
Evolution Storyboards: Visualization of Software Structure Dynamics

Dirk Beyer ∗
EPFL, Switzerland

Ahmed E. Hassan
Research In Motion, Canada

Abstract

Large software systems have a rich development history.
Mining certain aspects of this rich history can reveal in-
teresting insights into the system and its structure. Previ-
ous approaches to visualize the evolution of software sys-
tems provide static views. These static views often do not
fully capture the dynamic nature of evolution. We intro-
duce the Evolution Storyboard, a visualization which pro-
vides dynamic views of the evolution of a software’s struc-
ture. Our tool implementation takes as input a series of
software graphs, e.g., call graphs or co-change graphs, and
automatically generates an evolution storyboard. To illus-
trate the concept, we present a storyboard for PostgreSQL,
as a representative example for large open source systems.
Evolution storyboards help to understand a system’s struc-
ture and to reveal its possible decay over time. The story-
board highlights important changes in the structure during
the lifetime of a software system, and how artifacts changed
their dependencies over time.

Keywords: Software evolution, reengineering, software

visualization, software clustering, software structure analy-

sis, dependency analysis, force-directed graph layout

1 Introduction

The history of large software systems contains notewor-

thy events (e.g., major refactoring or re-architecting) and

interesting time periods (e.g., bug fixing, or active and quiet

development periods). Such information is rarely docu-

mented, instead it is kept in the minds of senior developers

who have been working on the system since its initial re-

lease, and is relayed from one developer to the next through

personal communication. Large projects risk losing such

historical information as developers depart from the project.

However, historical information is important since future

decisions may be affected by lessons learned over time.

∗Supported in part by the MICS NCCR of the SNSF.

Information about the evolution of a system’s structure

can be partially recovered from version control reposito-

ries, and may reveal interesting events in the lifetime of long

lived projects. The software engineering literature contains

several studies that propose tools and techniques to visual-

ize historical information about projects. Previous visual-

ization techniques are static in the sense that a single graph

is used to summarize the various periods in the lifetime of

a software system. Static views are not capable of captur-

ing the dynamic nature of software evolution. On the other

hand, a movie visualizing the evolution of a software sys-

tem has also its shortcomings. Developers watching such

a movie have little control over it. They are likely to miss

interesting events, and are not able to easily focus on partic-

ular time periods or parts of the system.

To complement existing approaches, we propose the

Evolution Storyboard visualization, which strikes a balance

between a static image and a full blown movie. The evolu-

tion storyboard presents dynamic panels, which depict con-

secutively important events and periods in the history of a

software system: for a series of different versions of a sys-

tem —given as dependency graphs—, the method produces

a series of visualizations of the structure of the system. This

series of visualizations is then combined and extended in

order to form an animated storyboard. The method is para-

metric in the type of dependency graph that is used.

The visualization of a single dependency graph (panel)

is a placement of software artifacts in a two-dimensional

space, where the positions of the artifacts are obtained by

an energy-based graph clustering algorithm. These place-

ments have the property that artifacts that are dependent

have close positions, and artifacts that are independent have

distant positions. The particular instantiation of the method

for the experiments in this paper uses as dependency graph

the co-change graph, which is an abstract representation of

the change transactions during the development of a system.

The input data for this instance of the method can be ex-

tracted from the version repository of a software system us-

ing a simple and efficient extraction process. The method is

then completely programming-language independent, and

the software artifacts are not restricted to program source

but can also represent, e.g., documentation and test cases.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

An evolution storyboard consists of a series of panels.

Each panel represents the dependency information of a par-

ticular time period in the lifetime of a software system. The

panels are displayed in sequence for the purpose of visu-

alizing and animating the history of the dependency struc-

ture. Each panel optionally indicates the movement of arti-

facts over time using animated arrows. If co-change graphs

are used as dependency graphs, the panels represent the co-

change information, and the artifacts are positioned closely

together if they were often changed together.

Related work. Ball et al. mined and visualized graphs

based on common source code changes from the version

control repository [2]. Baker and Eick used animated vi-

sualizations of software metrics to observe the growth of

software systems [1]; they did not use co-change infor-

mation from version repositories. The visualization of re-

lease histories by Gall et al. [8] is produced by gener-

ating two-dimensional pictures and combining them to a

layered structure (system–subsystem–module) for different

versions of the system over time; several attributes are

used to color the visualizations. Collberg et al. proposed a

method that is limited to source code objects and the pro-

gramming language Java, to produce sequences of static

layouts of call and inheritance graphs [5]. The method

uses energy models that are not designed for clustering, but

for aesthetic layout of non-software graphs. Fischer and

Gall visualized the dependencies between features [6], and

Lanza used matrices to represent evolution data [9].

2 Concepts

Dependency graphs. Previous approaches to visualize de-

pendency structures are based on graph models where a de-

pendency between two artifacts is modeled as an edge be-

tween the two corresponding artifact nodes. If the strength

of a dependency was important, weights were assigned to

the edges. In contrast to this ‘condensed’ graph model, we

prefer to keep more information in the graph. If the reason

for the (assumed) dependency is a syntactical coupling of

three artifacts, then we want to keep this fact in our model.

For this purpose, we introduce a new model for dependency

graphs with a new type of nodes, called dependency node,

which captures the reason for the dependency.

A dependency graph is a bipartite, undirected graph G =
(V,E), where V is the set of nodes and E is the set of edges.

A node v ∈ V is either an artifact node or a dependency
node. An edge {d,a} ∈ E between a dependency node d ∈
V and an artifact node a ∈ V exists if node d models the

abstract reason that makes artifact a dependent on all other

artifacts a′ with {d,a′} ∈ E. Software artifacts are, e.g.,

subsystems, files, classes, or functions. Dependencies can

be induced by, e.g., calls, subtype relations, or co-changes.

Example. Let x.h be a header file, and let y.c and z.c be

two implementation files that contain both a preprocessor

directive to include file x.h. This fact of a syntactical in-

clusion dependency can be modeled by the following (sub-)

graph G = ({d,x.h,y.c,z.c},{{d,x.h},{d,y.c},{d,z.c}}).
We restrict ourselves to unweighted graphs for clear pre-

sentation. The extension to weighted graphs is natural

(cf. [3]). The dependency graphs that we use in the applica-

tion section are co-change graphs [4]. In this case the graph

represents the change history of the software system in the

following way: the dependency nodes represent version-

control change transactions, and an edge {d,a} between a

change transaction node d and an artifact node a exists if

artifact a was changed by change transaction d.

Energy-based graph layout. A layout of a graph (V,E) is

a function p : V → R
d , which maps each node from V to a

position in the d-dimensional real space (d ∈{2,3}). An en-
ergy model is an evaluation function U that assigns to each

layout p a real number u. The layout p is the best layout if

U(p) is the global minimum of function U . This means that

the energy model encodes the desired properties of the lay-

out. Since we are interested in grouping a dependency graph

into groups that represent subsystems, we use energy mod-

els with clustering properties. The algorithm that computes

a layout with minimal energy is called a minimizer, and the

concept is called energy-based graph layout (cf. also [7]).

To efficiently compute an approximation of the best lay-

out of a dependency graph for a single version of the soft-

ware system, we run the graph layout tool CCVISU1 [3],

and use its default energy model (for the details, cf. the work

on clustering co-change graphs [4]). The tool CCVISU is

also used to extract the co-change graph from the version

control repository, in cases where we use a co-change graph

as our dependency graph.

Evolution storyboards. The evolution storyboard divides

the lifetime of a software system into several time periods.

For each time period, a layout of the dependency graph is

used to visualize the structure of the system in one panel.

Let Gt = (Vt ,Et) be the dependency graph of the soft-

ware system at time t, and let pt be the best layout of the

graph Gt . An evolution storyboard for the sequence of time

stamps t0, t1, ..., tn is a sequence of n panels P1,P2, ...,Pn, one

for each time period. The panel Pt consists of the layout pt
and a set Mt of moving nodes v ∈Vt ∩Vt−1 that moved a lot,

i.e., the Euclidean distance ||pt(v)− pt−1(v)|| of the node’s

current and previous position is larger than a certain thresh-

old. The threshold is used to ignore negligible movement,

to avoid clutter in the visualization.

The visualization of a single panel Pt is done as follows:

For every artifact node a ∈Vt , we draw a filled circle at po-

sition pt(a), with the circle area proportional to the edge

1http://mtc.epfl.ch/∼beyer/CCVisu

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

degree degGt (a) = |{{a,d} | {a,d} ∈ Et}|, i.e., the number

of dependencies the artifact is involved in. For every ar-

tifact node a ∈ Mt , we draw a filled circle in grey at the

node’s previous position pt−1(a), with a circle area propor-

tional to the previous edge degree degGt−1
(a), and a grey

line from the previous position pt−1(a) to the current po-

sition pt(a). This line is animated by moving arrow heads

that move from pt−1(a) to pt(a). Furthermore, we visualize

the change in the degree of dependency since the last time
stamp: we draw a red ring for the artifact node a, with the

area of the ring proportional to the difference of the edge

degree between graph Gt and the previous graph Gt−1, i.e.,

degGt (a)− degGt−1
(a) if a ∈ Vt−1, and 0 otherwise. This

means: large nodes depend on many other nodes, and nodes

with large rings changed their degree of dependence a lot.

In the evolution storyboard, these panels are displayed

in a sequence for the purpose of visualizing and animating

the historical changes in the dependency of the nodes. To

ensure the stability of the layouts in the storyboard, we feed

the layout minimizer when computing layout pi with initial

positions of layout pi−1 of the previous time stamp.

Tool implementation. The generation of evolution sto-

ryboards is implemented as an extension of the tool

CCVISU1 [3]. The output visualization, i.e., the storyboard,

is dumped as a collection of SVG files, which are embed-

ded in a single HTML document for navigation. The use of

standard web technology makes the tools easier to use and

adopt by software practitioners.

3 Application

In this section we present the evolution storyboard for

POSTGRESQL. The evolution storyboard is created by ap-

plying our visualization approach to the information stored

in the version control repository (CVS in this case) of

the open source software system POSTGRESQL. The ver-

sion control repository contains the version history of more

than 9 years of system development and maintenance. We

instantiate our dependency graph with the extracted co-
change graph. The co-change graph at time t contains

all changes up to time t. We have extracted the change

history of 4,114 files, and our largest extracted co-change

graph models 20,107 commits (resulting in a total of 24,221

nodes) with 87,301 single changes (i.e., edges).

The complete generated storyboard for POSTGRESQL

contains 23 panels. Each panel represents a snapshot of the

system after 3 months of development. The graph layout

in each panel has the property that nodes are positioned

closely together if the corresponding files were changed

often together, and at distant positions if the nodes were

rarely changed together. (Only artifact nodes are drawn.)

For POSTGRESQL, we identified 9 major subsystems and

assigned a color to each subsystem: Port (green), Execu-

Figure 1. A storyboard panel for PostgreSQL for
the period 2005-04-01 to 2005-07-01

tor (red), Optimizer (blue), Parser (cyan), Storage Man-

ager (magenta), Query Evaluation Engine (yellow), Nodes

(dark magenta), Access (dark cyan), and ADT (light blue).

The rest of the files (for example files which are utilities)

are assigned to color pink. Figure 2 shows several panels,

which correspond to different time periods in the lifetime

of POSTGRESQL. The interface of the tool permits the user

to move quickly between consecutive panels. The ability

to move quickly between panels offers a motion-like an-

imation, which permits to animate and study closely the

changes in the layout and in the structure of a software

system over time. A cursory look at Fig. 2 shows that

over time the Executor (red) and Optimizer (blue) subsys-

tems are moving closer to each other, indicating that they

are changing more often together, and are likely becoming

more dependent on each other. The Query Evaluation En-

gine (yellow) is the subsystem with the most instable depen-

dency structure; many file nodes moved over long distances,

and the files were more and more often changed together

with the Parser subsystem.

Figure 1 shows a panel for one time period. For each

panel, the user can animate the panel. The animation shows

the movement of nodes between consecutive time stamps,

which are 3 months apart in Fig. 1. The old location of a

node is shown in grey, and a grey arrow points to its new lo-

cation. The size of a node indicates how many changes have

occurred to that node during its lifetime, and a red ring high-

lights nodes which have changed during the last 3 months.

The size of the red ring is proportional to the amount of

changes during the period of the storyboard panel. The user

can also zoom into a particular area of the graph and closely

watch the evolution animation for that area of the graph.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

2005-04-01 to 2005-07-012003-10-01 to 2004-01-012002-10-01 to 2003-01-012001-07-01 to 2001-10-01

Figure 2. Storyboard panels for PostgreSQL’s co-change information

Figure 3. A HeatMap storyboard panel

Instead of using the colors from the authoritative

subsystem-decomposition, the storyboard tool can alterna-

tively color the nodes based on their movement over time.

This visualization permits users to notice nodes (files) that

may require refactoring, since they were co-changed with

many different files over time and are moving too much be-

tween the different storyboard panels. Figure 3 shows an ex-

ample of this HeatMap view of the storyboard. Files which

have moved in more than 40 % of the panels are colored or-

ange; files which have moved in more than 30 % of the pan-

els are colored yellow; and files which have moved in more

than 20 % of the panels are colored green. Finally files that

have moved in than less than 20 % of the evolution panel

are colored grey. We note that in Fig. 3 the POSTGRESQL

transaction log manager (access/transam/xlog.c) is yellow,

indicating that this file tends to change with many different

files over time. This is likely to be a good indication that

the transaction logging feature is spread out across the code

and not localized in a particular subsystem.

4 Summary

A storyboard is traditionally produced beforehand to

help directors and cinematographers to study movie scenes

to uncover potential problems before they occur. In this

work about software engineering, we propose the concept

of evolution storyboards, to be used by developers of soft-

ware to replay and study the history of a software system.

Practitioners can use our evolution storyboards to better un-

derstand the rationale behind the current structure of the

software system, and to uncover problems and possible im-

provements to the software structure.

References

[1] M. Baker and S. Eick. Visualizing software systems. In Proc.
ICSE, pages 59–67. IEEE, 1994.

[2] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version

control system could talk ... In Proc. Workshop Process Mod-
elling and Empirical Studies of Software Engineering, 1997.

[3] D. Beyer. Co-change visualization. In Proc. ICSM’05, Indus-
trial and Tool volume, pages 89–92, Budapest, 2005.

[4] D. Beyer and A. Noack. Clustering software artifacts based on

frequent common changes. In Proc. IWPC, pages 259–268.

IEEE, 2005.
[5] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.

A system for graph-based visualization of the evolution of

software. In Proc. SOFTVIS, pages 77–86. ACM, 2003.
[6] M. Fischer and H. Gall. Visualizing feature evolution of large-

scale software based on problem and modification report data.

J. Software Maintenance and Evolution: Research and Prac-
tice, 16(6):385–403, 2004.

[7] T. M. J. Fruchterman and E. M. Reingold. Graph drawing

by force-directed placement. Software – Practice and Expe-
rience, 21(11):1129–1164, 1991.

[8] H. Gall, M. Jazayeri, and C. Riva. Visualizing software re-

lease histories: The use of color and third dimension. In Proc.
ICSM, pages 99–108. IEEE, 1999.

[9] M. Lanza. The evolution matrix: Recovering software evo-

lution using software visualization techniques. In Proc. VIS-
SOFT, pages 37–42. ACM, 2001.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

