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Abstract

Changes of software systems are less expensive and less
error-prone if they affect only one subsystem. Thus, clusters
of artifacts that are frequently changed together are subsys-
tem candidates. We introduce a two-step method for iden-
tifying such clusters. First, a model of common changes
of software artifacts, called co-change graph, is extracted
from the version control repository of the software system.
Second, a layout of the co-change graph is computed that
reveals clusters of frequently co-changed artifacts. We de-
rive requirements for such layouts, and introduce an energy
model for producing layouts that fulfill these requirements.
We evaluate the method by applying it to three example sys-
tems, and comparing the resulting layouts to authoritative
decompositions.

1 Introduction

Abstract descriptions of a large software system enable
software engineers to modify or extend the system without
understanding every part of it in detail. When design docu-
ments with such descriptions are unavailable or out of date,
high-level descriptions can be recovered from the source
code and other low-level information through reverse en-
gineering. As a part of this process, software clustering di-
vides software artifacts into subsystems, such that the sub-
systems are as independent as possible with respect to com-
prehension, change, reuse, or other criteria. This paper in-
troduces a new software clustering method which differs
from previous approaches in the underlying model of the
software system, and the notion of clusters.

The underlying model of software systems is called co-
change graph. It is an abstraction of version control repos-
itories. The vertices of the co-change graph are software
artifacts (such as files or functions) and change transactions
(e.g., commits in terms of CVS), and the edges connect the
change transactions with their participating artifacts.

Similar models of historical common changes have been
successfully analyzed, e.g., to detect design problems [18]
or to suggest changes [39]. However, they have not been
used for computing clusters so far. Clusters were previ-

ously derived from file names [4, 19], directories in the file
system [2, 35], tokens occurring in program code and doc-
umentation files [19, 24, 25], file ownership [2, 10], and in
particular from syntactic relationships like calls or variable
references (e.g., [2, 8, 11, 13, 19, 20, 28, 33]). We expect
the historical common changes to be a valuable complement
to these information sources, for three reasons. First, plac-
ing frequently co-changing artifacts in a common subsys-
tem is an important clustering criterion, because it limits
the scope of changes to one or few subsystems, and thus
reduces their cost and risk. Second, unlike call graphs and
other syntax-based models, the co-change graph is not lim-
ited to program source code. Third, the co-change graph
can be extracted efficiently and inexpensively from version
control repositories. In contrast, the extraction of syntac-
tic relationships like calls requires advanced tools that may
produce considerably varying results [29].

We introduce a novel clustering method for co-change
graphs whose results differ from related approaches both in
content and presentation. Concerning presentation, the re-
sult of the clustering is not a partition of the graph vertices,
but a layout of the graph vertices (i.e., positions of the graph
vertices in two- or three-dimensional space). Intuitively, the
layouts place heavily co-changed artifacts closely together,
and rarely co-changed artifacts at larger distances. Com-
pared to a partition of the artifacts, a layout has the advan-
tages of being easily comprehensible and containing addi-
tional information, e.g., how clearly the clusters are sep-
arated, or if artifacts are at the center of their cluster or
rather between two clusters. Concerning content, the arti-
facts are not just arranged in some nice way, but their posi-
tions have a well-defined interpretation with respect to their
common changes. Basically, two groups of artifacts are
placed closely to the degree that their “common change”
is stronger than random. This notion of clusters is similar
to ratio cut graph partitioning [36], which was introduced to
software clustering by Mancoridis et al. [26].

Our model of co-changes in software systems and our
clustering method are detailed in Sections 2 and 3, respec-
tively. The related work is discussed within these sections.
Section 4 evaluates the approach by reporting the results of
its application to three software systems.
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2 The Co-Change Graph

This section introduces the co-change graph, our model
for common changes of software artifacts in version repos-
itories. Its vertices are software artifacts and change trans-
actions, and its edges connect the change transactions with
their participating artifacts. The co-change graph can be
easily extracted from version repositories. Its simplicity and
direct correspondence to the modeled version repository en-
sures that the clustering results have a clear interpretation in
terms of the repository, and biases through arbitrary choices
(e.g., for weight functions or values of free parameters) are
minimized. After the definition of the co-change graph in
the first subsection, related models of co-changes are dis-
cussed to justify our design choices.

2.1 Definition

A software artifact is an entity that belongs to a software
system, e.g., a package, a file, a function, a line of code,
a database query, a piece of documentation, or a test case.
A version is the state of a software artifact at a particular
point in time. Version control systems like CVS (Concurrent
Versions System) [12] store versions of software artifacts in
a central repository. The users of a version control system
modify local copies of the software artifacts, and check-in
their changes to the central repository from time to time. A
change transaction is a coherent sequence of check-ins of
several software artifacts. Software artifacts that participate
in the same change transaction are co-changed (commonly
changed). Some version control systems do not store the
information which artifacts were checked in together. In
this case, change transactions have to be recovered using
time stamps and other logged data.

The co-change graph of a given version repository is an
undirected graph (V,E). The set of vertices V of the co-
change graph contains all software artifacts and all change
transactions of the version repository. The set of edges E
contains the undirected edge {c,a} if artifact a was changed
by transaction c.

Note that the co-change graph is bipartite, i.e., it con-
tains no edges that connect two change transactions or two
software artifacts. Figure 1(a) shows an example co-change
graph with three artifacts and two change transactions: the
first changes three, the second changes two artifacts.

For a vertex v of a co-change graph, the number
|{u ∈V | {u,v} ∈ E}| of its adjacent vertices is called the
degree of v and denoted by deg(v). For transaction vertices,
the degree gives the number of artifacts that participate in
the transaction, and for artifacts, the degree gives the num-
ber of their changes.

2.2 Discussion and Related Work

We point out and justify two decisions we made in our
definition of the co-change graph. The first decision is to
give all edges the same weight, and the second decision is
to include both, artifacts and change transactions, into the
set of vertices, instead of only artifacts.

Weighted Co-Change Graph. A weighted co-change
graph (V,E,w) is an extension of a co-change graph (V,E)
by a weight function w : E → ℜ. The weight function as-
signs to each edge a real number, which can be interpreted
as the relative importance of the corresponding change.

The question arises which edges are most important for
clustering, and thus should be assigned the highest weights.
Large change transactions (i.e., transactions that change a
large number of artifacts) affect many subsystems, for any
partitioning of the system into subsystems. In contrast,
small change transactions should indeed affect only one
subsystem. Thus a change of an artifact in a small change
transaction is at least as important for the identification of
subsystem candidates as a change of an artifact in a large
transaction, and should have equal or greater weight.

Of the weight functions that fulfill this requirement, we
prefer to give each edge the same weight 1, because other
weight functions would complicate the model and the inter-
pretation of the analysis results. We do not claim that this is
the only sensible choice (cf. [9] for a detailed discussion).

(a) Co-change graph

(b) Condensed co-change graph

Figure 1. Example co-change graph and the
corresponding condensed co-change graph
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Condensed Co-Change Graph. Because we are mainly
interested in co-changes of artifacts, an obvious idea is to
remove the transaction vertices from the model, and retain
only the artifact vertices. The condensed co-change graph
for a given version repository is a weighted, undirected
graph (V,E,w), where the set of vertices V contains all soft-
ware artifacts in the repository, and the set of edges E con-
tains the edge {a,a′} if the artifacts a and a′ were commonly
changed by a change transaction. The function w : E → ℜ
assigns a weight to each edge.

Giving each edge the weight 1 does not reflect how of-
ten two artifacts were commonly changed. This can be
improved by weighting each edge between two artifacts
with the number of times that the artifacts were commonly
changed, as done in [5, 16, 18, 38], and illustrated in Fig-
ure 1(b). But this weighting is also problematic: a change
transaction of n artifacts increases the weights of 1

2 n(n−1)
edges by 1, which is an increase of 1

2 (n− 1) per changed
artifact. This violates the conclusion of the previous sub-
section: A change of an artifact in a small transaction is at
least as important as a change in a large transaction.

The condensed co-change graph conforms to this con-
clusion only if different, fairly complicated edge weights
are used. More precisely, we would have to include the
degree of the change transactions into the weighting func-
tion: the weight which is added to an edge for a transac-
tion c has to follow a function which is monotonically de-
creasing in the size deg(c) of the transaction. The model
conforms best to the non-condensed co-change graph if
the function is 2

deg(c)−1 , because then each transaction c

has the weight deg(c). (It adds 2
deg(c)−1 to the weight of

deg(c)(deg(c)−1)
2 edges.)

We prefer the non-condensed co-change graph, because
it is simpler (due to the absence of edge weights), and the
available transaction vertices help the engineer to under-
stand the couplings between artifacts. Note that the un-
weighted non-condensed co-change graph, in contrast to the
unweighted condensed co-change graph, does reflect how
often two artifacts were commonly changed, through the
number of transaction vertices to which both artifacts are
connected.

3 Clustering Layout of Co-Change Graphs

Our goal in the analysis of co-change graphs is to iden-
tify clusters of artifacts that are frequently changed together.
Such clusters can be naturally represented by layouts of the
artifacts in two- or three-dimensional space, such that heav-
ily co-changed artifacts are placed closely together, while
artifacts that participate in few common change transactions
are placed at larger distances.

Energy-based (or force-directed) graph layout methods
liken graph vertices to physical objects that exert forces on
each other [7, Chapter 10]. Graph vertices that are con-
nected by an edge attract, to ensure that they are placed
closely. All pairs of graph vertices repulse, to ensure that
non-related vertices are placed at larger distances. The re-
sulting graph layout is an energy-minimal state of the force
system.

Energy-based graph layout methods have two parts: an
energy model which assigns a real number (interpreted as
energy) to each graph layout, and an algorithm that searches
a layout with minimal energy. There exist several proven
solutions for the second aspect, of which we use an effi-
cient algorithm introduced for the simulation of astrophys-
ical systems by Barnes and Hut [6], and first applied for
computing graph layouts by Quigley and Eades [32]. We
will not describe this algorithm, but refer the interested
reader to the referenced literature.

The contribution of this section concerns the first aspect
of energy-based methods. In the first subsection, we de-
rive requirements for the layout of co-change graphs. In
the second subsection, we present an energy model whose
minimum energy layouts fulfill these requirements, and thus
have a clear interpretation in terms of co-changes of the rep-
resented artifacts.

3.1 Requirements for Clustering Layouts of Co-
Change Graphs

Intuitively, our requirements for layouts of co-change
graphs are small distances between artifacts that participate
together in many change transactions, and greater distances
between artifacts that participate together in few change
transactions. The goal of this subsection is to formalize this
intuition.

Consider a co-change graph G = (V,E), and a partition
of its set of vertices V into two disjoint sets V1 and V2 (i.e.,
V1 ∪V2 = V and V1 ∩V2 = /0). We require that V1 and V2

should be placed closely in the layout to the degree that co-
changes between V1 and V2 occur more often than random,
or equivalently, that their distance is proportional to the de-
gree to which they are co-changed less often than random.
More formally, the distance of V1 and V2 in the layout should
be the quotient of the expected number of edges between V1

and V2 in a random graph, and the actual number of edges
between V1 and V2 in G. (Remember that the edges in the
co-change graph represent changes of artifacts, and an edge
that connects a vertex in V1 with a vertex in V2 represents a
change that involves both V1 and V2.)

The remainder of this subsection derives a formula for
the required distance between V1 and V2 from this statement.
Therefore, it defines a random graph model, and calculates
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the expected number of edges between V1 and V2 in this
random graph model.

First we introduce two notations. The total degree
∑v∈Vi

degG(v) of all vertices of Vi in G is denoted by
degG(Vi) (i ∈ {1,2}). Note that degG(V1) + degG(V2) =
2|E|. The number of edges

∣
∣{{u,v} ∈ E | u ∈ V1,v ∈ V2}

∣
∣

between V1 and V2 in G is called the cut between V1 and V2

and denoted by cutG(V1,V2).
Consider a random graph R with the same set of ver-

tices V and the same number of edges |E| as G, where each
of the 2|E| end vertices of the edges is randomly chosen

from V1 with the probability degG(V1)
2|E| and from V2 with the

probability degG(V2)
2|E| . These probabilities are chosen such

that the expected total degrees of V1 and V2 in R conform
to the total degrees in G, namely degG(V1) and degG(V2).
The expected cut between V1 and V2 in R is degG(V1)degG(V2)

2|E| .
So the required distance of V1 and V2 in the layout of G,
which was defined to be the quotient of this expected cut in
the random graph and the actual cut in G, is degG(V1)degG(V2)

2|E|cutG(V1,V2) .
How are the terms of this formula related to our intu-

ition? Clearly, the distance between V1 and V2 should de-
crease with cutG(V1,V2), the number of changes involving
both V1 and V2. However, the same number of common
changes (say cutG(V1,V2) = 10) means heavy co-change if
V1 and V2 are involved in few changes (say degG(V1) =
degG(V2) = 20), but almost complete independence if V1

and V2 are involved in a very large number of changes (say
degG(V1) = degG(V2) = 2000). So the distance should in-
deed be monotonic increasing with degG(V1) and degG(V2).
The term 2|E| in the denominator is constant for a given
graph (while the other terms depend on the partition of V
into V1 and V2), and thus changes only the scaling of the
layout.

3.2 The Edge-Repulsion LinLog Energy Model

An energy model specifies what is considered as a good
graph layout. It maps graph layouts to real numbers (in-
terpreted as energy) such that smaller numbers mean better
layouts. For clustering co-change graphs according to the
criteria defined in the previous subsection, we use the edge-
repulsion LinLog energy model:

U(p) = ∑{u,v}∈E ||pu − pv||
+ ∑{u,v}∈V (2) −deg(u)deg(v) ln ||pu − pv||

In this formula, p is a layout (i.e., a mapping of the vertices
to positions in two- or three-dimensional space), U(p) is
the energy of p, pu and pv are the positions of the vertices u
and v in the layout p, ||pu− pv|| is the Euclidean distance of
u and v in p, and deg(v) is the number of edges incident to a
vertex v. In the following, we explain the basic ideas behind

this energy model. Space and the scope of this paper do not
permit a detailed and formal discussion, for which we refer
to the technical report [31].

The first term of the sum can be interpreted as attraction
between vertices that are connected by an edge, because
its value decreases when the distance of such vertices de-
creases. The second term can be interpreted as repulsion
between all pairs of (different) vertices, because its value
decreases when the distance between any two vertices in-
creases. The repulsion of each vertex v is weighted by its
number of edges deg(v). Through this weighting, the sec-
ond term is more naturally interpreted as repulsion between
all pairs of edges than between all pairs of vertices. (More
precisely, the repulsion acts not between the entire edges,
but only between their end vertices.) So the basic ideas
are that the edges (in the co-change graph: changes of ar-
tifacts) cause both attraction and repulsion, and that every
edge causes the same amount of attraction and repulsion (in
accordance with the discussion in Subsection 2.2). A sim-
ilar energy model, which does not consider the concept of
edge repulsion, was introduced in [30].

Layouts with minimum edge-repulsion LinLog energy
approximately fulfill the requirement identified in the pre-
vious subsection: disjoint sets of vertices V1 and V2 have a
distance proportional to degG(V1)degG(V2)

2|E|cutG(V1,V2) . (We refer to [31]
for a full formalization and a proof.) Such an approximate
statement about the correspondence between the layout and
the analysis goal is not as satisfactory as a precise state-
ment, but it is a significant advance over the situation for
other energy models, where there are no such statements at
all.

3.3 Discussion and Related Work

Clustering. There is a large body of literature on graph
clustering (see [1] for a survey). We focus our discussion
on work that is related to ours with respect to its three main
characteristics: we cluster software artifacts, our notion of
clusters is based on cuts, and we compute clusters with
energy-based methods.

Software Clustering. Most techniques for the graph-
based clustering of software artifacts rely on particular se-
mantics of the graph vertices and edges. For example, dom-
inance analysis or the computation of strongly connected
components are useful for call graphs [13], but not for co-
change graphs. More general and potentially applicable to
co-change graphs are techniques that are based on simi-
larity (e.g., [19, 33]) or minimizing information loss [2],
and concept analysis (discussed, e.g., in [3]). The only two
software clustering approaches with a significant relation to
our work are Bunch [26], which belongs to the cut-based
graph clustering techniques, and the approach by Eick and
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Wills [16], which is energy-based. These two classes of
clustering techniques are discussed in the following.

Normalized Cuts as Graph Clustering Criterion. The cut
between two disjoint sets of graph vertices is the number
of edges that connect both sets (as defined in Section 3.1).
Several researchers have proposed the minimization of cer-
tain normalized forms of the cut as clustering criterion. The
normalization of the cut with the maximum possible num-
ber of edges between the two sets of vertices is called the
ratio of the cut [36], and is also used in Bunch [26]. How-
ever, the ratio of the cut is biased when the degrees of the
graph vertices are very nonuniform [31], as they are in co-
change graphs. That is why we chose in Section 3.1 to nor-
malize the cut with the expected number of edges in a ran-
dom graph model, as done earlier (but without a systematic
derivation) in [34].

Energy-Based Graph Clustering. Many energy models
have appeared in the literature on automatic graph drawing
(most prominently, [15, 21, 17, 14]).These energy models
are suitable for their purpose of creating readable layouts
of graphs, but not for revealing clusters. They enforce that
the edge lengths in the layouts approximate desired edge
lengths given as input. Similarly, multidimensional scal-
ing (MDS [23]) enforces that the distances between any
two vertices in the layout approximate desired distances
given as input. So these energy models and MDS require
clusters as input (in the form of desired distances) to pro-
duce clusters as output (in the form of actual distances in
the computed layout). In contrast, the edge-repulsion Lin-
Log energy model produces clustering layouts —for a well-
defined and justified notion of a cluster— directly from the
co-change graph.

Representation as Layout. A distinguishing feature of
energy-based clustering compared to other clustering ap-
proaches is that it does not produce partitions or dendro-
grams, but layouts. Layouts are easy to comprehend and
allow the viewer to pan to and zoom into areas of interest.
They do not force every vertex into one cluster, but can also
show that a vertex is rather between two clusters. Clus-
ters in layouts often look somewhat fuzzy, but only because
clusters in real-world graphs are fuzzy.

The restriction of (human-readable) layouts to two or
three dimensions is potentially problematic, because there
are cluster structures that can only be displayed in higher-
dimensional spaces. We currently have no general results
about the practical relevance of this problem.

The difference between conventional clustering and clus-
tering layouts is not fundamental. Many clustering criteria,
including the ratio of the cut mentioned earlier in this sec-
tion and the criterion defined in Subsection 3.1, can be used
as basis for clustering layouts as well as classical clustering.

Table 1. Characterization of the systems

Project CrocoPat 2.1 Rabbit 2.1 Blast 1.1
Lines 114 000 317 000 3 970 000
Files 60 740 3 900
Changes 800 6 300 6 800
Commits 140 1 200 900
Users 1 9 8
Months 8 52 40

4 Evaluation

We evaluate our clustering method by applying it to the
CVS repositories of three software systems and comparing
the results to authoritative decompositions. The clustering
results are layouts —not partitions— which has the disad-
vantage that similarity measures for partitions (as proposed
in [22, 27, 37]) are not applicable, but the advantage that we
can present and discuss the results.

The three software systems have different sizes, numbers
of developers, and project durations, and include artifacts
in various programming languages. Because the evaluation
requires the knowledge of authoritative decompositions, we
chose systems that we are familiar with. Table 1 gives for
each system the overall size (in lines of text), the number
of files, the total number of changes of files, the number
of commits, the number of users who committed changes,
and the project’s duration as reflected in the repository. (All
numbers were obtained with the tool StatCvs1.)

The co-change graphs were extracted on file level be-
cause this enables the application of the same, programming
language independent, method for all repositories. The tool
cvs2cl2 is used to recover change transactions from a CVS
repository. A calculator for relations (we used CrocoPat3)
generates the co-change graph from the transactions.

The layouts of the co-change graphs were computed au-
tomatically using the Barnes-Hut algorithm and the edge-
repulsion LinLog energy model (introduced in Section 3).
The transaction vertices and the edges are elided in the vi-
sualizations, and only the artifact vertices are shown, be-
cause drawing all edges makes the visualization unread-
able. The vertices are displayed as circles, with the area
being proportional to the number of transactions the artifact
was involved in. (Very small circles were always enlarged
to a certain minimum size to ensure their visibility.) The
color of the circles reflects the subsystem membership of
the corresponding artifact in the authoritative decomposi-
tion. Groups of circles with the same color were (manually)
annotated with the name of the respective subsystem (gray,

1Available at http://statcvs.sourceforge.net
2Available at http://www.red-bean.com/cvs2cl
3Available at http://www.software-systemtechnik.de/CrocoPat
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in boxes), to facilitate their identification in grayscale print-
outs. To avoid overlapping, the names are annotated only
for some artifacts.

For comparison of our layouts with the layouts obtained
using the Fruchterman-Reingold energy model [17] (other
state-of-the-art energy models produce similar results), we
refer to the supplementary web page4 or the technical re-
port [9]. We also provide VRML files on the web page,
which enable navigation through the layouts and contain
the complete names of all artifacts, as well as the co-change
graphs used for our experiments.

4.1 CrocoPat 2.1

CrocoPat 2.1 is an interpreter for the language RML
(Relational Manipulation Language)5. It takes as input an
RML program and relations, and outputs resulting relations.
The repository contains C++ source code, specifications for
the lexical and syntactical analysis of RML programs, SQL
scripts, shell scripts, example RML programs, and test rela-
tions. It does not include any third-party package.

The authoritative decomposition has four major sub-
systems: program source code, example RML programs
(green), test relations (red), and scripts for extracting re-
lations from relational databases (magenta). The program
source code subsystem is again divided into three subsys-
tems: build utilities and main program (blue), RML syntax
tree (yellow), and BDD package (cyan).

On a global perspective, the layout shows three major
clusters of files: the top right cluster contains exactly the
test relations (red), the left cluster contains most of the ex-
ample RML programs (green), and the large central clus-
ter contains the remaining files. We discuss the latter two
groups in turn.

The left cluster is divided into two subclusters, which be-
long to two different stable versions of CrocoPat, namely,
version 1.3 and version 2.1. A change in the RML syntax
between these two versions required changes and renam-
ings in the RML files. The two files run-wcre.sh and syn-
tax.txt are positioned between the RML programs and pro-
gram source code for the RML syntax tree. They are indeed
related to both subsystems: run-wcre.sh is a shell script that
runs CrocoPat on some of the old RML programs, and syn-
tax.txt is a readable representation of the RML grammar
for the tool distribution.

The large central cluster contains mainly program
source code, but also some other files, which are discussed
in the following. A subcluster at the top of the central
cluster shows scripts for extracting relations from relational
databases (magenta), which were co-changed with the pro-
gram source code and are thus placed close to it. The lay-

4Available at http://mtc.epfl.ch/∼beyer/co-change
5Available at http://www.software-systemtechnik.de/CrocoPat

out shows correctly that these scripts belong together, but
it does not clearly show that they should be separated from
the program source code, to which they are semantically
unrelated. The build files (e.g., dependencies, Makefile) are
located at the bottom of the large central cluster. These files
are closely related to the program sources, and the author-
itative decomposition assigns them to the same subsystem
as the main program crocopat.cpp (blue). This is correctly
reflected by the layout. Finally, the large central cluster
contains three example RML files (test.pat, bool.pat and
int.pat, green). The layout suggests to assign these exam-
ple RML files to the program source subsystem, which dif-
fers from the authoritative decomposition, but makes sense,
because each of these files is a test case for close program
source files.

The program source code in the large central cluster is
not clearly divided into subclusters, but the placement from
bottom to top reflects CrocoPat’s layered architecture: the
main program crocopat.cpp (blue) starts the RML lexer
relLex.l and parser relYacc.y (yellow), the parser builds the
RML syntax tree (also yellow), and the syntax tree uses the
BDD package (cyan) to calculate with relations.

Besides the interpretation of clusters of files in the lay-
out as subsystem candidates, the positions of files in the
layout allow further inferences. For example, the RML
parser specification relYacc.y is placed closer to the exam-
ple RML program files in the left than the main program
crocopat.cpp. They are indeed related, because changes of
the RML syntax require modifications of both, parser and
RML programs. This dependency, as well as several depen-
dencies mentioned earlier, relate artifacts in different lan-
guages, and thus could not be detected with syntax-based
analyses.

In conclusion, the clustering layout correctly reflects the
authoritative decomposition, with two main exceptions. Of
these two exceptions, the placement of test cases in the cen-
tral cluster is semantically justified, but the placement of the
database extractor in the central cluster is not. This suggests
that historical co-changes should not be over-interpreted for
artifacts that were changed rarely (as shown by the small
size of the circles).

4.2 Rabbit 2.1

Rabbit 2.1 is a model checking tool for modular timed
automata6. It is a command line program which takes a
model and specification file as input and writes out veri-
fication results. The repository contains C++ code, timed
automata models, specification examples, and process doc-
uments such as todo and done lists. There is no third-party
code involved.

6Available at http://www.software-systemtechnik.de/Rabbit
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Figure 2. Artifacts in the CrocoPat repository

Figure 3. Artifacts in the Rabbit repository
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Figure 4. Artifacts in the Blast repository

The authoritative decomposition has six subsystems, of
which the first four contain C++ source code: the syntax
tree for specifications (green), the syntax tree for models
(red), the matrix representation of models (magenta), the
BDD representation of models (blue), example models (yel-
low), and miscellaneous artifacts including process docu-
ments (cyan).

Due to the restriction to static pictures we can only show
the central part of the layout in Figure 3, some groups of
example specifications and models were left out (cf. the
supplementary web page for the complete visualization in
VRML which allows panning and zooming). The layout
correctly groups the four C++ source code subsystems, with
some exceptions discussed in the following.

As a first exception, the files reprConfig.h and
reprAutomaton.h (both red, center) are placed between the
BDD representation cluster (blue) and the matrix represen-
tation cluster (magenta), although they belong to the syntax
tree for the model in the authoritative decomposition. Here,
the placement is correct, and the authoritative decomposi-
tion is problematic: the BDD representation and the matrix

representation are used alternatively via a common inter-
face, which consists of these two files. In the authoritative
decomposition, this common interface could be assigned
neither to the BDD subsystem nor to the matrix subsystem,
so it was assigned to the even less appropriate syntax tree
subsystem.

A second difference between the layout and the author-
itative decomposition are build files, for example, the three
dependency files (cta/dependencies, bdd/dependencies,
and ddm/dependencies). On the one hand, they belong
to different source code subsystems, and should be placed
closely to the respective clusters. On the other hand, build
files are usually changed together, thus should be clustered.
The layout reflects these conflicting forces: it places the
build files in the center, stretched out to the source code
clusters.

Besides the representation interface and the build files,
some other files of the source code subsystems are placed
in the wrong cluster (for example the green files in the red
cluster), or outside the main clusters (for example the files
around ddmVecPlain.h in the left). As the small size of
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their representation shows, these files were changed very
rarely. For such files, the available co-change information
is insufficient to reliably assign them to a subsystem.

In addition to the separation of the four main source code
subsystems, the layout allows some further inferences about
the structure of Rabbit. For example, the magenta cluster of
matrix representation code contains two sub-clusters, one
top left, and one bottom right. This complicated data struc-
ture is indeed divided into a high-level part (automata and
configurations) and a low-level part (transition, state, trace,
which constitute an automaton, and region, polyhedron, ma-
trix, constraint, which constitute a configuration).

The yellow group of example models (top right) is rela-
tively close to the C++ code. These example models are in-
deed related to the program files, because they are test cases
which were changed together with the tested code. As men-
tioned earlier, there are other groups of examples, which are
not shown because their distances from the central part of
the layout are much greater.

The process documents (cyan, bottom right) include the
project’s todo and done list, which are drawn large because
they were changed frequently. They were rarely changed to-
gether with the source code but mostly in separate reflection
phases, as shown by their large distance to the remaining
files.

In summary, the main clusters in the layout roughly
correspond to Rabbit’s actual subsystems. Some clus-
ters are fuzzy and not clearly separated, but Rabbit (like
most other real-world software systems) is not composed of
perfectly cohesive, mutually independent subsystems, thus
clean clusters would not reflect its actual structure.

4.3 Blast 1.1

Blast is a model checker for C programs7. It consists
of a collection of command line programs and a graphical
user interface, and it also includes several third-party pack-
ages. The repository contains source code in the program-
ming languages Ocaml, C, C++ and Java, regression tests,
example C programs, and example specification files.

The authoritative decomposition consists of 12 subsys-
tems. Some of the 12 different colors in Figure 4 are very
similar and thus difficult to distinguish.

The layout in Figure 4 can only present an abstract view
of the system, due to its considerable size. The figure shows
more than 3 600 artifacts, and some of the dense groups
in the figure consist of several hundred artifacts. A zoom
into the groups reveals further details within the subsystems
(cf. the supplementary web page for a scalable visualization
in VRML).

Four of the main clusters correspond to the four third-
party packages, namely the C parser front-end Cil with

7Available at http://www.eecs.berkeley.edu/∼blast

example files (magenta, left), the integrated decision pro-
cedure solver package ICS (orange, top), the BDD pack-
age CUDD (purple, top), and the compiler infrastructure
C-Breeze (light blue, top left). Each of these third-party
packages was basically (except some configurations and ex-
tensions for integration) inserted into the repository in one
huge transaction.

Three other large clusters correspond to the actual model
checker, split into the current (pscr package, green, right)
and an earlier development branch (src package, green, bot-
tom right), and the package for Blast’s specification lan-
guage (spec package, red, bottom).

The central part of the layout shows a cloud of files with
some denser accumulations. Three of the accumulations
correspond to the Craig interpolation package Foci (cyan,
top), Blast’s GUI package (yellow, top left), and the proof
generating theorem prover Vampyre (magenta, center). The
remaining files are documentation (light green, center left)
and test cases (blue, center). The widely spread placement
of the documentation and test files blurs the separation of
the clusters in this area, but is justified because the files are
indeed related to several subsystems.

5 Conclusion

This paper introduced a new method for clustering soft-
ware artifacts, based on historical co-changes and inter-
pretable graph layout. First, we defined the co-change
graph as underlying formal model, which is inexpensively
extractable and not limited to program source code. Sec-
ond, we derived requirements for the layout of co-change
graphs, and introduced an energy model for computing such
layouts.

We evaluated our method on three example software sys-
tems with different types of documents and source code in
several programming languages. The main clusters in the
layouts conformed well to the subsystems in the authorita-
tive decompositions of the software systems. Compared to
conventional clustering, layouts do not provide a unique and
objective partition of the artifacts, but reflect that some ar-
tifacts cannot be clearly assigned to a subsystem, and some
subsystems are not clearly separated from each other.

We expect that the clustering results can be improved by
removing some limitations of this initial study. The evalua-
tion of historical co-changes as basis for software clustering
required to examine them in isolation, but the results show
that further information can be helpful, in particular for as-
signing artifacts that were rarely changed. Also, a simple
model of common changes was used to minimize the num-
ber of causal factors that affect the evaluation result, but
the inclusion of more details, e.g. the size of changes, is
promising.
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