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Abstract

A temporal interface for a system component is a finite
automaton that specifies the legal sequences of input events.
We evaluate and compare three different algorithms for au-
tomatically extracting the temporal interface from the tran-
sition graph of a component: (1) a game algorithm that
computes the interface as a representation of the most gen-
eral environment strategy to avoid a safety violation; (2) a
learning algorithm that repeatedly queries the component to
construct the minimal interface automaton; and (3) a CE-
GAR algorithm that iteratively refines an abstract interface
hypothesis by adding relevant state information from the
component. Since algorithms (2) and (3) have been pub-
lished in different software contexts, for comparison pur-
poses, we present the three algorithms in a uniform finite-
state setting. We furthermore extend the three algorithms to
construct maximally permissive interface automata, which
accept all legal input sequences. While the three algorithms
have similar worst-case complexities, their actual running
times differ greatly depending on the component whose in-
terface is computed. On the theoretical side, we provide
families of components that exhibit exponential differences
in the performance of the three algorithms. On the practi-
cal side, we evaluate the three algorithms experimentally on
a variety of real world examples. Not surprisingly, the ex-
perimental evaluation confirms the theoretical expectation:
learning performs best if the minimal interface automaton
is small; CEGAR performs best if only few component vari-
ables are needed to prove an interface hypothesis safe and
permissive; and the direct (game) algorithm outperforms
both approaches if neither is the case.

∗ This research was supported in part by the SNSF grants 5005-67322
(MICS-NCCR) and 200021-107600/1.

1. Introduction

Complex systems are built using components and li-
braries, which are often developed by different teams,
or even different companies. Quality component inter-
faces greatly facilitate the integration and validation
process for such systems. This explains the recent in-
terest in rich interfaces for hardware and software com-
ponents [6, 8]. We consider temporal interfaces, which
specify the legal sequences of input events for a com-
ponent, i.e., those sequences of input events that do not
cause the component to enter an error state [4]. Con-
sider, for example, the component shown in Fig. 1, which
controls read and write accesses to a device. The com-
ponent requires that the device be opened for read or
for read-write access before being read, and be opened
for read-write access before being written. Once the de-
vice is released, it needs to be reopened again according
to the same rule. Thus, the temporal interface of the de-
vice controller can be represented by the regular expression
((acq r · read∗ · rel) ∪ (acq rw · (read ∪ write)∗ · rel))∗.
The interface is both safe, in that it accepts no sequence of
input events that leads to an error, and permissive, in that it
accepts all other sequences.

Several algorithms have been proposed for automatically
extracting safe and permissive temporal interfaces (in the
form of finite automata) from component descriptions. Like

void acq_r(Device d) {
if (!d.rdflag)
d.rdflag = true;

else
d.error = true; }

void read(Device d) {
if (!d.rdflag)
d.error = true; }

void acq_rw(Device d) {
if (!d.rdflag){
d.rdflag = true;
d.wrflag = true;
} else
d.error = true; }

void rel(Device d) {
if (d.rdflag){
d.rdflag = false;
d.wrflag = false;
} else
d.error = true; }

void write(Device d) {
if (!d.wrflag)
d.error = true; }

Figure 1. Example of an open system that sup-
ports read-write access to devices



many questions of sequential synthesis, interface extraction
is a game problem, namely, to compute the most general en-
vironment strategy for providing input events without caus-
ing a safety violation in the component. We call the algo-
rithm that solves the safety game on the transition graph
of the component, the “direct” algorithm. As the complex-
ity of this algorithm grows with the number of states of
the component, two different improvements have been sug-
gested, both in the context of software component libraries.
The first improvement is based on techniques for learning
a finite automaton by repeatedly querying a teacher [2, 7].
The learning algorithm has been applied to interface syn-
thesis by Alur et al. [1]. It learns the interface by querying
the component repeatedly. The learning algorithm guaran-
tees the construction of an interface with a minimal num-
ber of states, and thus performs well if the number of states
required in the interface is much smaller than the number
of component states. The second improvement is based on
counterexample-guided abstraction refinement [3]. The CE-
GAR algorithm computes an abstraction of the component,
then extracts an interface for the abstraction, then checks if
the extracted interface is both safe and permissive for the
concrete component (using two reachability tests), and if
not, iteratively refines the component abstraction [5]. This
algorithm performs well if there exists a small abstraction
of the component from which a safe and permissive inter-
face can be constructed.

Our aim is to compare and evaluate the three approaches
(direct; learning; and CEGAR) both theoretically and ex-
perimentally in a neutral (hardware and software indepen-
dent) setting. Even though they address the same prob-
lem, the three algorithms proceed very differently. More-
over, the learning algorithm was published and previously
implemented in the context of Java libraries without guar-
anteeing interface permissiveness [1], and the CEGAR al-
gorithm was published and previously implemented in the
context of C programs [5]. Thus, for a fair comparison, we
had to formalize and reimplement all three algorithms in a
uniform setting. In order to disregard orthogonal issues as
much as possible, we remove all effects of the component
description language by choosing, as input to the three algo-
rithms, the transition graph of the component. We further-
more choose the transition graphs to be finite-state, so that
all three algorithms are guaranteed to terminate (on infinite-
state systems, none of the algorithms may terminate, al-
though different algorithms may terminate on different in-
puts). Finally, for efficient implementations, we choose the
finite transition graphs to be given symbolically, by BDDs
representing the transition relation, the initial states, and the
error states of a component. In order to further level the
playing field, we had to make some additions to the pub-
lished algorithms. For instance, in order to ensure that the
learning algorithm extracts a permissive interface (not only

a safe interface), we add a permissiveness check to the al-
gorithm of [1]. In the process, we also found some im-
provements to the published algorithms. For example, in the
CEGAR algorithm, we are able to combine the safety and
permissive checks by performing a single reachability test
(rather than two separate tests on different automata, as sug-
gested in [5]).

On the theoretical side, we construct parametric families
of components that cause exponential differences in the per-
formance of the three algorithms. In experiments, we find
that these exponential differences do not represent uninter-
esting corner cases, but commonly occur in applications.
In particular, the direct, learning, and CEGAR algorithms
exhibit large differences in running time and output size
when applied to components that encapsulate various kinds
of data structures such as bit arrays and counters. While all
three algorithms guarantee that they output an interface au-
tomaton accepting the same language —namely, the safe
and permissive interface of the component— the number
of states of the output automaton can differ greatly: only
learning guarantees to output a minimal deterministic au-
tomaton, but at extra cost in time (the other outputs may
be non-deterministic). As expected, learning performs best
if the minimal interface automaton is small; abstraction re-
finement performs best if only few component variables are
needed to prove an interface both safe and permissive; the
direct (game) algorithm outperforms both approaches if nei-
ther is the case, because it does not involve any of the over-
head necessary for either learning or automatic abstraction
refinement.

2. Open Systems and Interfaces

Components are open systems, which react to inputs pro-
vided by an environment (other components, or primary
inputs). In order to remove language effects, we describe
open systems as labeled transition graphs over a finite set
of boolean variables. The labels are input events; one of the
variables marks the error states. Certain sequences of input
events may lead to an error state. At the concrete level, a
component is visibly deterministic: each input sequence ei-
ther causes or does not cause an error (this will not be true
for abstractions of the component). The set of all input se-
quences that do not cause an error is called the safe and per-
missive interface of the open system. We strive to construct
a finite-state representation of that interface.

Open systems. An open system S = (X, Σ, s0, ϕ, xe) con-
sists of a finite set X of boolean variables, whose truth-
value assignments [[X]] represent the states of the system; a
finite alphabet Σ of input events§ ; an initial state s0 ∈ [[X]];

§ An input event may include a value, either input or result or both.
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a set ϕ containing a transition predicate ϕf over X ∪X ′ for
every event f ∈ Σ; and an error variable xe ∈ X .

Automaton representation of open systems. The seman-
tics of the open system S is given by the finite automa-
ton AS = ([[X]],Σ, s0, δS) and the set ES of error states.
The finite automaton AS consists of the set [[X]] of states,
and the input alphabet Σ, and the initial state s0, and the
transition relation δS ⊆ [[X]]×Σ×[[X]], where (s, f, t) ∈ δS

if s ∪ t′¶ satisfies ϕf . The set ES of error states is the set
of states s with s(xe) = T. W.l.o.g. we assume that for all
states s ∈ ES , if (s, f, s′) ∈ δS then s′ ∈ ES . We induc-
tively define the transitive closure w−→δS

of the transition

relation δS as: let s
ε−→δS

s′ if s = s′, and let s
f ·w−−→δS

s′ if
there exists a state s′′ s.t. (s, f, s′′) ∈ δS and s′′

w−→δS
s′.

We also define the reachable region as Reach(AS) = {s ∈
[[X]] | s0

w−→δS
s for some word w ∈ Σ∗}. The automa-

ton AS is input-enabled if for all states s ∈ [[X]] and for
all events f ∈ Σ there exists a state s′ ∈ [[X]] such that

s
f−→δS

s′. Two states s, t ∈ [[X]] are trace-equivalent if there
is no word w ∈ Σ∗ such that s

w−→δS
s′ and t

w−→δS
t′ and

s′(xe) 6= t′(xe). The open system S is visibly deterministic
if for every word w ∈ Σ∗, all states s and t with s0

w−→δS
s

and s0
w−→δS

t are trace-equivalent.
We require open systems to yield input-enabled au-

tomata and to be visibly deterministic. This assumption,
which is justified for concrete hardware and software sys-
tems (but not for abstractions), is necessary for the three al-
gorithms we compare to produce permissive interfaces. (It
would not be required for safety, but safe interfaces are not
unique).

Interfaces. An interface for the open system S is a closed
(in the Cantor topology) set of infinite words over the alpha-
bet Σ. A finite or infinite word w ∈ Σ∗ ∪Σω is safe for S if
for all finite prefixes w′ of w, if s0

w′

−→δS
s then s /∈ ES . An

interface I ⊆ Σω is safe for S if all words w ∈ I are safe
for S. The interface I is permissive for S if it contains ev-
ery infinite word that is safe for S.

Automaton representation of interfaces. An interface can
be specified by a serial finite automaton A = (Q, Σ, q0, λ)
with the set Q of states, the input alphabet Σ, the initial
state q0 ∈ Q, and the transition relation λ ⊆ Q × Σ × Q.
The automaton A is serial if for all states q ∈ Q, there
exists an event f ∈ Σ and a state q′ ∈ Q such that
q

f−→λ q′. A trace α of A is a finite or infinite sequence

〈p0, f0, p1, f1, . . .〉 s.t. p0 = q0 and pj
fj−→λ pj+1 for all

j ≥ 0. The word induced by the trace α is the sequence
〈f0, f1, . . .〉 of events. The language L(A) is the set of all fi-
nite and infinite words w ∈ Σ∪Σω s.t. there exists a trace α

¶ t′ ∈ [[X′]] is obtained from t ∈ [[X]] by replacing all variables from X
with their primed versions from X′.

of A that induces w. The ω-language Lω(A) is the set of all
infinite words w ∈ L(A) ∩ Σω. The ω-language Lω(A)
of a serial automaton is closed, and therefore an interface.
Given an open system S, we wish to find a serial automa-
ton B such that the ω-language Lω(B) is the safe and per-
missive interface for S.
Checking interfaces for safety. The product of an open
system S = (X, Σ, s0, ϕ, xe) and an automaton A =
(Q,Σ, q0, λ) is the automaton AS ×A = (Q×,Σ, q×0 , λ×)
with Q× = [[X]] × Q, q×0 = (s0, q0), and λ× =
{((s, q), f, (s′, q′)) | (s, f, s′) ∈ δS and (q, f, q′) ∈ λ}. The
language L(A) of an automaton A is safe for S if s /∈ ES

for all states (s, q) ∈ Reach(AS ×A). We use a procedure
checkSafety(S, A) to check if L(A) is safe for S. If L(A)
is safe for S, then checkSafety(S, A) returns YES, else it
returns a finite trace 〈(s0, q0), f0, (s1, q1), f1, . . . , (sn, qn)〉
of the product AS ×A s.t. sn ∈ ES .
Checking interfaces for permissiveness. The lan-
guage L(A) of an automaton is permissive for S if
Reach(A−

S ×A+) contains no state of the form (s, qsink),
where A−

S and A+ are defined as follows. The error-
less automaton A−

S = ([[X]],Σ, s0, δ
−
S ) has the transi-

tion relation δ−S = {(s, f, s′) ∈ δS | s′ /∈ ES}. The
input-enabled automaton A+ = (Q ∪ {qsink},Σ, q0, λ

+)
has the sink state qsink and the transition relation
λ+ = λ ∪ {(q, f, qsink) | q ∈ Q and f ∈ Σ, and
(q, f, q′) /∈ λ for all q′ ∈ Q} ∪ {(qsink, f, qsink) | f ∈ Σ}.
We use a procedure checkPermissive(S, A) to check
whether L(A) is permissive for S. If L(A) is permissive for
S, then checkPermissive(S, A) returns YES, otherwise it
returns a finite trace 〈(s0, q0), f0, (s1, q1), f1, . . . , (sn, qn)〉
of the product automaton A−

S ×A+ such that qn = qsink.
Like checkSafety(S, A), checkPermissive(S, A) is imple-
mented as a reachability analysis.

3. Three Algorithms for Interface Synthesis

We discuss three algorithms for synthesizing interfaces.
Figure 2(a) shows an example automaton of an open sys-
tem. The grey circles denote error states.

3.1. Direct Algorithm

Given an open system S, the direct algorithm Direct(S)
calls the procedure Serialize(C) (shown in Algorithm 2),
which adds state qsink to the errorless automaton A−

S and
prunes backwards, starting from qsink, to eliminate all states
whose successors all lead to qsink. We obtain a serial au-
tomaton B such that Lω(B) is the safe and permissive inter-
face for S. Fig. 2(b) shows an example of how the direct al-
gorithm works. The grey circles represent the set Err. The
error states are unreachable and not shown. The state qS is
the sink qsink.
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Figure 2. Example open system and the output of
the three algorithms

Lemma 1. For an open system S, let C be the errorless au-
tomaton. Then, the ω-language Lω(C) is safe and permis-
sive for S.

Proof 1. We prove the lemma in two parts, both by contra-
diction.

• Lω(C) is safe: Suppose an infinite word w ∈ Lω(C)
is not safe for S. Then there exists a shortest prefix wj

(wj is the prefix of length j of word w) s.t. s0
wj

−−→δS
s

with s(xe) = T. Let t be a state s.t. s0
wj−1

−−−→δ−S
t. As

wj is the shortest prefix, we have t(xe) = F. By con-
struction of C, we know that (t, f, s) /∈ δ−S . As S is
visibly deterministic, we know that there is no trace
with word w on C. This contradicts our assumption
that w ∈ Lω(C). Hence, Lω(C) is safe for S.

• Lω(C) is permissive: Suppose an infinite word w /∈
Lω(C) is safe for S. Then there does not exist a pre-

fix wj of w s.t, s0
wj

−−→δS
s with s(xe) = T. By con-

struction of C, we know that s0
wj

−−→δ−S
s for all j. This

contradicts our assumption that w /∈ Lω(C). Hence
Lω(C) is permissive for S.

Theorem 1. Given an open system S with variables X and
input events Σ, the direct algorithm produces a serial au-
tomaton B such that Lω(B) is the safe and permissive in-
terface for S, in time linear in |Σ| and exp. in |X|.

Note that if S is not visibly deterministic, then the pruning
for serialization in the direct algorithm does not guarantee
to result in a safe interface.

Algorithm 1 Direct(S)

Input: an open system S = (X, Σ, s0, ϕ, xe)
Output: a serial automaton B s.t. Lω(B) is the safe and permis-

sive interface for S
return Serialize(A−

S )

Algorithm 2 Serialize(C)

Input: an automaton C = (Q, Σ, q0, λ)
Output: a serial automaton B s.t. Lω(B) is the largest closed

subset of Lω(C)
Variables: an automaton C+, a state qsink 6∈ Q,

three state sets Err ,Wait ,Pre ⊆ (Q ∪ {qsink})
C+ := input-enabled automaton (Q ∪ {qsink}, Σ, q0, λ

+) for
C
Err := {qsink}; Wait := Err
while Wait 6= ∅ do

choose s ∈ Wait ; Wait := Wait \ {s}
Pre := {r ∈ Q | (r, f, s) ∈ λ+ for some f ∈ Σ}
for each state r ∈ Pre do

if r /∈ Err and for all f ∈ Σ : r
f−→λ+ s′ and s′ ∈ Err)

then
Err := Err ∪ {r}; Wait := Wait ∪ {r}

return (Q \ Err , Σ, q0, {(q, f, q′) ∈ λ | q′ 6∈ Err})

3.2. Learning Algorithm

Our second algorithm learns the interface language
by asking membership and equivalence questions to the
teacher (the open system). In a membership question, the al-
gorithm asks whether a particular word is safe for S or not.
In an equivalence question, the algorithm asks whether the
language of the conjectured automaton C = (Q, Σ, q0, λ)
is safe and permissive for the open system. To construct the
conjecture automaton, the learning algorithm maintains in-
formation about a finite collection of words over Σ, in an
observation table (R,E, G), where R and E are finite sets
of words over Σ, and G is a function from (R∪ (R ·Σ)) ·E
to B. The set R is a set of representative words that lead
from the initial state qε to all other states of the automa-
ton C. For each word r ∈ R that is safe for S, there ex-
ists a state qr in the automaton C s.t. qε

r−→λ qr. The set E is
a set of experiment suffix words that distinguish the states.
For all representative words r1, r2 ∈ R, there exists a word
e ∈ E s.t. only one of r1 ·e and r2 ·e is safe for S. The func-
tion G stores the results of the membership questions, i.e.,
maps a word w ∈ (R ∪ (R · Σ)) · E to T if w is safe for S,
and to F otherwise. For a detailed description of the learn-
ing algorithm we refer to the paper by Alur et al. [1] (cf. also
[2] and [7]). As we assume visibly deterministic open sys-
tems, our algorithm can and does incorporate a permissive-
ness check of the interface language.

Algorithm. The learning algorithm starts with R and E set
to {ε}, and G is initialized for every word in (R∪(R·Σ))·E
using membership queries (by procedure memb(S, w)).
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Then, it checks whether the table (R,E, G) is closed (de-
scribed in procedure checkClosure(R,E, G)). If not, the
algorithm adds new representative words and rechecks for
closure. Once (R,E, G) is closed, an automaton C is con-
jectured (done by makeConjecture(R,E, G)). Then, L(C)
is checked for safety and permissiveness of S (this check
represents the equivalence question). If not, a counterex-
ample is returned. The longest suffix of the counterexam-
ple (found by procedure findSuffix (S, R,w)) is added to E,
and the algorithm rechecks for closure. The learning algo-
rithm constructs an automaton C whose states correspond
to the trace-equivalence classes of Reach(AS). Then, the
algorithm calls the procedure Serialize(C) to produce the
minimal serial automaton B s.t. Lω(B) is the safe and per-
missive interface for S. Figure 2(c) shows an example of
how the learning algorithm works. The first two boxes show
the two conjectured automata. C2 is the final conjecture,
which is used to produce the serial automaton B.

Procedures used in the learning algorithm.

• memb(S, w) returns T if w is safe for S. Otherwise it
returns F.

• checkClosure(R,E, G) returns YES if for every r ∈
R and f ∈ Σ, there exists an r′ ∈ R such that
G[r · f, e] = G[r′, e] for every e ∈ E. Otherwise it re-
turns r · f such that there is no r′ satisfying the above
condition.

• makeConjecture(R,E, G) returns an automaton C =
(Q, Σ, q0, λ) where Q = R \ {r ∈ R | G[r, ε] = F},
and q0 = ε, and for every r ∈ Q and every f ∈ Σ, if
G[r · f, ε] = T then (r, f, r′) ∈ λ where r′ is the word
such that G[r · f, e] = G[r′, e] for every e ∈ E.

• findSuffix (S, R,w) finds the longest suffix w′ of w
such that for some r ∈ R and f ∈ Σ, memb(S, r ·
f · w′) 6= memb(S, r′ · w′) where r

f−→λ r′.

Time complexity. For the generation of a conjecture au-
tomaton with m states of an open system with k variables,
the overall time complexity is in O(m4 · |Σ| · 22k) in case
the algorithm encounters worst (longest) counterexamples
and in O(m2 · |Σ| ·2k) when best counterexamples are seen.
At the end, a call to Serialize(C) takes O(m · |Σ|) time.
Thus the learning algorithm has the worst-case time com-
plexity O(|Σ| · 26k) when the number of trace-equivalence
classes is O(2k).

Theorem 2. Given an open system S with variables X
and input events Σ and m trace-equivalence classes in
Reach(AS), the learning algorithm produces the minimal
serial automaton B, such that Lω(B) is the safe and per-
missive interface for S, in time polynomial in |Σ| and m,
and exp. in |X|.

Algorithm 3 Learning(S)
Input: an open system S = (X, Σ, s0, ϕ, xe)
Output: a serial automaton B s.t. Lω(B) is the safe and permis-

sive interface for S
Variables: sets of words R and E over Σ, an array G that maps

R∪R·Σ×E to B, an automaton C = (Q, Σ, q0, λ), a trace α×

of a product automaton
R := {ε}; E := {ε}
for each f ∈ Σ do

G[ε, ε] := memb(S, ε · ε); G[ε ·f, ε] := memb(S, ε ·f · ε)
while true do

while (rnew := checkClosure(R, E, G)) 6= YES do
R := R ∪ {rnew}
for each f ∈ Σ, e ∈ E do

G[rnew · f, e] := memb(S, rnew · f · e)
C := makeConjecture(R, E, G)
if (α× := checkSafety(S, C)) = YES then

if (α× := checkPermissive(S, C)) = YES then
return Serialize(C)

w := the word induced by trace α×

enew := findSuffix (S, R, w); E := E ∪ {enew}
for each r ∈ R, f ∈ Σ do

G[r, enew] := memb(S, r · enew)
G[r · f, enew] := memb(S, r · f · enew)

Note that if S is not visibly deterministic, the learning
algorithm cannot check for permissiveness, although it can
guarantee to provide the minimal safe interface.

3.3. Refinement Algorithm

The third algorithm that we discuss is based on the CE-
GAR approach.
Abstraction. An abstraction for an open system S =
(X, Σ, s0, ϕ, xe) is a set Xa ⊆ X of variables, where
xe ∈ Xa. The abstraction hides the variables in X \ Xa.
Given a state s over Xa and a state t over X , we define
t � s if t(x) = s(x) for all x ∈ Xa. An open system S
and an abstraction Xa for S yield the abstract open sys-
tem Sa. The semantics of Sa is given by the abstract au-
tomaton Aa

S and the set Ea
S of error states. The abstract au-

tomaton Aa
S = ([[Xa]],Σ, sa

0 , δa
S) has the set [[Xa]] of states,

the initial state sa
0 ∈ [[Xa]] such that s0 � sa

0 , and the tran-
sition relation δa

S = {(s, f, s′) ∈ [[Xa]] × Σ × [[Xa]] |
there is a (t, f, t′) ∈ δS with t � s and t′ � s′}. The set Ea

S

of error states is the set of states s ∈ [[Xa]] with s(xe) = T.
In this paper, we also propose an improvement over the

original algorithm [5] that requires just one abstraction, in-
stead of two as required by the original algorithm. Thus,
our improvement greatly simplifies the original algorithm.
Our algorithm is based on a new insight, which we formu-
late in the following two lemmas.

Lemma 2. If the language L(A) of an automaton A is safe
and permissive for Sa, then L(A) is safe and permissive
for S.
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Proof 2. We prove the lemma in two parts, both by contra-
diction.

• If L(A) is safe for Sa, then L(A) is safe for S: Sup-
pose L(A) is not safe for S. Then, we know that there
exists a state (s, q) ∈ ReachAS×A s.t. s(xe) = T. Let
w be the corresponding word. By construction of Aa

S ,
we know that there exists a state t s.t. sa

0
w−→δa

S
t and

s � t. Thus, t(xe) = T. This is a contradiction to our
assumption that L(A) is safe for Sa.

• If L(A) is permissive for Sa, then L(A) is permis-
sive for S: Suppose L(A) is not permissive for S.
Then, we know that there exists a state (s, qsink) ∈
ReachA−

S ×A+ . Let w be the corresponding word. By

construction of Aa−
S , we know that there exists a state

t such that sa
0

w−→δa−
S

t and s � t. Thus, (t, qsink) ∈
ReachAa−

S ×A+ . This poses a contradiction to our as-
sumption that L(A) is permissive for Sa.

Lemma 3. Given the errorless automaton C =
(Q,Σ, q0, λ) of an abstract open system Sa, if the lan-
guage L(C) is safe for Sa, then L(C) is permissive for Sa.
Moreover, Sa is visibly deterministic.

Proof 3. We know that the safety and permissiveness
conditions are reachability questions on Aa

S × C and
Aa−

S × C+, respectively. We note that automata C and
Aa−

S are identical. Moreover, from construction of input-
enabled automaton we know that if (q, f, qsink) ∈ λ+, then
(q, f, q′) ∈ δa

S with q′ ∈ Ea
S . Thus, if there exists no state

(s, q) ∈ ReachAa
S×C s.t. s ∈ Ea

S , then there exists no state
(s, qsink) ∈ ReachAa−

S ×C+ . Hence, L(C) is permissive for
Sa. Safety of L(C) for Sa guarantees that there exists no
word w that is not safe for Sa and q0

w−→λ q for some q ∈ Q.
As C is the errorless automaton for Sa, this means that there
exists no word w such that there exist two states s and t with
s0

w−→δa
S

s and s0
w−→δa

S
t and s(xe) 6= t(xe). Hence, Sa is

visibly deterministic.

Algorithm. We start with an abstraction that has the error
variable only, that is, Xa = {xe}. We construct the ab-
stract open system Sa and also its errorless automaton C.
Then, we check whether L(C) is safe for Sa. If yes, we
know that Sa is visibly deterministic. Otherwise, we obtain
a counterexample trace α× = 〈(sa

0 , q0), f0, . . . , (sa
n, qn)〉

of the product automaton Aa
S × C. Then, we use proce-

dure findSpuriousTrace(S, α×) that first checks whether
the word w induced by trace α× is safe for the open sys-
tem S. If safe (unsafe), it declares the trace followed by the
automaton Aa

S (resp. C) as spurious. A trace 〈t0, f0, . . . , tn〉
of an abstract automaton Aa

S or Aa−
S is spurious if there ex-

ists no trace 〈s0, f0, . . . , sn〉 of the automaton AS such that

Algorithm 4 AbstRefine(S)
Input: an open system S = (X, Σ, s0, ϕ, xe)
Output: a serial automaton B s.t. Lω(B) is the safe and permis-

sive interface for S
Variables: an abstraction Xa, an abstract open system Sa, an au-

tomaton C, a finite trace α× of a product automaton, and a fi-
nite trace α of an automaton
Xa := {xe}
while Xa 6= X do

Sa := refineAbstraction(S, Xa); C := Aa−
S

if (α× := checkSafety(Sa, C)) = YES then
return Direct(Sa)

else
α := findSpuriousTrace(S, α×)
Xa := getNewVars(S, α, Xa)

return Direct(Sa)

Algorithm 5 getNewVars(S, α, Xa)
Input: an open system S = (X, Σ, s0, ϕ, xe), a spurious

trace 〈t0, f0, . . . , tn〉 on the abstract automaton Aa
S , and an ab-

straction Xa

Output: a new abstraction Xnew ⊆ X that eliminates the given
spurious trace

Variables: states s, s′ ∈ [[X]] and t, ts, t
′ ∈ [[Xa]], a set Y ⊂

[[X]] of states, and an event f ∈ Σ
s := s0; t := sa

0

for i := 1 to n do
ts := ti; f := fi−1

let s′ ∈ [[X]] such that s
f−→δS s′

let t′ ∈ [[Xa]] such that u � s′

if t′ 6= ts then
Y := {u ∈ Reach(AS) | u � t and y � ts with

u
f−→δS y}

return splitState(s, Y, Xa)
s := s′; t := t′

si � ti for 0 ≤ i ≤ n. We add more variables to the abstrac-
tion Xa such that the spurious abstract trace 〈t0, f0, . . . , tn〉
is eliminated, using Algorithm 5. The algorithm constructs
a genuine trace 〈s0, f0, . . . , sn〉 on AS and its correspond-
ing abstract trace, which induces the same word as the spu-
rious trace. It locates the position i where the spurious ab-
stract trace differs from the genuine abstract trace. It finds
the set Y of states in AS which cause the spurious abstract
trace, and finds new variables in X such that if si−1 � t
then there does not exist a state y ∈ Y with y � t. Then, we
reconstruct the abstract open system Sa and check whether
it is visibly deterministic.

So, the refinement algorithm finds a visibly deterministic
abstract open system Sa. Then, we run the direct algorithm
on Sa to obtain a serial automaton B such that Lω(B) is
the safe and permissive interface for S. Figure 2(d) shows
an example how the refinement algorithm works. The first
box shows Aa

S1 with the abstraction Xa = {xe}. Adding
one more variable gives Aa

S2, whose abstract open system
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is found to be visibly deterministic. Thus, B is computed,
using the direct algorithm.

Procedures used in the refinement algorithm.

• splitState(s, Y, Xa) for s ∈ [[X]], Y ⊆ [[X]], and Xa

being the current abstraction, finds a set Xr ⊆ X of
variables s.t. there is no state y ∈ Y s.t. y � t where
t ∈ [[Xa ∪Xr]] with s � t. It returns Xa ∪Xr.

• findSpuriousTrace(S, α×) first checks whether the
word w induced by the trace α× of the prod-
uct automaton is safe for S. If yes, it returns the
trace 〈sa

0 , f0, . . . , s
a
n〉 of Aa

S in α×. Otherwise, it re-
turns the trace 〈q0, f0, . . . , qn〉 of C in α×.

• refineAbstraction(S, Xa) returns the abstract open
system Sa.

Time complexity. Let X and abstraction Xa be sets of
k and c variables, respectively. An iteration of the algo-
rithm requires O(|Σ| · 2k+c) time. At the end of the re-
finement procedure, the call to procedure Direct(Sa) re-
quires time O(|Σ| · 2l), where l is the number of variables
in the abstraction that was sufficient to prove safety. Thus,
the worst-case time complexity is O(|Σ| · 22k), which is en-
countered at the finest abstraction (with k−1 variables). The
output automaton produced by the refinement algorithm de-
pends on the order of refinement of the variables. Finding
the coarsest abstraction that gives a visibly deterministic
open system is an NP-hard problem [3].

Theorem 3. Given an open system S with variables X and
input events Σ, AbstRefine(S) produces a serial automa-
ton B with O(2l) states, where l is the size of an abstrac-
tion that suffices to prove safety, such that Lω(B) is the
safe and permissive interface for S, in time polynomial in
|Σ| and exp. in k + l.

However, note that the abstraction found by the refine-
ment algorithm that suffices to prove safety may not be of
minimal size.

4. Theoretical Separation and Experimental
Evaluation

We describe various theoretical classes of examples that
manifest the difference in the working of the three algo-
rithms presented in the previous section. Also, we experi-
ment with some practical examples based on the theoreti-
cal separation. The experiments suggest that the three al-
gorithms are important in their own right and it is worth-
while to understand their working properly for efficient us-
age. The objective of the resemblance of the real world ex-
amples to the theoretical ones is to suggest the practical im-
portance of the theoretically distinguishing examples.

Distinguishing examples. We consider systems with k
variables. We denote the set of states as {s0, s1, ...s2k−1}.
The boolean value of the variables is encoded in the index of
the state, for example, at s1, the first k−1 variables are 0 and
the last variable is 1. Also, the first variable is the error vari-
able. Thus, the first half of the states are non-error states,
and the latter half are error states. We consider all pairs of
the direct (D), the learning (L), and the refinement (R) al-
gorithm. We evaluate on both metrics: time complexity and
size of output automaton. We provide one example fam-
ily for all cases where one algorithm performs better than
another one. We show graphical examples with k = 4 in
Fig. 3, which can be scaled to arbitrary k. For sake of clar-
ity, we assume that the refinement algorithm finds the min-
imal abstraction in each case.

• D beats L and R in time. For the open system in
Fig. 3(a), the number of trace-equivalence classes is
exponential in k. The direct algorithm requires O(2k)
time. The learning algorithm encounters worst coun-
terexamples of size O(22k), and thus requires time
O(26k). The refinement algorithm requires O(22k)
time. The size of the automaton produced is O(2k) for
all algorithms.

• L and R beat D in output size. For the open sys-
tem in Fig. 3(b), the direct algorithm produces an out-
put of size O(2k) whereas the learning algorithm pro-
duces an output of only one state as there are only
two trace-equivalence classes. The refinement algo-
rithm also produces an automaton with one state as all
k − 1 variables except the first one can be abstracted
away. The time complexity for all algorithms is O(2k).

• L beats R in time and output size. The open system in
Fig. 3(c) has three trace-equivalence classes. Thus the
learning algorithm requires O(2k) time and produces
an automaton with 2 states. On the other hand, the re-
finement algorithm requires O(22k) time and produces
an automaton with O(2k) states, as it needs to refine
the first k − 1 variables.

• R beats L in time. For the open system in Fig. 3(d),
the number of trace-equivalence classes is exponential
in the number of variables that need refinement. The
learning algorithm requires O(22k) time whereas the
refinement algorithm requires only O(2k) time. The
size of output automaton is O(2c) in both cases, where
c is the number of variables that have to be refined.

Implementation. We implemented explicit and symbolic
versions of the three algorithms in C++. The symbolic al-
gorithms were implemented using a BDD package.1 We
experimented with some common real world systems that

1 Available at http://mtc.epfl.ch/∼beyer/CrocoPat
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Figure 3. Examples of open systems where one al-
gorithm performs better than the others. The grey
circles denote the error states

bear a similarity with the theoretically separating examples
discussed above. Table 1 reports the results of our experi-
ments. The explicit versions of the learning and refinement
algorithms are always more expensive than the explicit di-
rect algorithm (cf. the theorems). The time of the reacha-
bility computation is high for the symbolic case because
the open system is specified explicitly for all algorithms.
We claim that when the input system is provided symboli-

void prev(BitArray b){
if (!b.valid)
b.valid = true;
if (b.ptr > 0)
b.ptr--;
else b.ptr = MAX; }

void next(BitArray b){
if (!b.valid)
b.valid = true;
if (b.ptr < MAX)
b.ptr++;
else b.ptr = 0; }

void access(BitArray b){
b.valid = false; }

void modify(BitArray b){
if (!b.valid)
b.error = true;
else {
b.valid = false;

}}

Figure 4. An example of a bit array manipulator

q0 q1

prev(), next()
prev(), 
next()

access(), modify()
access()

q0q1 q2

read(),
write()

acq_rw()acq_r()

read() rel()rel()

Figure 5. Serial automata produced by learning
and refinement algorithms for bit array manipula-
tor (left) and device manager (right)

cally, the time required by the symbolic algorithms would
be much lower than that required by the explicit algorithms.
We use different examples of open systems to assess the per-
formance of all six algorithms.
Direct performs best. The following example is similar to
Fig. 3(a), where the direct algorithm performs better than
the other two algorithms.
Counter. Consider a system that implements a counter with
a maximum value. The counter is encoded with k boolean
variables, one for error, and remaining variables to en-
code the value of the counter. An invocation of next incre-
ments the counter and an invocation of prev decrements the
counter. An error occurs in the following two cases: prev
is invoked when the counter is set to 0, or next is invoked
when the counter is at 2k−1 − 1. The counter is initially set
to 0. All the algorithms produce an automaton of size 2k−1.
Due to low time complexity, the direct algorithm is con-
sidered best. In general, the direct algorithm performs best
when the number of trace-equivalence classes of automa-
ton AS is of order of the number of states in AS .
Refinement performs best. The following systems are sim-
ilar to Fig. 3(d).

• Bit array manipulator. Consider the open system
shown in Fig. 4. The bit array manipulator is encoded
by k boolean variables, one for error, one for validity
of update operation and remaining bits for current lo-
cation.

• Device manager. Consider the open system shown in
Fig. 1, which implements device access for read/write
operations. The device manager is encoded by k
boolean variables, one for error, one for the read flag,
one for the write flag and remaining variables for the
location currently being accessed by the device.
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Table 1. Run-time (in seconds) and output automaton (FA) size of different algorithms. The run-time is measured
on a 3.0 GHz Pentium IV machine with 1 GB memory. The dash indicates that the process needed more than
30 minutes. In such cases, the automaton size is determined theoretically. For the data stream experiment, the
variables are given as k(h, d).

Num. of Reach. comp. Direct Learning Refinement
vars Expl. Symb. Expl. Symb. FA Expl. Symb. FA Expl. Symb. FA
k time time time time size time time size time time size

Counter
9 0.001 0.01 0.005 0.09 256 – – 256 1.01 0.25 256
10 0.002 0.02 0.01 0.22 512 – – 512 3.92 0.69 512
11 0.004 0.06 0.02 0.48 1024 – – 1024 16.60 2.16 1024
12 0.009 0.12 0.04 1.11 2048 – – 2048 69.1 8.29 2048
13 0.02 0.24 0.09 2.54 4096 – – 4096 310.1 30.64 4096

Bit array manipulator
12 0.005 0.08 0.04 0.96 1026 6.72 83.13 2 0.09 0.01 2
14 0.02 0.39 0.14 4.91 4098 108.84 1589.25 2 0.39 0.04 2
15 0.03 0.89 0.30 11.02 8194 455.96 – 2 0.80 0.08 2
16 0.07 2.08 0.63 25.04 16386 – – 2 1.61 0.17 2
17 0.14 5.50 1.33 55.50 32770 – – 2 3.28 0.29 2

Device manager
14 0.03 0.28 0.21 5.57 4097 5.05 1.48 3 0.91 0.09 3
15 0.05 0.65 0.45 12.55 8193 10.60 3.32 3 1.83 0.19 3
16 0.11 1.58 0.90 28.33 16385 22.32 7.70 3 3.76 0.45 3
17 0.22 4.37 1.91 62.90 32769 47.82 18.76 3 7.68 1.25 3
18 0.46 9.13 3.95 134.96 65537 105.23 44.38 3 15.66 1.86 3

Data stream
14(2,12) 0.003 0.08 0.04 0.88 1028 0.48 0.64 2 9.75 1.09 257
14(4,12) 0.01 0.37 0.14 4.52 4112 2.08 3.07 2 10.24 1.18 257
15(8,13) 0.04 0.85 0.31 10.42 8448 4.34 7.03 2 1.25 0.14 33
15(13,13) 0.06 1.35 0.55 20.54 16384 4.38 9.28 2 1.52 0.11 2
17(13,15) 0.18 5.97 1.58 64.35 40960 19.30 41.98 2 4.59 0.31 5

The automata generated by the refinement and learning al-
gorithms for these two examples are shown in Fig. 5. The
first few (two for bit array manipulator and three for device
manager) variables provide a sufficient abstraction to pro-
duce a visibly deterministic open system. Thus, the refine-
ment algorithm performs much faster than the learning al-
gorithm and also outputs the minimal automata. The direct
algorithm, though fast, produces automata of size exponen-
tial in k. Thus, the refinement algorithm performs the best
in these practical examples.
Learning performs best. The following system is similar
to Fig. 3(c).
A data stream. Consider a data stream with a header of
length 2h and data of length 2d, where h ≤ d. The data
stream uses k boolean variables, one for error, and the re-
maining k−1 variables for the pointer location (k = d+2).
A call to FirstHeader takes the pointer to the first header
bit, and a call to FirstData takes the pointer to the first
data bit. An invocation of Next moves the pointer within the
header or data in a cyclic way (if the pointer is currently at
last header (data) bit, it is taken to first header (data) bit). An
invocation of Write results in an error, if the pointer points
into the header region. The direct algorithm performs the
fastest, but the size of the output automaton is exponential
in k. If h << d, then the learning algorithm performs faster
and produces much smaller automata than the refinement
algorithm. The refinement algorithm produces the minimal
automaton (and thus is a good choice) if h = d. In general,
the learning algorithm is the first choice for such a case.

5. Conclusions

We formalized and implemented three algorithms for in-
terface synthesis in a uniform framework. For each algo-
rithm, we identified classes of open systems for which the
algorithm is best suited for interface synthesis. The direct
algorithm has the advantage of low time complexity in sce-
narios when the size of the minimal automaton is large, but
tractable. The learning algorithm always produces the mini-
mal deterministic automaton whose language is the safe and
permissive interface. Thus, it performs best when the num-
ber of trace-equivalence classes is much smaller than the
state space. The refinement algorithm is particularly effi-
cient when many variables can be hidden in the interface au-
tomaton. Also, the refinement algorithm provides the flex-
ibility to stop when the size of the abstraction becomes so
big that further refinement is more expensive than the direct
algorithm. We may also combine the algorithms in other
ways, e.g., by first constructing a visibly deterministic ab-
stract open system, and then use the learning algorithm on
the abstract system rather than on the concrete system.
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