
Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM 2005, Budapest, September 25-30),
Industrial and Tool volume, pages 89-92, 2005.

Co-Change Visualization

Dirk Beyer
EPFL, Lausanne, Switzerland

dirk.beyer@epfl.ch

Abstract

Clustering layouts of software systems combine two im-
portant aspects: they reveal groups of related artifacts of
the software system, and they produce a visualization of the
results that is easy to understand. Co-change visualization
is a lightweight method for computing clustering layouts of
software systems for which the change history is available.
This paper describes CCVISU, a tool that implements co-
change visualization. It extracts the co-change graph from
a version repository, and computes a layout, which posi-
tions the artifacts of the software system in a two- or three-
dimensional space. Two artifacts are positioned closed to-
gether in the layout if they were often changed together. The
tool is designed as a framework, easy to use, and easy to
integrate into reengineering environments; several formats
for data interchange are already implemented. The graph
layout is currently provided in VRML and SVG format, in a
standard text format, or directly drawn on the screen.

1 Concepts

Visualizations of the structure of software systems are
helpful during reengineering and maintenance activities be-
cause they accelerate the understanding process. The ex-
traction and comprehension of the subsystem structure is
one of the most important tasks in this field, which is the
more difficult the less documentation is available about the
system. The change history —stored in the version control
repository— is almost always available.

We propose to compute a clustering layout based on the
change history of the system. Intuitively, two artifacts have
close positions in such a layout if they were often changed
together, and they have distant positions if they were rarely
commonly changed. The method consists of two compo-
nents. First, we build an abstraction of the system’s change
history, the so called co-change graph. Second, a force-
directed graph-layout algorithm is used to compute a layout
of the co-change graph, were the algorithm is driven by an
energy model that is designed to produce clustering layouts.
In the following, we briefly explain these two components
of the method (cf. [2] for details).

Co-Change Graph. First, the tool CCVISU constructs
the co-change graph, which is an abstraction of the ver-
sion control repository. The (weighted) co-change graph
for a given version control repository is an undirected graph
G = (V,E,w). The set of vertices V represents the artifacts
of the system (e.g., files, classes, methods, packages) and
change transactions (e.g., commits in CVS). An edge {c,a}
is contained in E if artifact a was changed by change trans-
action c. The weight w({c,a}) of an edge is interpreted as
the importance of the edge. For an unweighted graph, the
weight is 1 for all edges. A detailed discussion on edge
weights for co-change graphs is given in the technical re-
port [3].

The motivation for using the co-change graph is three-
fold: First, frequently co-changed artifacts are likely to
be logically coupled, and grouping them together in one
subsystem restricts the scope of changes to the local con-
text. Second, the co-change graph is not limited to program
source code, unlike call graphs and other syntax-based mod-
els; the co-change graph includes also artifacts for test data,
shell scripts, SQL scripts, examples, documentation, and
subsystems in different programming languages. Third, the
co-change graph can be efficiently and inexpensively ex-
tracted from version control repositories.

Clustering Layout. In the second stage of the method,
a clustering layout of the co-change graph is computed.
CCVISU is based on force-directed layout, which consists
of two parts: an energy model assigns an energy to each lay-
out for evaluation —the smaller the number, the better the
layout—, and an algorithm computes a layout with minimal
energy.

Such an algorithm usually works as follows: It starts
with an initial layout, where the positions of the vertices
are randomly assigned. Then, in every iteration, the algo-
rithm tries to improve the layout according to the energy
model (by using the first derivation of the energy func-
tion to compute a direction and a distance for the move-
ment of each vertex). Since co-change graphs are usually
large, we cannot use algorithms with complexity in O(|V |2)
per iteration. The algorithm of Barnes and Hut [1] is in
O(|E|+ |V | log |V |) per iteration, and is therefore sufficient
for our problem.

89

http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/


The energy model for co-change visualization has to ful-
fill several criteria, in particular, it should separate clus-
ters and lead to interpretable distances. In difference to
other graph-drawing applications, the energy model for
co-change visualization must not enforce uniform edge
length, must not be biased to the size of the clusters, and
must be normalized to non-uniform degrees of the vertices.
CCVISU implements the weighted edge-repulsion LinLog
energy model:

U(p) = ∑{u,v}∈E w({u,v}) ||p(u)− p(v)||

+ ∑{u,v}∈V (2) −degw(u) degw(v) ln ||p(u)− p(v)||,

where p : V → ℜd is a layout, U(p) is the energy of p,
||p(u)− p(v)|| is the Euclidean distance of u and v in p, and
degw(v) is the sum of the edge weights of edges incident to
a vertex v. The first term of the sum is interpreted as attrac-
tion between connected vertices, because its value decreases
when the distance of such vertices decreases. The second
term is interpreted as repulsion between all pairs of (differ-
ent) vertices, because its value decreases when the distance
between any two vertices increases. The repulsion of each
vertex v is weighted by the weighted edge degree degw(v),
to avoid a bias to place vertices with heavy edge degree in
the center of the layout.

The weighted edge-repulsion LinLog model is a straight-
forward extension of the model that we have successfully
used in our initial study [2]. Noack provides a detailed in-
troduction of the unweighted version and a comparison with
the original LinLog model in the technical report [6].

Previous work. A comprehensive discussion of the re-
lated work is given in our technical report [3]. The two most
related approaches are BUNCH [5] and the work of Eick and
Wills [4]. The novelty of CCVISU is twofold: First, it is
based on the co-change graph, not on syntax-based models.
(There are other approaches using change history, but not
for clustering.) Second, it is based on an energy model that
is designed for clustering layout.

2 Tool Implementation

The tool CCVISU works as follows: First, the CVS log-
ging information is parsed and analyzed to extract the file
revision information. The gained information is combined
to construct the co-change graph. In the second stage, the
tool computes the layout for the vertices of the co-change
graph. This part is done by an implementation of an energy
model and an algorithm that computes a layout that has min-
imal energy according to the energy model. At the end, the
graph needs to be displayed on the screen, or written to a
file.

Figure 1. CCVisu’s input/output interface

Input/Output (black-box view). Figure 1 shows the
more general usage of the tool. The input is either (1) a
CVS log file —extracted from the CVS version reposi-
tory with the command cvs log—, or (2) a textual rep-
resentation of the co-change graph in Rigi Standard Format
(RSF) to compute layouts for co-change graphs extracted
from other version control systems. To display a previously
computed layout, the input can also be (3) a text file con-
taining the layout (LAY).

The layout of the artifacts can be produced in three
forms. (1) The text file (LAY) can later be read by CCVISU

or other tools, such that the tool can be embedded in differ-
ent environments. (2) The VRML format allows the use of
an external VRML viewer (or a web browser with VRML
plug-in) to view the layout, and is enabled for 2D as well
as 3D layouts. Artifacts are drawn as spheres, and the name
is annotated when the mouse pointer moves on the artifacts,
or permanently annotated to the artifact via mouse click.
The usage of the SVG format is similar and therefore omit-
ted in Figure 1. However, SVG can be used to display much
larger layouts, but without 3D effects. (3) The layout can be
directly displayed on the screen. This form is the preferred
output method for huge graphs, when VRML and even SVG
viewers are not able to reproduce the layout on the screen.
Artifacts are drawn as filled circles, and the names of the
artifacts are shown in a separate frame when the mouse
pointer moves onto an artifact, or permanently annotated
to the artifact via mouse click. (4) Besides the layouts, the
tool can also output the extracted co-change graph in RSF.

Framework (white-box view). CCVISU is designed as
a framework to make improvements and extensions easy,
and to enable integration into other reengineering tools.
Figure 2 shows the components of the tool. Basically, the
input graph is read by a reader component, passed to the lay-
out algorithm, and the output is written by a writer compo-
nent. The reader interface has currently three implementa-

90

http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/


Figure 2. CCVisu’s framework architecture

tions: for reading CVS log files, co-change graphs in RSF,
and layouts in text format. The writer interface has five im-
plementations so far: for writing co-change graphs in RSF
format, layouts in text format, VRML and SVG layouts, and
for writing the layout directly to the screen.

The version control system CVS does not directly keep
the information which files were checked-in together in the
repository. The transactions need to be recovered from
the logged information about time, user, and log message.
The current CVS reader implements the heuristic used in
CVS2CL1: it considers a sequence of changes of files as one
change transaction if the changes have the same user lo-
gin, the same log message, and time stamps that differ by
at most 180 s (the constant can be adjusted). The co-change
graph is extracted on the file level. However, if a more fine-
grained visualization is necessary (e.g., on method level),
the techniques used in ROSE [7] can be integrated as ad-
ditional reader. On the other hand, co-change graphs on
higher levels (e.g., on package level) can be obtained by ap-
plying a technique called ’lifting’.

Using these flexible input/output formats, the tool can
also be used as a force-directed layouter for other kinds of
graphs, not only co-change graphs. To provide more control
over the concrete layout computation, the minimizer algo-
rithm and the energy model themselves are also abstract or
generic components. Currently, CCVISU includes an im-
plementation of the Barnes-Hut algorithm [1] as minimizer,
and supports several energy models for the evaluation of
layouts. However, to achieve clustering layouts for soft-
ware graphs, we have to choose an energy model that fulfills
certain clustering criteria. This is why we use the weighted
edge-repulsion LinLog model (defined in Sect. 1) as default.

3 Application

The layouts produced by the tool CCVISU provides in-
formation on two levels:

1Available at http://www.red-bean.com/cvs2cl

• If the co-change graph contains clusters, then —due
to the clustering quality of the energy model— the
clusters are separated. Therefore, on the higher level,
it reveals the subsystem structure of the system if
the repository information allows so, and provides an
overview over the relationships between the subsys-
tems on the coarse level.

• Artifacts that were often changed together are placed
closed together in the layout. Therefore, on the lower
level, the engineer can use the visualization to find out
in which context the artifact is used, which other arti-
facts need to be understood to understand the artifact,
and if the artifact needs to be changed, it provides the
artifacts that are most likely to change as well in the
close neighborhood of the artifact.

The visualization can, for example, provide some guid-
ance for answering concrete questions like the following:
Which SQL query files correspond to which module of the
system? Which test input file is related to which code
file? Which configuration file corresponds to which mod-
ule files? If we change a certain file, which files should we
understand because of potential impact? If we are interested
to unterstand a certain code file, which documentation file
shall we read? If we want to test a certain part of the pro-
gram, which example files and test cases are closely related
to the source file of that part?

Example Visualization. We have applied the CCVISU

method to the well-known software project MOZILLA, in
particular to the mailnews component without the base
package. The co-change graph was extracted from a CVS
log file with 270 000 lines (13 MB). In this example, the ar-
tifacts of the co-change graph are files. The graph consists
of 1 804 artifact vertices, 9 950 vertices for change transac-
tions, and 30 938 edges (changes). Figure 3 shows a screen-
shot of the layout, which was computed within 5 min on a
1.7 GHz Pentium M machine, using only 100 iterations of
the minimizer.

The vertices for the change transactions and the edges
are omitted for readability. The artifact vertices were drawn
in different colors, in order to compare the grouping sug-
gested by the layout with the authoritative decomposition,
according to the documentation. We considered 8 major
subsystems of the mailnews component and assigned col-
ors to them: AddrBook (blue), Compose (magenta), IMAP
(pink), MAPI (yellow), MIME (red), Import (cyan), DB (or-
ange), and Extensions (gray). The rest (minor components,
build utils, etc.) is labeled as Misc (green) in the figure.
(The subsystem labels are also annotated in gray boxes, to
improve readability for gray-scale printouts.) Now we can
compare whether CCVISU has positioned the 1 804 files in
groups in agreement with the authoritative decomposition:
Some of the subsystems are clearly separated from the rest

91

http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://www.red-bean.com/cvs2cl/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/


Figure 3. Co-change visualization of MOZILLA’s mailnews component

(Extensions, IMAP, DB, MAPI, AddrBook), some are not
separate clusters but almost all files of the same subsystem
are closed together (Import, MIME, Compose), and Misc is
not grouped at all (as expected). Due to space, a detailed
interpretation is not possible here. However, more example
visualizations together with discussion and interpretation of
the layouts are given in the concept paper [2].

4 Summary
Co-change visualization is a lightweight method for vi-

sual clustering of software systems. The tool implemen-
tation CCVISU is easy to use and designed as a generic
tool framework to enable easy integration of additional con-
cepts. It is also easy to integrate into other tools. Our
initial study showed that the approach of software cluster-
ing based on historical common changes produces good re-
sults and works efficiently. The layouts reveal the subsys-
tem structure, in conformance with authoritative decompo-
sitions, and provide for each artifact the related artifacts in
the close neighborhood. Using the method in reverse engi-
neering can accelerate the understanding of the system, and
during maintenance activities it can provide helpful guid-
ance before performing changes.

More details on the concepts and a comparison of the
layouts with the Fruchterman-Reingold layouts are given

in the technical report [3], and all layouts and input
data (inclusive raw co-change graph data) of our initial
study are available on the CCVISU web page. CCVISU

is released under GNU LGPL and publicly available at
http://mtc.epfl.ch/∼beyer/CCVisu.

References

[1] J. Barnes and P. Hut. A hierarchical O(N log N) force-
calculation algorithm. Nature, 324:446–449, 1986.

[2] D. Beyer and A. Noack. Clustering software artifacts based on
frequent common changes. In Proc. IWPC, pages 259–268.
IEEE, 2005.

[3] D. Beyer and A. Noack. Mining co-change clusters from ver-
sion repositories. Technical Report IC/2005/003, EPFL Lau-
sanne, 2005.

[4] S. G. Eick and G. J. Wills. Navigating large networks with
hierarchies. In Proc. Visualization, pages 204–210, 1993.

[5] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A clustering tool for the recovery and maintenance
of software system structures. In Proc. ICSM, pages 50–59.
IEEE, 1999.

[6] A. Noack. Visual clustering of graphs with nonuniform de-
grees. Technical Report 02/04, BTU Cottbus, 2004.

[7] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies
system architecture (or not). In Proc. IWPSE, pages 73–83.
IEEE, 2003.

92

http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/
http://mtc.epfl.ch/~beyer/CCVisu/

	Concepts
	Tool Implementation
	Application
	Summary

