolation-based predicate discovery also to refine
the granularity of the shape analysis. Based on a computa-
tion of locally necessary predicates, in combination with an



alias analysis and type information for the pointer variables,
our algorithm decides, individually for each location along
a spurious counterexample, which predicates and pointers
to observe, and how to refine the local shape abstraction, so
that the infeasible error path is removed.

We implemented this algorithm in BLAST, using calls to
TVLA for shape operations. We evaluated the method by
applying it to several C programs that manipulate list data
structures. About half of the programs could not be verified
previously, neither by pure predicate-based model check-
ing (the old version of BLAST) nor by pure shape analysis
(TVLA ): either method on its own is not sufficiently pre-
cise and leads to false positives, while the integrated ap-
proach succeeds in automatically proving the programs cor-
rect. The other half of the programs can be verified with one
of the two individual methods, but we use them to measure
the overhead of our combined implementation. We found
that interpolation and iterated refinement adds about 20 %
to the cost of shape operations (but fewer of those are re-
quired, due to lazy analysis).

Related work.Fischer et al. implemented in BLAST a com-
bination of a lattice-based data-flow analysis with predi-
cate abstraction [3], but they did not consider automatic
refinement of their data-flow analysis. Gulavani and Raja-
mani proposed a non-lazy CEGAR method for abstract in-
terpretation, and they showed how it can be applied to shape
analysis [4]. However, their refinement is done globally, not
lazily, which we believe is crucial for the scalability of ex-
pensive analyses such as shape analysis. Rinetzky, Sagiv,
and Yahav experimented with a method speeding up shape
analysis which is based on ignoring parts of the heap by
constructing procedure summaries [9]. To the best of our
knowledge, the integration of shape analysis into a lazy ab-
straction framework is a novel contribution of this paper.

2. Existing Techniques

2.1. Model Checking by Predicate Abstraction

Counterexample-guided abstraction refinement (CE-
GAR). The classical CEGAR algorithm starts with an ini-
tial (trivial) predicate abstraction, and refines the abstraction
in every iteration. During one iteration, it explores the ab-
stract reachability tree. If all abstract states are visited and
all states are safe, the algorithm stops with answer ‘safe’
(and returns the abstract reachability tree as proof). If an
(abstract) counterexample is found it has to be checked if
there exists a feasible (concrete) path through the program
(which is reported as a bug), or if the counterexample is
‘spurious’ due to the too coarse abstraction, i.e., there is no
corresponding feasible concrete path through the program.
Then the concrete path is analyzed to discover new predi-
cates that need to be added to the abstract representation of

the program, in order to eliminate the spurious counterex-
ample in the next iteration. This is repeated until either the
program is proven safe, or a program bug is found [2, 1].

Lazy abstraction refinement.The classical version of the
abstract-check-refine loop has two drawbacks: first, it is not
necessary to represent and analyze the state space that is not
reachable, and second, it is not necessary to refine portions
of the program that are already proved save. Lazy abstrac-
tion refinement integrates the steps of the abstract-check-
refine loop into an on-the-fly analysis that refines the predi-
cate abstraction locally. The algorithm produces the refine-
ment of the predicate abstraction on demand, i.e., it discov-
ers predicates only for a particular error path, and refines
the abstraction only at the locations along the error path that
need the new predicates to eliminate the error path [6].

Craig interpolation. The crucial measure for the efficiency
of the analysis is the number of predicates in the abstrac-
tion. To keep the number of predicates per location as small
as possible, interpolation-based predicate discovery can be
used to produce precisely the predicates that are needed to
eliminate the infeasible path in the abstract reachability tree
(no more and no less). Given an error path and the corre-
sponding path formula that was used to prove the infeasibil-
ity of the path, we wish to discover the predicates needed for
one location. The path formula is split at the location into
two formulas, a prefix that leads the program from the initial
program location to the considered location, and the post-
fix that leads the program from the considered location to
the error location. TheCraig interpolantis a formula such
that (1) it is implied by the prefix formula, (2) its conjunc-
tion with the postfix formula is unsatisfiable, and (3) it con-
tains only variables that occur in the prefix formula and in
the postfix formula [5, 8].

2.2. Data-Flow Analysis by Shape Analysis

Shape analysis is a static analysis that represents un-
bounded instances of recursive data structures by finite
structures, called shape graphs. A shape graph is an abstrac-
tion of an instance of a heap data structure, obtained by blur-
ring some information (e.g., about the data elements) and
keeping track of theshapeof the data structure, depend-
ing on the abstraction level of the analysis. Shape graphs
are represented as three-valued logical structures, and the
abstract post operator is implemented as a predicate trans-
former [7, 10].

Figure 2(b) shows an instance of a list data structure con-
sisting of five list elements, four with data value1 and one
with data value3. The pointersa and p point to the first
list element. Figure 2(c) shows a shape graph that repre-
sents list instances where pointersa andp point to the first
list element and all data values except the last one have data
value1, resp.3. The list instance in Fig. 2(b) is an instance

2



of this shape graph. The shape graph is represented by the
unary predicatesa, p, rp,n, sm, and the binary predicaten.
The predicatea(v) is true if the pointer variablea is point-
ing to nodev (same forp(v)); the predicaten(v, u) is true
if the next pointer of nodev is pointing to nodeu; the pred-
icaterp,n(v) is true if nodev is reachable from pointerp
via the next pointer relation, and the predicatesm(v) is
false for a node that represents a single list element and has
value1/2 for summary nodes. A summary node represents
one or more list elements (drawn as double-circled nodes in
the picture). E.g., the next pointer of a list element that is ab-
stracted by the second node may point to the same or may
point to the third node, and the next pointer of the first list
element may not point to all list elements that are repre-
sented by the second node. The dotted edges represent the
‘don’t know’ value (1/2) of the predicaten.

3. Overview and Example

CEGAR with shapes.The classical CEGAR algorithm is
extended by a heap abstraction, i.e., the abstraction consists
of a predicate abstractionanda heap abstraction (cf. Fig. 1).
The initial predicate abstraction is the trivial predicate ab-
straction (only predicatetrue), and the initial heap abstrac-
tion is the trivial shape class (representing every heap).

If the complete abstract reachability tree is explored and
no abstract state is unsafe, the algorithm stops and answers
‘safe’. If an error path is found, the path formula (without
heap predicated) is constructed and checked for satisfiabil-
ity. If the path formula is unsatisfiable, then the infeasibil-
ity is due to thepredicate abstraction, and the interpolation
procedure will discover new predicates that are added to the
predicate abstraction to avoid this infeasible path in the next
iteration. The heap abstraction is not changed.

If the path formula is satisfiable, due to the incomplete-
ness of the path formula, this does not necessarily mean that
a bug is found. We construct the (more precise)extended
path formulathat takes also into account the may-aliasing
relation that can occur over nodes. If the generated path for-
mula is feasible, then the system is considered unsafe; oth-
erwise, we use the interpolation procedure for the new path

Figure 1. Abstraction refinement with heap
abstraction

1 typedef struct node {
2 int h;
3 struct node *n;
4 } *List;
5 void foo(int flag) {
6 List a = (List) malloc(...);
7 if (a == NULL) exit(1);
8 List p = a;
9 while (random()) {

10 if (flag) p->h = 1;
11 else p->h = 2;
12 p->n = (List) malloc(...);
13 if (p->n == NULL) exit(1);
14 p = p->n;
15 }
16 p->h = 3;
17 /* Check it */
18 p = a;
19 if (flag)
20 while (p->h == 1) p = p->n;
21 else
22 while (p->h == 2) p = p->n;
23 assert(p->h == 3);
24 }

(a) Example C program

NULLa

p

1 1 1 1 3

(b) Concrete list on heap

r[a,n]
r[p,n]
x->h=3

a

p
r[a,n]
r[p,n]
x->h=1

n n

n

r[a,n]
r[p,n]
x->h=1

(c) Shape of the concrete list

Figure 2. Example program and two list rep-
resentations

formula, and use the interpolant predicates to decide on how
to refine the heap abstraction.

Example.The function in Fig. 2(a) generates first a list that
contains a sequence of data values either1 or2 —depending
on a given variableflag —, and that ends with data value3.
The second part of the function verifies that the list really
consists of a sequence of data values1 or 2 —again de-
pending on the flag—, and that it ends with data value3.

Path-insensitivestatic analysiscannot prove this pro-
gram safe, because after the if statement in the first while
loop the analysis forgets the fact that the values in the list
depend on the flag. This is due to the join that would occur
in the corresponding shape lattice. Path-sensitivepredicate-

3



x->h=3

a
p

n

(a) In second error path

x->h=3

a
p

x->h=2

n

(b) In third error path

Figure 4. Shape graphs when ERROR is
reached

based reachability analysiscannot prove this program safe
either, because the analysis does not keep track of the heap,
i.e., which values are stored in the list. Thecombination of
predicate abstraction and shape analysistracks both pred-
icate and shape information at the same time. When com-
puting the successor of an abstract region, the method com-
putes the successor for each of the two abstractions, checks
that the successor region is non-empty, and ensures that the
two abstract region do not contradict each other. The analy-
sis starts with the trivial predicate abstraction and the trivial
heap abstraction.

The first (infeasible) error path that our new method
reports skips the first while loop, setsp->h=3 , assumes
flag=0 , skips the while loop of the else branch and vio-
lates the assertion. The list consists of one list element:〈3〉.
Pure predicate abstraction would yield a false-positive here,
due to the restricted path formula. The analysis of the error
path yields that we have to track the predicatep->h=3 , i.e.,
we have to choose the shape class according to the type of
pointer variablep and track the shape for the data structure
thatp is pointing to. Alias analysis yield that also pointera
needs to be tracked, and finally we add the node predicate
p->h=3 to theshape abstraction.

The second (infeasible) error path enters the first while
loop, assumesflag=0 , setsp->h=2 , setsp->h=3 , as-
sumesflag=0 , skips the while loop of the else branch
and violates the assertion. The list represents the se-
quence〈2, 3〉. The abstract state region associated with
the program location before the assertion is represented by
the predicatetrue on the one hand, and the shape graph
in Fig. 4(a) on the other hand. The current shape class
knows the node predicatep->h=3 , but not the node predi-
catep->h=2 , and therefore consists of two nodes, the first
representing a list element with data value6= 3 (node pred-
icatep->h=3 is false) and the second a list element with
data value3. The path formula for this error path is given in
Fig. 3 (some aliasing constraints are omitted for clear pre-

sentation). The number annotated to a value in a path for-
mula corresponds to the number of the command that has
written this value. Such a numbering encodes the history of
computation along the path. Since the path formula is un-
satisfiable, we know that the path is infeasible. To proceed,
we add the node predicatep->h=2 to theshape abstrac-
tion.

The third (infeasible) error path enters the first while
loop, assumesflag=1 , setsp->h=1 , setsp->h=3 , as-
sumesflag=0 , skips the while loop of the else branch
and violates the assertion. The list represents the se-
quence〈1, 3〉. The abstract state region associated with the
program location before the assertion is represented by the
predicatetrue on the one hand, and the shape graph in
Fig. 4(b) on the other hand. The current shape graph knows
the node predicatesp->h=3 and p->h=2 , and therefore
consists of two nodes, the first representing a list element
with data value2 (node predicatep->h=2 is true) and the
second a list element with data value3. But the predicate
abstraction does not keep track of predicateflag , which
leads to the infeasible situation that in the first while loop
the predicate is assumed to betrue and in the second part
of the program the same predicate is assumed to befalse.
To proceed, we add the boolean predicateflag to thepred-
icate abstraction.

The fourth (infeasible) error path enters the first while
loop, assumesflag=1 , setsp->h=1 , setsp->h=3 , as-
sumesflag=1 , skips the while loop of thethen branch
and violates the assertion. The list represents the se-
quence〈1, 3〉. We add the node predicatep->h=1 to the
shape abstraction.

The last iteration unfolds the remaining states or marks
them covered, and thus constructs the complete reachability
tree that acts assafety certificate. Note that if the program
contained a second list that is created but never checked,
then the analysis would not track the shapes of that list,
because the interpolants yield only predicates that are in-
evitable for eliminating the infeasible error path.

4. Lazy Abstraction Refinement of Shapes

Shape classes.The level of abstraction of the shape analy-
sis is defined by ashape classS = (Pcore ,Pinstr ,Pabs),
which consists of three sets of predicates: (1) a setPcore

of core predicates, (2) a setPinstr of instrumentation predi-
cates withPcore∩Pinstr = ∅, where every instrumentation
predicatep ∈ Pinstr has an associated defining formulaϕp

over core predicates, and (3) a setPabs ⊆ Pcore ∪Pinstr of
abstraction predicates. The set of all predicates of the shape
class is denoted byP = Pcore ∪ Pinstr .

The set of core predicates must contain the special unary
predicatesm which has the value0 for normal nodes and

4



Command Constraint
1 : a := malloc() true
2 : pred(a 6= 0) 〈a, 1〉 6= 0
3 : p := a 〈p, 3〉 = 〈a, 1〉 ∧ 〈〈p, 3〉-> h, 3〉 = 〈〈a, 1〉-> h, 1〉

∧ 〈〈p, 3〉-> n, 3〉 = 〈〈a, 1〉-> n, 1〉
4 : pred(flag = 0) 〈flag, 0〉 = 0
5 : p-> h := 2 〈〈p, 3〉-> h, 5〉 = 2 ∧ 〈〈a, 1〉-> h, 5〉 = 2
6 : p-> n := malloc() −
7 : pred(p-> n 6= 0) −
8 : p := p-> n −
9 : p-> h := 3 −

10 : p := a 〈p, 10〉 = 〈a, 1〉 ∧ 〈〈p, 10〉-> h, 10〉 = 〈〈a, 1〉-> h, 5〉
∧ 〈〈p, 10〉-> n, 10〉 = 〈〈a, 1〉-> n, 1〉

11 : pred(flag = 0) 〈flag, 0〉 = 0
12 : pred(p-> h 6= 2) 〈〈p, 10〉-> h, 10〉 6= 2
13 : pred(p-> h 6= 3) 〈〈p, 10〉-> h, 10〉 6= 3
14 : ERROR

Figure 3. Path formula for the second infeasible error path
1/2 for summary nodes. Moreover, we distinct two spe-
cial subsets of the core predicates: the setPpt of points-to
predicates and the setPnode of node predicates. Apoints-to
predicateptx (v) is a unary predicate that indicates whether
the pointer variablex points to nodev. A node predi-
cate npredp(v) is a unary predicate that corresponds to
some boolean predicatep (from the predicate abstraction)
that holds for a variable that points to nodev. The boolean
predicatep is parametric on some variable name. We denote
by p[x ] an instance of the predicatep that refers to variable
x . Node predicates represent the content of a structure ele-
ment, rather than the structure of the shape itself.

A shape classS refinesa shape classS′, writtenS 4 S′,
if (1) P ′

core ⊆ Pcore , (2) P ′
instr ⊆ Pinstr , and (3)P ′

abs ⊆
Pabs . Theunionof two shape classesS andS′ is the shape
class(Pcore ∪P ′

core ,Pinstr ∪P ′
instr ,Pabs ∪P ′

abs) (w.l.o.g.,
we requirePcore ∩ P ′

instr = ∅ andPinstr ∩ P ′
core = ∅).

A shape graphs = (V,Val) of a shape classS =
(Pcore ,Pinstr ,Pabs) consists of a set of shape nodesV
and a valuation of the predicates (in a three-valued logic)
over V : for a predicatep in Pcore ∪ Pinstr of arity n,
Val(p) : V n → {0, 1, 1/2}.

Shape regions.A shape regionconsists of a shape classS
and a setS of shape graphs. Given a shape classS, the shape
region>S = (S, {s1/2}) includes all possible shape regions
(corresponding totrue in the predicate abstraction), where
s1/2 is the shape graph with a single shape node and the
constant function1/2 as valuation for every predicate. The
shape region⊥S = (S,∅) corresponds tofalse in the pred-
icate abstraction.

Let S and S′ be two shape classes such thatS 4 S′.
A shape graphs′ of shape classS′ can be extended to the
shape graphs = τS′.S(s′) of shape classS such that the set
of shape nodes is left unchanged (V = V ′), and for each

predicatep in P \ P ′, the value ofp is 1/2 for all shape
nodes. We extend the operatorτ to sets of shape graphs
in the natural way. A shape region(S, S) is coveredby
a shape region(S′, S′), denoted by(S, S) v (S′, S′), if
τS′.(S∪S′)(S′) = τS.(S∪S′)(S) t τS′.(S∪S′)(S′), wheret is
the join of two sets of shape graphs as defined in TVLA [7].

The abstract semantics SPS is defined by
SPS((S, S),op) = (S, [[op ]](S)), where [[.]] is defined
as in TVLA [7]. Depending on the operations, we ap-
ply TVLA ’s operatorsfocusandcoercebefore (respectively
after) transforming a set of shape graphs.

4.1. Extracting Interpolants from Extended Path
Formulas

For a more precise analysis of the memory configura-
tion, we extend the path formulas that were previously used
in BLAST to recursive data structures.

Programs, lvalues, paths and path formulas.Our formal-
ization of programs is similar to [5]. A program is rep-
resented as a set of control flow automata, a patht of
length tsize is a sequenceop1; . . . ; optsize of commands,
which can be either statements or assume predicates. In
the rest of this paper, we consider flat programs (i.e., pro-
gram with a single function). Our approach can be extended
to programs with several functions. The program variables
are either integer values or pointers to (possibly recursive)
structures with fields that are integers and pointer to struc-
tures. We restrict lvalues that can occur in a program to
identandident-> field, whereidentdenotes a variable iden-
tifier andfielddenotes a name of a structure field. The func-
tion F maps an lvalue to the set of labels of the structure
pointed by the lvalue if the lvalue has a pointer type, and
to an empty set if the lvalue has an integer type. The state-

5



lvalue ::= ident| ident-> field
command ::= statement | predicate
statement ::= ident := expression

| ident := alloc()
| ident := ident
| ident := ident-> field
| ident-> field := ident

predicate ::= FOL formula overidents (variables)

Figure 5. Grammar of a program

ments and predicates composing a program are given in Fig-
ure 5.

The semantics for a path is given in terms of the
strongest postcondition operator: if the formulaϕ repre-
sents a state of the program andop is a command, then
the formulaSP.ϕ.op represents the set of successor states.
The predicate abstraction for a path is given by a map-
ping Π : [1..tsize] → 2FOL from path locations to sets of
atomic predicates. For a formulaϕ, the abstraction w.r.t. a
set of atomic predicatesP is the strongest formulaϕ′ with
atomic predicates fromP such thatϕ impliesϕ′. The op-
eratorSPΠ is the abstraction of the operatorSP, i.e., the
formulaSPΠ.ϕ.opi is the abstraction w.r.t.Π(i) of the for-
mula SP.ϕ.opi. We extendSP and SPΠ to paths in the
natural way. A patht is SP-infeasible(SPΠ-infeasible) if
SP.true.t (SPΠ.true.t) is not satisfiable.

To check whether a given error path is feasible (i.e., there
exists a corresponding feasible execution of the program),
we construct apath formula(PF), which is the conjunc-
tion of several constraints, one per instruction, such that
the PF is feasible iff the path is feasible. The technique for
building PFs from [5] cannot be reused directly, because it
is restricted to programs without recursive data structures.
Also, that approach cannot be extended trivially because it
would result in infinite formulas. However, since the num-
ber of memory cells possibly involved in the path formula is
bounded, we can produce a finite, sound and complete path
formula. The address of each structure on the heap that is
accessed on the path, was previously assigned to a pointer
variable at some point, because we consider a restricted set
of possible lvalues. To be able to refer to those addresses
in our constraint formulas, we use SSA-like renamed lval-
ues.

Lvalue constants, annotated lvalues and aliasing.An
lvalue constantis either 〈ident, l〉 (variable constant) or
〈〈ident, l〉-> field, l′〉 with l, l′ ∈ [0..tsize] and l′ ≥ l.
An annotated lvalueis either ident or 〈ident, l〉-> field.
The labels l and l′ correspond to the position in the
path where the annotated valuesmayhave been modified.
The functionClean maps an lvalue constant or an anno-
tated lvalue to the lvalue by removing the labels. Anan-
notated lvalue mapθ is a function from annotated lval-

ues to numbers. Thelvalue renaming functionSub.θ.v is
defined bySub.θ.p = 〈p, θ(p)〉 and Sub.θ.(p-> f) =
〈(Sub.θ.p)-> f, θ((Sub.θ.p)-> f)〉 (p is a variable andf is
a field).

To encode into the path formula the aliasing among
memory cells, we use the functionmay that maps a position
in the path and an lvalue constant to the set of variable con-
stants that may have the same value (i.e.,〈p, lp〉 ∈ may.l.c
if, after thel-th command of the path, the value ofc may
be equal to the value ofp1 after thel1-th command on the
path).

Path formulas and constraints.The functionCon maps
a pair (θ,Γ) consisting of an annotated lvalue mapθ and
a constraint mapΓ : N → FOL, and a commandopi, to
a pair (θ′,Γ′) consisting of a new annotated lvalue map
and a new constraint map. Given a path, we compute re-
cursively the result ofCon along the path by computing
(θl,Γl) = Con.(θ(l-1),Γ(l-1)).opl (wherel is the location
of opl in the path). The mapθ0 is a constant map to0 and
Γ0 is the empty map. The mapθl differs fromθ(l-1) only for
annotated lvalues that may be modified byopl, which are
mapped tol by θl. The mapΓl results from the mapΓ(l-1)

extended by mappingl to the constraint derived fromopl.
We derive the constraints from path commands similarly
to [5]. A major extension is necessary for assignments to
pointers. Since the structure may be recursive, we cannot
‘unroll’ the data structure to equate all possibly reachable
memory cells, because this yields infinite formulas. Addi-
tionally, we have to add aliasing constraints for cases where
several lvalue constants may point to the same memory cell.
The formal definition of the functionCon is given in Fig-
ure 6. The path formula is obtained by taking the conjunc-
tion of all formulas in the final constraint map. Note that the
size of the formula is highly dependent in the precision of
the alias analysis.

The definition ofCon refers to the following two func-
tions. The functioneqvar returns a constraint correspond-
ing to the equality of two variables considering their fields
(if any).

eqvar.(s1, θ1).(s2, θ2) = (Sub.θ1.s1 = Sub.θ2.s2)
∧

∧
f∈F(s1)

(Sub.θ1.(s1-> f) = Sub.θ2.(s2-> f))

The functionclos∗ returns the constraint corresponding to a
predicate.

clos*.θ.b.p =
(clos*.θ.b.p1) op (clos*.θ.b.p1) if p ≡ (p1 op p2)
¬(clos*.θ.¬b.p1) if p ≡ (¬p1)
eqvar.(v1, θ).(v2, θ) if p ≡ (v1 = v2)

andb ≡ true
Sub.θ.p otherwise

6



Commandopl New mapθ′ andallocated′ ConstraintΓ′(l)
s := expr θ′(s) = l Sub.θ′.s = Sub.θ.expr

s1 := s2
θ′(s1) = l
∀f ∈ F(s1) : θ′(〈s1, l〉-> f) = l

eqvar.(s1, θ′).(s2, θ)

s1 := s2-> f
θ′(s1) = l
∀f ∈ F(s1) : θ′(〈s1, l〉-> f) = l

Sub.θ′.s1 = Sub.θ.(s2-> f)
∧

∧
c∈may.(l-1).(Sub.θ.(s2-> f))

(Sub.θ.(s2-> f) = c) ⇒ eqvar.(s1, θ′).(c, θ)

s1-> f := s2

θ′(〈s1, θ(s1)〉-> f) = l
∀c ∈ may.(l-1).〈〈s1, θ(s1)〉-> f, l〉 :
∀f ∈ F(c) : θ′(〈c, l〉-> f) = l

∀c ∈ may.(l-1).〈s1, θ(s1)〉 :
θ′(c-> f) = l

Sub.θ′.(s1-> f) = Sub.θ.s2

∧
∧

c∈may.(l-1).(Sub.θ′.(s1-> f))

 ite.(c = Sub.θ′.(s1-> f))
.(eqvar.(c, θ′).(s2, θ))
.(eqvar.(c, θ′).(c, θ))


∧

∧
c∈may.(l-1).Sub.θ′.s1

 ite.(c = Sub.θ′.s1)
.(Sub.θ′.(c-> f) = Sub.θ.s2)
.(Sub.θ′.(c-> f) = Sub.θ.(c-> f))


s := alloc()

θ′(s) = l
∀f ∈ F(s) : θ′(〈s, l〉-> f) = l
allocated′ = allocated ∪ {〈s, l〉}

∧
a∈allocated

(〈s, l〉 6= a)

predicate(p) clos*.θ.true.p

Figure 6. Definition of Con for each command. (θ′,Γ′) = Con.(θ,Γ).l.opl

Algorithm 1. Extract(t)

Input: an infeasible patht = (op1 : pc1); . . . ; (opn : pcn)
Output: a mapΠ from the locations oft to sets of atomic pred-
icates
Π.pci := ∅ for 1 ≤ i ≤ n
(·,Γ) := Con.(θ0,Γ0).t
P := derivation of

V
1≤i≤n Γ.i ` false

for i := 1 to n do
ϕ− :=

V
1≤j≤i Γ.j

ϕ+ :=
V

i+1≤j≤n Γ.j
ψ := ITP(ϕ−, ϕ+)(P)
Π.pci := Π.pci ∪ Atoms(Clean(ψ))

return Π

Algorithm. Algorithm 1 first constructs the constraint map
(using functionCon) that represents the path formula for
the given patht. Then it splits the (infeasible) path formula
at every program location and computes the predicates that
are necessary to eliminate the infeasible error path, for re-
fining the abstraction in a way that makes the abstract path
also infeasible. For a given split of the path formula intoϕ−

andϕ+, and a proofP of unsatisfiability ofϕ− ∧ ϕ+, the
function ITP(ϕ−, ϕ+)(P) returns the interpolant formulaψ
for the proofP and the formulasϕ− andϕ+. The function
Atoms returns the set of atomic predicates of a formula.

Theorem 1 (Soundness).Let t be a path of a programP .
The patht is SP-infeasible iff t isSPΠ-infeasible forΠ =
Extract(t).

The difference to the corresponding theorem in [5] is
that our new theorem does not require the program to be
free of recursive data structures. In particular, the theorem

states that our method issound, i.e., our method does not
report infeasibility although a real bug exists. However, the
theorem does not state that our method is necessarilycom-
plete. There are cases where we cannot eliminate an infea-
sible path by refinement of the abstraction or of the shape
class. This is a general limitation of shape analysis with a
fixed set of shape classes as implemented in TVLA [7], not
of our refinement method.

4.2. Shape Class Refinement Based on Inter-
polants

For a given program, we restrict the analysis to a finite
set of shape classes that can be used to analyze such a pro-
gram. We define thereafter the space of shape classes that
our approach considers and the way in which refinement
among shape classes occur.

Tracking definition and shape types.A tracking defini-
tion represents the pointers and predicates about the heap
that we track while analyzing the program. Atracking def-
inition consists of the following three sets: (1) the setT
of tracked pointers, which is the set of pointer variables
that may be pointing to some node in the shape, (2) the
setTs ⊆ T of separating pointers, which is the set of vari-
ables for which we want the corresponding points-to pred-
icates to be an abstraction predicate, and (3) the setP of
node predicates. We define a refinement relation for track-
ing definitions. A tracking definition(T, Ts, P ) refinesa
tracking definition(T ′, T ′s, P

′) if T ′ ⊆ T , T ′d ⊆ Ts, and
P ′ ⊆ P .

7



A shape typeT consists of a C structure type and a
map from tracking definitions to shape classes, where the
map preserves the refinement relation. For instance, a shape
type for singly-linked lists could be associated with the
C type struct node {int data; struct node
*next; }; , and it would map a given tracking definition
(T, Ts, P ) to the shape class with the following predicates:
the default unary predicatesm, a binary predicatenext
for representing links between nodes in the list, for each
variable inT a points-to predicate, which is an abstraction
predicate only for variables inTs, and the node predicates
from P . More precise shape types for singly-linked list can
be defined by adding instrumentation predicates for track-
ing, e.g., reachability and cyclicity.

Refinement. In Section 3 we described the overall algo-
rithm (cf. Fig. 1) of our combined approach. The remaining
step we need to explain is how to refine the shape abstrac-
tion during the abstract reachability algorithm. As predi-
cate abstraction starts with the empty set of predicates, lazy
shape analysis starts with the empty tracking definition.

Consider the shape typeT. The current tracking defini-
tion is refined, if theextended path formula isunsatisfiable,
and a variablep that occurs in an interpolant matches the
C type of shape typeT. For all such variablesp, we refine
the current tracking definition as follows:

• We addp to the set of tracked pointers and to the set of
separating pointers. We close the set of tracked point-
ers under aliasing.

• We add the atomic boolean predicates from the inter-
polants in which a tracked pointer is dereferenced, to
the node predicates.

The map of shape typeT maps the refined tracking defini-
tion to a shape class. Since the mapping preserves the re-
finement relation, the new shape class is a refinement of the
current shape class.

The outcome of this refinement can be either 1) the in-
feasible error path is eliminated in the next iteration of the
abstract reachability analysis, or 2) the refinement reaches
a fixed point, i.e., we already have all pointers and all node
predicates extracted from the path formula, and the infeasi-
ble error path occurs still in the next iteration. In the former
case, the refinement succeeds and the algorithm proceeds
with the refined shape abstraction. In the latter case we
conclude that the shape type is not precise enough and we
choose a refined shape type, and the analysis is re-launched
with the new shape type.

Since the interpolation-based analysis precisely locates
where refinement is necessary, we can restrict the refine-
ment of the shape analysis to a local context, as done in [5]
for predicate abstraction refinement. Also, this technique
ensures that the algorithm never refines more than neces-
sary.

5. Evaluation on Example Programs

Examples. We evaluated our method on six example
C programs that manipulate list data structures contain-
ing integers as data elements. The programssimple and
simple backw both create a list of an arbitrary number
of 1s and traverse it to check that every element is a1. The
difference between the two is the order in which the nodes
are created.

The programlist creates a list that begins with an ar-
bitrary number of1s, proceeds with an arbitrary number
of 2s, and ends with a3. Then, the list is traversed to check
that the numbers occur in the correct order. The program
list flag builds a list that begins either with1s or2s de-
pending on a flag, and ends with a3, then the lists are tra-
versed checking that the expected numbers are found. To
prove safety, this example (and the following two) requires
to track simultaneously a boolean predicate (flag = 0) and
shape graphs.

The programalternating is similar to list ex-
cept that the list begins with alternating1s and2s, and
ends with a3. The programsplice builds the same list
as alternating . Then, the list is split into two differ-
ent lists: the first list contains the nodes at odd positions and
the second list contains nodes at even positions of the orig-
inal list, without the last3. Each new list is then checked
whether it contains only the same number.

Implementation. The concepts presented in this paper are
implemented in BLAST version 3.0, which integrates TVLA

for shape transformation and the foci library of BLAST 2.0
for the predicate interpolation. TVLA (written in Java) is in-
tegrated into BLAST (written in OCaml) as a particular im-
plementation of a shape analysis module, so that, in princi-
ple, we are able to plug-in other shape analysis tools. The
shape analysis is plugged-in to BLAST’s on-the-fly analysis
by extending the abstract state region, which was a triple so
far (program counter, stack, predicate), by a shape region.
We previously tried to integrate the shape analysis aspredi-
cated lattice—as described in [3]— but this method did not
work well for the refinement, because the data-flow lattices
are always joined at join points in the control-flow graph
if the predicate regions are not different. We rather want to
distinguish the states reached on different paths (unless cov-
ered), for a more precise (more control-flow sensitive) anal-
ysis.

Table 1 reports the results of our experiments. None of
the programs was successfully verified by BLAST’s pred-
icate abstraction without shape analysis: the system is not
able to prove the program safe; rather it reports a false pos-
itive (column four in the table). Three examples can be
proved safe by pure shape analysis (without predicate re-
finement and with tracking maximal shape information ev-

8



Table 1. Time for verifying singly-linked list manipulation programs in seconds on a 3 GHz Intel Xeon
processor (CFA = control flow automaton, LOC = lines of code, FP = false positive, the number of
refinement steps is given in parenthesis)

Program CFA nodes LOC Pred. abstr. Shape analysis PA & SA
simple 26 44 FP 0.16 s (0) 0.48 s 0.51 s (1)
simple backw 19 39 FP 0.36 s (4) 0.43 s 0.58 s (5)
list 34 54 FP 0.15 s (0) 3.74 s 4.63 s (3)
list flag 35 62 FP 0.15 s (0) FP 0.26 s 1.18 s (4)
alternating 30 58 FP 0.20 s (1) FP 0.26 s 1.77 s (5)
splice 42 84 FP 0.68 s (3) FP 0.66 s 6.10 s (7)

erywhere, like in TVLA ), but for the other three it fails due
to missing control-flow sensitivity (column five).

The model checker BLAST with lazy shape analysis
proves all example programs safe (last column). The run-
times show that the overhead for the refinement of the shape
abstraction for the first three programs (compared to pure
shape analysis) does not significantly increase the run-time
of the analysis in these cases. In contrast, for the other three
programs for which the combination of shape analysis and
predicate refinement is really necessary, the reported run-
time is much higher, because the other analyses are fast in
finding a false positive. Not surprisingly, the run-times for
list andsplice are higher than the others, because their
shape analysis is more involved. However, it is interesting to
note that the shape refinement overhead is reasonably small,
although the path formulas are proportionally larger with in-
creasing size of the shape graphs. The first three examples
are chosen such that they require the same amount of shape
operations in both methods, to measure the overhead of lazy
shape analysis compared to shape analysis, without taking
advantage of the laziness.

The results of our experiments (including the C source
code of our examples, the error paths, and analy-
sis log files), as well as a pre-compiled binary of
BLAST 3.0, are available on the supplementary web page
athttp://mtc.epfl.ch/ ∼beyer/blast sa .

References

[1] T. Ball and S. Rajamani. The SLAM project: Debugging sys-
tem software via static analysis. InProc. POPL, pages 1–3.
ACM, 2002.

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. InProc.
CAV, LNCS 1855, pages 154–169. Springer, 2000.

[3] J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with
predicates. InProc. ESEC/FSE, pages 227–236. ACM, 2005.

[4] B. Gulavanin and S. Rajamani. Counterexample driven
refinement for abstract interpretation. InProc. TACAS.
Springer, 2006.

[5] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMil-
lan. Abstractions from proofs. InProc. POPL, pages 232–
244. ACM, 2004.

[6] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InProc. POPL, pages 58–70. ACM, 2002.

[7] T. Lev-Ami and S. Sagiv. TVLA : A system for implementing
static analyses. InProc. SAS, LNCS 2280, pages 280–301.
Springer, 2000.

[8] K. L. McMillan. Interpolation and SAT-based model check-
ing. In Proc. CAV, LNCS 2725, pages 1–13. Springer, 2003.

[9] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural func-
tional shape analysis using local heaps. Technical Report
TAU-CS-26/04, Tel-Aviv University, 2004.

[10] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analy-
sis via 3-valued logic. InProc. POPL, pages 105–118. ACM,
1999.

9

http://mtc.epfl.ch/~beyer/blast_sa/

	Introduction
	Existing Techniques
	Model Checking by Predicate Abstraction
	Data-Flow Analysis by Shape Analysis

	Overview and Example
	Lazy Abstraction Refinement of Shapes
	Extracting Interpolants from Extended Path Formulas
	Shape Class Refinement Based on Interpolants

	Evaluation on Example Programs

