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Abstract Blast is an automatic verification tool for
checking temporal safety properties of C programs. Given a
C program and a temporal safety property, Blast either sta-
tically proves that the program satisfies the safety property,
or provides an execution path that exhibits a violation of the
property (or, since the problem is undecidable, does not ter-
minate). Blast constructs, explores, and refines abstractions
of the program state space based on lazy predicate abstrac-
tion and interpolation-based predicate discovery. This paper
gives an introduction to Blast and demonstrates, through
two case studies, how it can be applied to program verifica-
tion and test-case generation. In the first case study, we use
Blast to statically prove memory safety for C programs.
We use CCured, a type-based memory-safety analyzer, to
annotate a program with run-time assertions that check for
safe memory operations. Then, we use Blast to remove as
many of the run-time checks as possible (by proving that
these checks never fail), and to generate execution scenarios
that violate the assertions for the remaining run-time checks.
In our second case study, we use Blast to automatically
generate test suites that guarantee full coverage with res-
pect to a given predicate. Given a C program and a target
predicate p, Blast determines the program locations q for
which there exists a program execution that reaches q with
p true, and automatically generates a set of test vectors that
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cause such executions. Our experiments show that Blast

can provide automated, precise, and scalable analysis for
C programs.
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1 Introduction

Model checking is an algorithmic technique to verify a sys-
tem description against a specification [20,22,75]. Given a
system description and a logical specification, the model-
checking algorithm either proves that the system description
satisfies the specification, or reports a counterexample that
violates the specification. Software model checking, the ap-
plication of algorithmic verification to implemented code,
has been an active area of recent research [4,17,28,35,42,
52,66]. The input to a software model checker is the program
source (system description) and a temporal safety property
(specification). The specification is usually given by program
instrumentation that defines a monitor automaton [5,7,41,
79], which observes if a program execution violates the de-
sired property, such as adherence to a locking or security
discipline. The output of the model checker is ideally either
a proof of program correctness that can be separately vali-
dated [47,68], or a counterexample in the form of a specific
execution path of the program.

A key paradigm behind some of the new software ver-
ification tools is the principle of counterexample-guided
abstraction refinement (CEGAR) [1,3,4,21,49,61,78]. In
this paradigm, the model checker attempts to verify the pro-
perty starting with a coarse abstraction of the program, which
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tracks only a few relations (called predicates) between
program variables, instead of the full program state. By the
conservative nature of this abstraction, if the verification suc-
ceeds, then one is guaranteed that the concrete program satis-
fies the specification. If the verification fails, then it produces
a path that violates the specification in the abstract program.
This path may either correspond to a concrete program execu-
tion (feasible path) which violates the specification, or arise
due to the imprecision of the abstraction, and thus not corres-
pond to a concrete program execution (infeasible path). In the
former case, a program bug has been found. In the latter case,
the infeasibility of the abstract error path is used to automa-
tically deduce additional predicates which encode relevant
facts about the program variables. By tracking the values of
these additional predicates, the abstraction of the program
is refined in a way that guarantees that subsequent verifi-
cation attempts, which use the refined abstraction, will not
produce the previously encountered infeasible error path. The
entire process is repeated, by discovering and tracking an ever
increasing number of predicates, until either a feasible path
that witnesses a program bug (the so-called counterexample)
is found, or the abstraction is precise enough to prove the
absence of such paths (or, since the verification problem is
undecidable, the iteration of refinements never terminates).
The result is a sound (no violations of the specification are
missed) and precise (no false alarms are generated) program
verification algorithm.

The scheme of counterexample-guided predicate abstrac-
tion refinement was first implemented for verifying software
by the Slam project [4], and applied successfully to find
bugs in device drivers. The basic scheme was improved by
the Blast model checker. First, relevant predicates are dis-
covered locally and independently at each program location
as interpolants between the past and the future fragments of
an infeasible error path (interpolation-based predicate disco-
very) [46]. Second, instead of constructing an abstraction of
the program which tracks all relevant predicates, the disco-
vered new predicates are added and tracked locally in some
parts of a tree that represents the abstract executions of the
program, namely, in those parts where the infeasible error
path occurred (lazy predicate abstraction) [49]. The resul-
ting program abstraction is nonuniform, in that different pre-
dicates are tracked at different program locations, possibly
even at different visits to the same location. This emphasis
on parsimonious abstractions renders the analysis scalable
for large programs: Blast has been used to verify tempo-
ral safety properties of C programs with up to 50 K lines of
code [57].

In this article we provide a tutorial introduction to the
Blast model checker, and demonstrate its use in program
analysis and software testing through two case studies. The
first study [9] uses Blast to check run-time assertions on
the safe usage of pointers, which ensures a form of memory

safety. The second study [6] uses the abstract and symbolic
state exploration capabilities of Blast to generate test cases
that meet a certain coverage goal. We proceed with a brief
overview of software verification tools that are related to
Blast, and then we explain the two case studies.

Software model checking. Program verification has been
a central problem since the early days of computer science
[34,50,63,64]. The area has received much research attention
in recent years owing to new algorithmic techniques (such
as CEGAR) and faster computers, which have renewed the
promise of providing automatic tools for checking program
correctness and generating counterexamples [51].

Automatic software verification tools can be broadly clas-
sified into execution-based and abstraction-based approa-
ches. Execution-based model checkers [2,35,42,52,66]
exhaustively search the concrete state space of a program.
The emphasis of this approach is on finding bugs rather
than proving correctness, and the main challenge is scaling
the search to large state spaces. Abstraction-based verifiers
[12,28,31,62] compute an abstraction of the state space. The
emphasis is on proving correctness by demonstrating the
absence of bugs in the abstract domain, and the main chal-
lenge is improving the precision of the analysis. Traditionally,
abstractions are specified manually by providing a lattice of
dataflow facts to be tracked.

CEGAR techniques combine aspects of both execution-
based and abstraction-based approaches. The CEGAR loop
tries to automate the process of finding a suitable abstrac-
tion by stepwise abstraction refinement, which is guided
by searching for abstract error paths and relating them to
the concrete state space. The promise of CEGAR is that
it will automatically adjust the precision of an abstraction
for the purpose of proving the property of interest, while at
the same time keeping the abstract state space small enough
to be efficiently searched. Implementations of CEGAR in-
clude Slam, Blast, Magic, Moped, SatAbs, and F- Soft

[4,17,23,33,54]. The integration of execution-based and
abstraction-based techniques has been carried even further
in several recent projects: abstraction-based model checkers
can be accelerated by exploring concrete program executions
[38,60], and execution-based tools can be augmented to pro-
pagate symbolic inputs [36,80].

Checking memory safety. Invalid memory access is a major
source of program failures. If a program statement dere-
ferences a pointer that points to an invalid memory cell,
the program is either aborted by the operating system or,
often worse, the program continues to run with an undefi-
ned behavior. To avoid the latter, one can perform checks
before every memory access at run time. For some program-
ming languages (e.g., Java) this is done automatically by
the compiler/run-time environment, at considerable perfor-
mance cost. For C, neither the compiler nor the run-time
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environment enforces memory-safety policies. As a result,
C programmers often face program crashes (or worse,
security vulnerabilities) whose cause can be traced back to
improper access of memory.

Memory safety is a fundamental correctness property, and
therefore much recent research interest has focused on pro-
ving the memory safety of C programs statically, possibly
coupled with additional run-time assertions when the static
analysis is inadequate [13,26,43,69,81]. For example, CCu-

red [26,71] is a program-transformation tool for C which
transforms any given C program to a memory-safe version.
CCured uses a type-based program analysis to prove as
many memory accesses as possible memory safe, and inserts
run-time checks before the remaining memory accesses,
which it could not prove safe statically. The resulting,
“cured” C program is memory safe in the sense that it raises
an exception if the program is about to execute an unsafe ope-
ration. We identify two directions in which a model checker
can extend the capabilities of CCured. First, the remaining
run-time checks consume processor time, so a deeper analy-
sis that can prove that some of these checks will never fail
allows the removal of checks, leading to performance gains.
Second, instead of providing late feedback, just before the
program aborts, it is better to know at compile time if the
program is memory safe, and to identify execution scenarios
that can break memory safety.

We address these two points by augmenting CCured with
the more powerful, path-sensitive analysis performed by
Blast. For each memory access that the type-based analysis
of CCured fails to prove safe, we invoke the more precise,
more expensive analysis of Blast. There are three possible
outcomes. First, Blast may be able to prove that the memory
access is safe (even though CCured was not able to prove
this). In this case, no run-time check needs to be inserted,
thus reducing the overhead in the cured program. Second,
Blast may be able to generate a feasible path to an invalid
pointer dereference at the considered program location, i.e.,
a program execution along which the run-time check inser-
ted by CCured would fail. This may expose a program bug,
which can, based on the counterexample provided by Blast,
then be fixed by the programmer. Third, Blast may time-out
attempting to check whether or not a given memory access
is always safe. In this case, the run-time check inserted by
CCured remains in the cured program. It is important to note
that Blast, even though often more powerful than CCured,
is invoked only after a type-based pointer analysis fails. This
is because where successful, the CCured analysis is more
efficient, and may succeed in cases that overwhelm the model
checker. However, the combination of CCured and Blast

guarantees memory-safe programs with less run-time ove-
rhead than the use of CCured alone, and it provides useful
compile-time feedback about memory-safety violations to
the programmer.

Generating test cases. Model checking requires a specifica-
tion. In the absence of particular correctness assertions, the
software engineer may still be interested in a set of inputs
that exercise the program “enough,” for example, by mee-
ting certain coverage goals. An example coverage goal may
be to find the set of all program locations q that program
execution can reach with the value of a predicate p being
true, or false, when q is reached. For example, when che-
cking security properties of programs, it is useful to find all
instructions that the program may execute with root privi-
leges. Furthermore, instead of a particular path through the
program, it is often more useful to obtain a test vector, that is,
a map from program inputs to values that force the program
execution along the given path. This is because the program
structure may change, eliminating the path, while the input
vector can still act as a regression test for newer versions of
the program.

We have extended Blast to provide test suites for cove-
rage goals. In the special case that p is true, Blast can be
used to find the reachable program locations, and by com-
plementation, it can detect dead code. Moreover, if Blast

claims that a certain program location q is reachable such
that the target predicate p is true at q, then from a feasible
abstract path that leads to p being true at q, we can automa-
tically produce a test vector that witnesses the truth of p at q.
This feature enables a software engineer to pose reachability
queries about the behavior of a program, and to automatically
generate test vectors that satisfy the queries [73]. Technically,
we symbolically execute the feasible abstract path produced
by the model checker, and extract a test vector from a satis-
fying assignment for the symbolic path constraints. In par-
ticular, given a predicate p, Blast automatically generates
for each program location q, if p is always true at q, a test
vector that exhibits the truth of p at q; if p is always false
at q, a test vector that exhibits the falsehood of p at q; and if
p can be both true and false at q, depending on the program
path to q, then two test vectors, one that exhibits the truth of
p at q, and another one that exhibits the falsehood of p at q.

Often a single test vector covers the truth of p at many
locations, and the falsehood of p at others, and Blast heu-
ristically produces a small set of test vectors that provides
the desired information. Moreover, in order to scale, Blast

uses incremental model checking [48], which reuses partial
proofs as much as possible. We have used our extension of
Blast to query C programs about locking disciplines, secu-
rity disciplines, and dead code, and to automatically generate
corresponding test suites.

There is a rich literature on test-vector generation using
symbolic execution [24,37,40,56,58,59,76]. Our main
insight is that given a particular target, one can guide the
search to the target efficiently by searching only an abs-
tract state space, and refining the abstraction to prune away
infeasible paths to the target found by the abstract search.
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This is exactly what the model checker does. In contrast,
unguided symbolic execution-based methods have to execute
many more program paths, resulting in scalability problems.
Therefore, most research on symbolic execution-based test
generation curtails the search by bounding, e.g., the number
of iterations of loops, the depth of the search, or the size of
the input domain [15,36,55,58]. Unfortunately, this makes
the results incomplete: if no path to the target is found, one
cannot conclude that no execution of the program reaches the
target. Of course, once a suitable program path to the target
is found, all previous methods to generate test vectors still
apply.

This is not the first attempt to use model-checking tech-
nology for automatic test-vector generation. However, the
previous work in this area has followed very different direc-
tions. For example, the approach of Hong et al. [53] considers
fixed boolean abstractions of the input program, and does not
automatically refine the abstraction to the degree necessary
to generate test vectors that cover all program locations for
a given set of observable predicates. Peled proposes three
further ways of combining model checking and testing [74].
Black-box checking and adaptive model checking assume
that the actual program is not given at all, or not given fully.
Unit checking is the closest to our approach in that it gene-
rates test vectors from program paths; however, these paths
are not found by automatic abstraction refinement [39].

Organization. Section 2 introduces the techniques imple-
mented in the software model checker Blast. We explain
how the algorithm finds abstract paths to specified program
locations, and how infeasible abstract paths are used to refine
the abstraction. Section 3 details the first case study on che-
cking memory safety using Blast. Section 4 shows how
test vectors are generated from feasible abstract paths, and
how sufficiently many such paths are obtained to guarantee
coverage for the resulting test suite. We conclude each of the
two application sections by presenting experimental results.
Section 5 summarizes the current state of the Blast project.

2 Software model checking with BLAST

The software model checker Blast is based on the principle
of counterexample-guided abstraction refinement. We illus-
trate how Blast combines lazy abstraction and interpolation-
based, localized predicate discovery on a running example.

2.1 Example

The example program (shown in Fig. 1) consists of three
functions. Function altInit has three formal parameters:
size, pval1, and pval2. It allocates and initializes a glo-
bal array a. The size of the allocated array is given by size.

#include <stdio.h>
#include <stdlib.h>
int *a;

void myscanf(const char* format, int* arg) {
*arg = rand();

}

int altInit(int size, int *pval1, int *pval2) {
1: int i, *ptr;
2: a = (int *) malloc(sizeof(int) * (size+1));
3: if (a == 0) {
4: printf("Memory exhausted.");
5: exit(1);
6: }
7: i = 0; a[0] = *pval1;
8: while(i < size) {
9: i = i + 1;

10: if (i % 2 == 0) {
11: ptr = pval1;
12: } else {
13: ptr = pval2;
14: }
15: a[i] = *ptr;
16: printf("%d. iteration", i);
17: }
18: if (ptr == 0) ERR: ;
19: return *ptr;
}

int main(int argc, char *argv []) {
20: int *pval = (int *) malloc(sizeof(int));
21: if (pval == 0) {
22: printf("Memory exhausted.");
23: exit(1);
24: }
25: *pval = 0;
26: while(*pval <= 0) {
27: printf("Give a number greater zero: ");
28: myscanf("%d", pval);
29: }
30: return altInit(*pval, pval, pval);
}

Fig. 1 Example C program

The array is initialized with an alternating sequence of two
values, pointed to by the pointers pval1 and pval2. After
the initialization is completed, the last value of the sequence
is returned to the caller. Function main is a simple test dri-
ver for function altInit. It reads an integer number from
standard input and ensures that it gets a value greater than
zero. Then it calls function altInit with the read value as
parameter for the size as well as for the two initial values.
Finally, the stub function myscanf models the behavior of
the C library function scanf, which reads input values. The
stub myscanf models arbitrary user input by returning a
random integer value.

2.2 Control-flow automata

Internally, Blast represents a program by a set of control-
flow automata (CFAs), one for each function of the program.
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A CFA is a directed graph, with locations corresponding to
control points of the program (program-counter values), and
edges corresponding to program operations. An edge bet-
ween two locations is labeled by the instruction that executes
when control moves from the source to the destination; an
instruction is either a basic block of assignments, an assume
predicate corresponding to the condition that must hold for
control to proceed across the edge, a function call with call-
by-value parameters, or a return instruction. Any C program
can be converted to this representation [70]. Figures 2 and
3 show the CFAs for the functions main and altInit,
respectively. In Fig. 3 the error location with label 1#22 is

2#3

2#6

pval = malloc(sizeof(int));

2#8

Pred(pval!=0)

2#7

Pred(pval == 0)

2#14

*pval = 0;

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

2#21

tmp = altInit(*pval, pval, pval);

2#0

return tmp;

2#17

printf("Give...");

2#19

myscanf("%d", pval);

Skip

2#9

printf("Mem...");

2#11

exit(1);

Fig. 2 CFA for function main

1#1

1#3

a = malloc(sizeof(int) * (size+1));

1#5

Pred(a != 0)

1#4

Pred(a == 0)

1#11

i = 0; *a = *pval1;

1#13

Pred(i >= size)

1#12

Pred(i < size)

1#24

Pred(ptr != 0) 1#22

Pred(ptr == 0)

1#0

return *ptr;

Skip

1#14

i = i + 1;

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#17

ptr = pval2;

1#18

*(a + i) = *ptr;

1#19

printf("%d. iter...", i);

Skip

ptr = pval1;

1#6

printf("Mem...");

1#8

exit(1);

Fig. 3 CFA for function altInit

depicted by a filled ellipse. We now describe how Blast

checks that the label ERR (or equivalently, the error configu-
ration consisting of error location 1#22 and the error predi-
cate true) is not reached along any execution of the program.
While the actual reason for correctness is simple, the example
shows that the analysis to prove safety must be interproce-
dural and path-sensitive.

2.3 Abstract reachability trees

The implementation of Blast uses a context-free reachabi-
lity algorithm [77] to compute an approximation of the rea-
chable set of states. For ease of exposition, we illustrate the
algorithm with a simpler version of reachability, where func-
tion calls are inlined (which, unlike context-free reachability,
does not handle recursive calls). While a simplification, this
version already illustrates the basic features of the algorithm,
namely, abstract reachability, counterexample analysis, and
predicate discovery, while avoiding some technical aspects
of context-free reachability.

In order to prove that the error configuration is never rea-
ched, Blast constructs an abstract reachability tree (ART).
An ART is a labeled tree that represents a portion of the rea-
chable state space of the program. Each node of the ART is
labeled with a location of a CFA, the current call stack (a
sequence of CFA locations representing return addresses),
and a boolean formula (called the reachable region) repre-
senting a set of data states. We denote a labeled tree node by
n : (q, s, ϕ), where n is the tree node, q is the CFA location,
s is the call stack, and ϕ is the reachable region. Each edge of
the tree is marked with a basic block, an assume predicate, a
function call, or a return. A path in the ART corresponds to
a program execution. The reachable region of a node n des-
cribes an overapproximation of the reachable states of the
program assuming execution follows the sequence of opera-
tions labeling the path from the root of the tree to n.

Given a region (set of data states) ϕ and program opera-
tion (basic block or assume predicate) op, let post(ϕ,op) be
the region reachable from ϕ by executing the operation op.
For a function call op, let post(ϕ,op) be the region reachable
from ϕ by assigning the actual parameters to the formal para-
meters of the called function. For a return instruction op and
variable x, let post(ϕ,op,x) be the region reachable from
ϕ by assigning the return value to x. An ART is complete if
(1) the root is labeled with the initial states of the program;
(2) the tree is closed under postconditions, that is, for every
internal node n : (q, s, ϕ) of the tree with ϕ is satisfiable,

(2a) if q
op−→ q ′ is an edge in the CFA of q and op is a basic

block or assume predicate, then there is a successor
node n′ : (q ′, s, ϕ′) of n in the tree such that the edge
(n,n′) is marked with op and post(ϕ,op) ⇒ ϕ′;
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(2b) if q
op−→ q ′ is a CFA edge and op is a function call,

then there is an op-successorn′ : (q ′′, s′, ϕ′) in the tree
such that q ′′ is the initial location of the CFA of the
called function, the call stack s′ results from pushing
the return location q ′ together with the left-hand-side
variable of the function call onto s, and post(ϕ,op) ⇒
ϕ′;

(2c) if q
op−→ q ′ is a CFA edge and op is a return instruction,

then there is an op-successor n′ : (q ′′, s′, ϕ′) in the
tree such that (q ′′,x) is the top of the call stack s, the
new call stack s′ results from popping the top of s, and
post(ϕ,op,x) ⇒ ϕ′;

and (3) for every leaf node n : (q, s, ϕ) of the tree, either
q has no outgoing edge in its CFA, or ϕ is not satisfiable,
or there exists an internal tree node n′ : (q, s, ϕ′) such that
ϕ ⇒ ϕ′. In the last case, we say that n is covered by n′, as
every program execution from n is also possible from n′. A
complete ART overapproximates the set of reachable states
of a program. Intuitively, a complete ART is a finite unfol-
ding of a set of CFAs whose locations are annotated with
regions and call stacks, and whose edges are annotated with
corresponding operations from the CFAs. A complete ART is
safe with respect to a configuration (q, p), where q is a CFA
location (the error location) and p is a predicate over program
variables (the error region), if for every node n : (q, ·, ϕ) in
the tree, we haveϕ∧ p is not satisfiable. A complete ART that
is safe for configuration (q, p) serves as a certificate (proof)
that no execution of the program reaches a state where the
location is q and the data state satisfies p.

Theorem 1 [49] Let C be a set of CFAs, T a complete ART
for C, and p a predicate. For every location q of C, if T is safe
with respect to (q, p), then no state that has q as location
and whose data state satisfies p is reachable in C.

Figure 4 shows a complete ART for our example program.
We omit the call stack for clarity. Each node of the tree is labe-
led with a CFA location (we use primed labels to distinguish
different nodes of the same CFA location), and the reachable
region is depicted in the associated rectangular box. The rea-
chable region is the conjunction of the list of predicates in
each box (our example does not contain any disjunctions).
Notice that some leaf nodes in the tree are marked COVE-
RED. Since this ART is safe for the error location 1#22, this
proves that the label ERR cannot be reached in the program.
Notice that the reachable region at a node is an overapproxi-
mation of the concretely reachable states in terms of some
suitably chosen set of predicates. For example, consider the

edge 1#16
ptr=pval2−−−−−−−→ 1#17 in the CFA. Starting from the

region

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0,

the set of states that can be reached by the assignment
ptr=pval2 is

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0

∧ptr = pval2.

However, the tree maintains an overapproximation of this set
of states, namely,

pval1 �=0 ∧ pval2 �=0 ∧ size≥1 ∧ i �=0 ∧ ptr �=0,

which loses the fact that ptr now contains the same address
aspval2. This overapproximation is precise enough to show
that the ART is safe for the location 1#22.

Overapproximating is crucial in making the analysis scale,
as the cost of the analysis grows rapidly with increased pre-
cision. Thus, the safety-verification algorithm must (1) find
an abstraction (a mapping of control locations to predicates)
which is precise enough to prove the property of interest, yet
coarse enough to allow the model checker to succeed, and
(2) efficiently explore (i.e., model check) the abstract state
space of the program.

2.4 Counterexample-guided abstraction refinement

Blast solves these problems in the following way. It starts
with a coarse abstraction of the state space and attempts to
construct a complete ART with the coarse abstraction. If this
complete ART is safe for the error configuration, then the
program is safe. However, the imprecision of the abstraction
may result in the analysis finding paths in the ART leading
to the error configuration which are infeasible during the
execution of the program. Blast runs a counterexample-
analysis algorithm that determines whether the path to the
error configuration is feasible (i.e., there is a program bug)
or infeasible. In the latter case it refines the current abstraction
using an interpolation-based predicate-discovery algorithm,
which adds predicates locally to rule out the infeasible error
path. For a given abstraction (mapping of control locations to
predicates), Blast constructs the ART on-the-fly, stopping
and running the counterexample analysis whenever a path
to the error location is found in the ART. The refinement
procedure refines the abstraction locally, and the search is
resumed on the nodes of the ART where the abstraction has
been refined. The parts of the ART that have not been affected
by the refinement are left intact. This algorithm is called lazy
abstraction; we now describe how it works on our example.

Constructing the ART. Initially, Blast starts with no predi-
cates, and attempts to construct an ART. The ART construc-
tion proceeds by unrolling the CFAs and keeping track of the
reachable region at each CFA location. We start with the ini-
tial location of the program (in our example the first location
of main), with the reachable region true (which represents
an arbitrary initial data state). For a tree node n : (q, s, ϕ),
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2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

pval != 0

2#14

*pval = 0;

pval == 0

2#9

printf("Mem...");

pval == 0

2#11

exit(1);

pval == 0

pval != 0, *pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false pval != 0, *pval < 1

2#17

printf("Give...");

pval != 0, *pval < 1

2#19

myscanf("%d", pval);

pval != 0

2#14’

Skip

pval != 0

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

pval != 0, *pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

pval != 0, *pval < 1
 COVERED BY 2#15

pval1 != 0, pval2 != 0, size >= 1

1#3

a = malloc(sizeof(int) * (size+1));

pval1 != 0, pval2 != 0, size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

pval1 != 0, pval2 != 0, size >= 1

1#11

i = 0; *a = *pval1;

pval1 != 0, pval2 != 0, size >= 1

1#6

printf("Mem...");

pval1 != 0, pval2 != 0, size >= 1

1#8

exit(1);

pval1 != 0, pval2 != 0, size >= 1

pval1 != 0, pval2 != 0, size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false pval1 != 0, pval2 != 0, size >= 1, i == 0

1#14

i = i + 1;

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#14’
pval1 != 0, pval2 != 0,

 ptr != 0, size >= 1

1#16’

Pred(i % 2 != 0)

1#15’

Pred(i % 2 == 0)

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#17

ptr = pval2;

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#17’

ptr = pval1;

ptr != 0, pval1 != 0, pval2 != 0,
 size >= 1, i != 0

 COVERED BY 1#17

ptr != 0, pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#18

*(a + i) = *pval;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#19

printf("%d. iter...", i);

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#11’

Skip

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#14’

i = i + 1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

2#21

return *ptr;

false

pval != 0, *pval >= 1

2#0

return tmp;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#17’’

ptr = pval2;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#17’’’

ptr = pval1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

 COVERED BY 1#17’’

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#18’

*(a + i) = *pval;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#19’

printf("%d. iter...", i);

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#11’’

Skip

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#13’’

Pred(i >= size)

1#12’’

Pred(i < size)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

 COVERED BY 1#13’

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#14’’

i = i + 1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

 COVERED BY 1#14’

Fig. 4 Complete ART
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we construct successor nodes of n in the tree for all edges
q

op−→q ′ in the CFA. The successor nodes are labeled with ove-
rapproximations of the set of states reachable from (q, s, ϕ)
when the corresponding operations op are performed. For
the first iteration, since we do not track any facts (predicates)
about variable values, all reachable regions are overapproxi-
mated by true (that is, the abstraction assumes that every data
state is possible). With this abstraction, Blast finds that the
error location may be reachable in the example. Figure 5
shows the ART when Blast finds the first path to the error
location. This ART is not complete, because some nodes have
not yet been processed. In the figure, all nodes with incoming
dotted edges (e.g., the node 2#7) have not been processed.
However, the incomplete ART already contains an error path
from node 2#3 to 1#22 (the error node is depicted as a filled
ellipse).

Counterexample analysis. At this point, Blast invokes the
counterexample-analysis algorithm, which checks if the error
path is feasible in the concrete program (i.e., the program has

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

true

2#14

*pval = 0;

true

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

true

1#1

tmp = altInit(*pval, pval, pval);

true

1#3

a = malloc(sizeof(int) * (size+1));

true

1#5

Pred(a != 0)

1#4

Pred(a == 0)

true

1#11

i = 0; *a = *pval1;

true

1#13

Pred(i >= size)

1#12

Pred(i < size)

true

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

true

2#21

return *ptr;

2#0

return tmp;

Fig. 5 ART when the first infeasible error path is found

a bug), or whether it arises because the current abstraction is
too coarse. To analyze the abstract error path, Blast creates
a set of constraints—called the path formula (PF)—which is
satisfiable if and only if the path is feasible in the concrete
program [25,59]. The PF is built by transforming the path into
static single-assignment form [30] (every variable is assigned
a value at most once, which is achieved by introducing new
special variables), and then generating constraints for each
operation along the path.

For the abstract error path of the example, the path for-
mula is shown in Fig. 6. Note that in this example, each
program variable occurs only once at the left-hand-side of
an assignment; if, for instance, the program variable pval
were assigned a value twice along the path, then the result of
the first assignment would be denoted by the special variable
〈pval, 1〉 and the result of the second assignment would
be denoted by the special variable 〈pval, 2〉. The path for-
mula is unsatisfiable, and hence the error path is not fea-
sible. There are several reasons why this path is not feasible.
First, we set ∗pval to 0 in main, and then take the branch
where ∗pval > 0. Furthermore, we check in main that
∗pval > 0, and pass ∗pval as the argument size to
altInit. Hence, size > 0. Now, we set i to 0, and then
check that i ≥ size. This check cannot succeed, because i
is zero, while size is greater than 0. Thus, the path cannot
be executed and represents an infeasible error path.

Predicate discovery. The predicate-discovery algorithm
takes the path formula and finds new predicates that must
be added to the abstraction in order to rule out the infea-
sible error path. The key to adding predicates is the notion
of an interpolant. For a pair of formulas ϕ− and ϕ+ such
that ϕ− ∧ ϕ+ is unsatisfiable, a Craig interpolant [29] ψ is
a formula such that (1) the implication ϕ− ⇒ ψ is valid,
(2) the conjunction ψ ∧ ϕ+ is unsatisfiable, and (3) ψ only
contains symbols that are common to both ϕ− and ϕ+. For
the theory of linear arithmetic with uninterpreted functions,
which is implemented in Blast, such a Craig interpolant is
guaranteed to exist [65]. The refinement algorithm cuts the
infeasible error path at every node. At each cut point, the part
of the path formula corresponding to the path fragment up
to the cut point is ϕ−, and the part of the formula correspon-
ding to the path fragment after the cut point is ϕ+ (the cuts
are more complicated for function calls; see [46] for details).

pval,1 = malloc0 pval,1 = 0 ∧
( pval,1 ),1 = 0 ∗( pval,1 ),1 > 0 ∧ function main

size,1 = ( pval,1 ),1
pval1,1 = pval,1
pval2,1 = pval,1

formals assigned actuals

a,1 = malloc1 a,1 = 0 ∧
i,1 = 0 i,1 size,1
ptr,1 = 0

function altInit

Fig. 6 Path formula for the infeasible error path of Fig. 5
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Then, the interpolant at the cut point represents a formula
over the live program variables that contains the reachable
region after the path up to the cut point is executed (by pro-
perty (1)), and is sufficient to show that the rest of the path
is infeasible (by property (2)). The live program variables
are represented by those special variables which occur both
up to and after the cut point (by property (3)). In order to
eliminate the infeasible error path from the ART, the inter-
polation procedure constructs all interpolants from the same
proof of unsatisfiability in such a way that the interpolant at
node ni+1 is implied by the interpolant at node ni and the
operation fromni toni+1, that is, the constructed interpolants
are inductive.

For example, consider the cut at node 2#16. For this cut,
formula ϕ− (resp. ϕ+) is the part of the formula in Fig. 6
above (resp. below) the horizontal line. The common symbols
across the cut are 〈pval, 1〉 and 〈∗(〈pval, 1〉), 1〉, and the
interpolant is 〈∗(pval, 1), 1〉 ≥ 1. Relating the special va-
riable 〈∗(pval, 1), 1〉 back to the program variable ∗pval,
this suggests that the fact ∗pval ≥ 1 suffices to prove
the error path infeasible. This predicate is henceforth ne-
cessary at location 2#16. Similarly, at locations 1#1, 1#3,
and 1#5, the interpolation procedure discovers the predicate
size ≥ 1, and at location 1#11, the predicates size ≥ 1
and i = 0 are found. After adding these predicates, Blast

refines the ART, now tracking the truth or falsehood of the
newly found predicates at the locations where they are nee-
ded. In the example shown in this paper, we add the new
predicate about variable x not just at the location dictated by
the interpolant, but at all locations that are in the scope of x.
This heuristic avoids adding the same predicates in multiple
refinement steps; it is implemented in Blast as an option.

Refining the ART. When Blast refines the ART with the
new abstraction, it only reconstructs subtrees that are roo-
ted at nodes where new predicates have been added. In the
example, a second abstract error path is found. Figure 7 shows
the ART when this happens. Notice that this time, the rea-
chable regions are not all true; instead they are overapproxi-
mations, at each node of the ART, of the reachable data states
in terms of the predicates that are tracked at the node. For
example, the reachable region at the first occurrence of lo-
cation 2#14 in the ART is ∗pval < 1 (the negation of the
tracked predicate ∗pval ≥ 1), because ∗pval is set to 0
when proceeding from 2#8 to 2#14, and ∗pval < 1 is the
abstraction of ∗pval = 0 in terms of the tracked predicates.
This more precise reachable region disallows certain CFA
paths from being explored. For example, again at the first
occurrence of location 2#14, the ART has no left successor
with location 2#16, because no data state in the reachable
region ∗pval < 1 can take the program branch with the
condition ∗pval > 0 (recall that ∗pval is an integer).

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

true

2#14

*pval = 0;

*pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false *pval < 1

2#17

printf("Give...");

*pval < 1

2#19

myscanf("%d", pval);

true

2#14’

Skip

true

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

*pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

size >= 1

1#3

a = malloc(sizeof(int) * (size+1));

size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

size >= 1

1#11

i = 0; *a = *pval1;

size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false size >= 1, i == 0

1#14

i = i + 1;

size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

size >= 1, i != 0

1#17

ptr = pval2;

size >= 1, i != 0

1#18

*(a + i) = *pval;

size >= 1, i != 0

1#19

printf("%d. iter...", i);

size >= 1, i != 0

1#11’

Skip

size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

size >= 1, i != 0

2#21

return *ptr;

size >= 1, i != 0

*pval >= 1

2#0

return tmp;

Fig. 7 ART when the second infeasible error path is found
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2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

pval != 0

2#14

*pval = 0;

pval != 0, *pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false pval != 0, *pval < 1

2#17

printf("Give...");

pval != 0, *pval < 1

2#19

myscanf("%d", pval);

pval != 0

2#14’

Skip

pval != 0

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

pval != 0, *pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

pval2 != 0, size >= 1

1#3

a = malloc(sizeof(int) * (size+1));

pval2 != 0, size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

pval2 != 0, size >= 1

1#11

i = 0; *a = *pval1;

pval2 != 0, size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false pval2 != 0, size >= 1, i == 0

1#14

i = i + 1;

pval2 != 0,
 size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#14’
ptr != 0, pval2 != 0,

 size >= 1

1#16’

Pred(i % 2 != 0)

1#15’

Pred(i % 2 == 0)

pval2 != 0,
 size >= 1, i != 0

1#17

ptr = pval2;

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#18

*(a + i) = *pval;

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#19

printf("%d. iter...", i);

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#11’

Skip

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#14’

i = i + 1;

ptr != 0, pval2 != 0,
 size >= 1, i != 0

2#21

return *ptr;

false

pval != 0, *pval >= 1

2#0

return tmp;

ptr != 0, pval2 != 0,
 size >= 1

1#17’

ptr = pval2;

ptr != 0, pval2 != 0,
 size >= 1

1#17’’

ptr = pval1;

ptr != 0, pval2 != 0,
 size >= 1

1#18’

*(a + i) = *pval;

ptr != 0, pval2 != 0,
 size >= 1

1#19’

printf("%d. iter...", i);

ptr != 0, pval2 != 0,
 size >= 1

1#11’’

Skip

ptr != 0, pval2 != 0,
 size >= 1

1#13’’

Pred(i >= size)

1#12’’

Pred(i < size)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

 COVERED BY 1#13’

ptr != 0, pval2 != 0,
 size >= 1

1#14’’

i = i + 1;

ptr != 0, pval2 != 0,
 size >= 1

 COVERED BY 1#14’

pval2 != 0,
 size >= 1

1#18’’

*(a + i) = *pval;

pval2 != 0,
 size >= 1

1#19’’

printf("%d. iter...", i);

pval2 != 0,
 size >= 1

1#11’’’

Skip

pval2 != 0,
 size >= 1

1#13’’’

Pred(i >= size)

1#12’’’

Pred(i < size)

pval2 != 0,
 size >= 1, i != 0

1#24’

Pred(ptr != 0)

1#22’

Pred(ptr == 0)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

 COVERED BY 1#24

Fig. 8 ART when the third infeasible error path is found
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The second error path is again found to be infeasible,
and counterexample analysis discovers the new predicates
pval = 0, pval2 = 0, and ptr = 0. In the next iteration,
Blast finds a third infeasible error path, shown in Fig. 8,
from which it discovers the predicate pval1 = 0.

With these predicates, Blast constructs the complete ART
shown in Fig. 4. Since this tree is safe for the error location
1#22, this proves that ERR can never be reached by execu-
ting the program. Note that some leaf nodes in the tree are
covered: as no new states can be reached by exploring states
from covered nodes, Blast stops the ART construction at
such nodes, and the whole process terminates.

Limitations of Blast. There are some technical reasons why
Blast may give false alarms or unsound results. The decision
procedures underlying Blast, which are used for compu-
ting reachable regions and interpolants of path formulas,
implement linear arithmetic and uninterpreted functions [32,
65,72]. Operations such as multiplication and bit-level
manipulations are conservatively treated as uninterpreted
functions. This may cause Blast to return false alarms,
because it may not be able to prove the infeasibility of an
infeasible error path. More seriously, the decision procedures
used by Blast model integers as mathematical integers and
do not account for overflows. Therefore, certain errors that
depend on arithmetic overflow may not be caught. These
limitations can be overcome by using decision procedures
with a more accurate (bit-level) model of C semantics as a
back-end [27].

Blast assumes that the memory is laid out as a logical
array, where the types of variables are preserved (i.e., we do
not write data of one type to an address, and read it back as
a different type). Blast furthermore assumes that all poin-
ter arithmetic is safe (i.e., within array bounds). These as-
sumptions can either be ensured independently by tools such
as CCured, or added explicitly to the code as assertions,
which Blast can then try to prove or disprove (as explained
in the case study of Sect. 3). Blast uses a flow-insensitive
may-alias analysis to deal with pointer updates. The may-
analysis ignores pointer arithmetic and does not distinguish
between different locations of an array. This causes conser-
vative approximations in the analysis, because a write to one
address may invalidate predicates about a different address
if these addresses are not distinguished by the alias analysis.
Again, the result may be false alarms.

Blast treats library calls by assuming that the return
values can be arbitrary. However, Blast assumes that the
library does not change any global heap data. If a more
accurate model of a library function is required, the user
must provide a stub implementation.

The predicates tracked by Blast do not contain logical
quantifiers. Thus, the language of invariants is weak, and
Blast is not able to reason precisely about programs with

arrays or inductive data structures whose correctness involves
quantified invariants. In such cases, Blast may loop, dis-
covering an ever increasing number of relevant predicates,
without being able to discover the quantified invariant.

3 Checking memory safety

A program is memory safe if it only accesses memory
addresses within the bounds of the objects it has allocated or
to which it has been granted access. Memory safety is a fun-
damental correctness requirement for most applications. In
the following, we consider one particular aspect of memory
safety: null-pointer dereferencing. The value ‘null’ is used
for a pointer in C programs to indicate that the pointer is
not pointing to a valid memory object. Dereferencing a null
pointer can cause an arbitrary value to be read, or the pro-
gram to crash with a segmentation fault. Thus, the absence
of null-pointer dereferences is a safety property.

3.1 Example

We focus on one particular pointer dereference in the program
from Sect. 2: the dereference of the pointer ptr at the end of
the function altInit (on line 19). We wish to prove that
along all executions of the program, this pointer dereference
is valid, that is, the value of ptr is not null. Notice that this
property holds for our program: along every feasible path
to line 19, the pointer ptr equals either pval1 or pval2.
Moreover, when altInit is called from main, the actual
arguments passed to pval1 and pval2 are both pval (line
30). We have allocated space for pval in main (line 20),
and we have already checked that the allocation succeeded
(the test on line 21 and the code on lines 22–23 ensures that
the program exits if pval is null).

We have instrumented the program to check for this pro-
perty (line 18), by checking whether the pointer ptr is null
immediately before the dereference. In the next subsection,
we will describe how such instrumentations are inserted auto-
matically by a memory-safety analysis. With the instrumen-
tation, the label ERR on line 18 is reached if and only if the
pointer ptr is null and about to be dereferenced at line 19.
With this instrumentation we have reduced the memory-
safety check to a reachability check, which can be solved
by our model checker.

3.2 Program instrumentation for model checking

In principle, we can annotate every dereference operation in
the program with a check that the dereferenced pointer is not
null, and run Blast on the annotated program to verify that
no such check fails. However, this strategy does not scale
well. First, many accesses can be proved memory safe using
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an inexpensive type-based approach, and using an expensive
analysis like Blast is unnecessary. Second, each annotation
should be checked independently, so that the abstractions
required to prove each annotation do not interfere and result
in a large state space while model checking. Therefore, we
use CCured [26,71], a type-based memory-safety analysis,
to classify the pointers according to usage and annotate the
program with run-time checks.

CCured analyzes C programs with respect to a sound type
system which ensures that well-typed programs are memory
safe. When the type system cannot prove that a pointer
variable is always used safely, CCured inserts run-time
checks in the program which monitor correct pointer usage at
execution time. In particular, each dereference of a
potentially unsafe (i.e., not proved safe by the type system)
pointer is annotated with a check that the pointer is non-null.
The run-time checks abort the program safely, instead of run-
ning into undefined configurations. However, each run-time
check constitutes overhead at execution time, and CCured

implements many optimizations that remove redundant run-
time checks based on simple data-flow analyses. Typically,
the CCured optimizations remove over 50% of the run-time
checks inserted by the type system, and the optimized pro-
grams run within a factor of two of their original execution
time. We wish to check how many of the remaining run-time
checks can be removed by the more sophisticated analysis
implemented in Blast.

For each potentially unsafe pointer dereference ∗p in the
program, CCured introduces a call __CHECK_NULL(p)
which checks that the pointer p is non-null. The function
__CHECK_NULL terminates the program if its argument is
null, and simply returns if the argument is non-null. Thus,
if the actual argument p at a call site is non-null along all
feasible paths, then this function call can be removed
without affecting the behavior of the program. To check if
a call to __CHECK_NULL can be removed from the pro-
gram, Blast does the following. First, it replaces the call to
__CHECK_NULLwith a call to__BLAST__CHECK_NULL
with the same argument, where __BLAST__CHECK_NULL
is the following function:

void __BLAST__CHECK_NULL(void *p) {
if (!p) { __BLAST_ERROR: ; }

}

Second, Blast checks if the location labeled with__BLAST
_ERROR is reachable. Both steps are performed indepen-
dently for each call to__CHECK_NULL in the program body.
Each call of Blast has three possible outcomes.

The first outcome is that Blast reports that the label
__BLAST_ERROR is not reachable. In this case, the func-
tion call can be removed, since the corresponding check will
not fail at run time.

The second possible outcome is that Blast produces an
error path that represents a program execution in which

__BLAST__CHECK_NULL is called with a null argument,
which indicates a situation where the run-time check fails. In
this case, the check must remain in the program to terminate
the program safely should the check fail. This may also indi-
cate a program error, in which case the feedback provided by
Blast (the error path) provides useful information for fixing
the bug. We often encountered error paths of the form that the
programmer forgot to check the return value of malloc: if
the memory allocation fails, then the next dereference of the
pointer is unsafe. Blast assumes that mallocmay return a
null pointer and discovers the problem. However, not every
error path found by Blast necessarily indicates a program er-
ror, because Blast makes several conservative assumptions;
see the discussion of its limitations at the end of Sect. 2.

There is a third possible outcome, namely, that Blast

fails to declare whether the considered run-time check is su-
perfluous or necessary, due to time or space limitations. In
this case, we say that Blast fails, and we will provide the
failure rate for the experiments below. If Blast fails on a run-
time check, then the check must of course remain in the pro-
gram. Notice that by changing each call to __CHECK_NULL
separately, Blast analyzes if a run-time check is neces-
sary independently from all other checks. These analyses
can be run in parallel and often lead to different program
abstractions.

3.3 Experiments

We ran our method on several examples. The first seven pro-
grams are from the Olden v1.0 benchmark suite [16]. We in-
cluded the programs for the Bitonic Sort algorithm (bisort),
the Electromagnetic Problem in Three Dimensions (em3d),
the Power Pricing problem (power), the Tree Add example
(treeadd), the Traveling Salesman problem (tsp), the Perime-
ters algorithm (perimeter), and the Minimum Spanning Tree
problem (mst). Finally, we processed the scheduler for Unix
systems fcron, version 2.9.5, and the Lisp interpreter (li) from
the Spec95 benchmark suite. We ran Blast on each run-time
check inserted by CCured separately, and fixed a time-out
of 200 s for each check; that is, a run of the model checker
is stopped after 200 s with failure, and the studied run-time
check is conservatively declared necessary.

Table 1 presents the results of our experiments. The first
column lists the program name, the second and third columns
give the number of lines of the original program (“LOC
orig.”) and of the instrumented program after preproces-
sing and CCured instrumentation (“LOC cured”). The three
columns of “Run-time checks” list the number of run-time
checks inserted by the CCured type system (column
“inserted”), the number of remaining checks after the
CCured optimizer removes redundant checks (column
“optim.”), and finally the number of remaining checks after
Blast is used to remove run-time checks (column “Blast”).
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Table 1 Experimental results for Sect. 3

Program LOC Run-time checks Proved safe Potential

Orig. Cured Inserted Optim. Blast by Blast errors found

bisort 684 2 510 51 21 6 15 6

em3d 561 2 831 33 20 9 11 9

power 763 2 891 149 24 24 0 24

power-fixed 763 2 901 149 24 12 12 12

treeadd 370 2 246 11 7 6 1 6

tsp 565 2 560 93 59 44 15 4

perimeter 395 2 292 49 18 8 10 5

mst 582 2 932 54 34 19 15 18

fcron 2.9.5 11 994 38 080 877 455 222 233 74

li 6 343 39 289 1 715 915 361 554 11

The column “Proved safe by Blast” is the difference bet-
ween the “optim.” and “Blast” columns: it shows the num-
ber of checks remaining after the CCured optimizer which
Blast proves will never fail.

The remaining checks, which cannot be removed by
Blast, fall into two categories. First, the column “Potential
errors found” lists the number of checks for which Blast

found an error path leading to a violation of the run-time
check; those are potential bugs and the error paths give use-
ful information to the programmer. For example, we took
the program with the most potential errors found, namely
power, and analyzed its error paths. In many of them, a call
to malloc occurs without a check whether there is enough
memory available. So we inserted after each call to malloc
a null-pointer check to ensure that the program execution
does not proceed in such a case. Analyzing the fixed pro-
gram (with null-pointer checks inserted after each malloc),
we can remove 12 more run-time checks. To give an example
of the performance of Blast, in the case of power-fixed, the
cured program was checked in 15.6 s of processor time on a
GNU/Linux machine with a 3.06 GHz Intel P4 Xeon proces-
sor and 4 GB memory.

Second, the difference between the columns “Blast” and
“Potential errors found” gives the number of run-time checks
on which the model checker fails (times out) without an ans-
wer. The number of these failures is not shown explicitly in
the table; it is zero for the first five programs. Since Blast

gives no information about these checks, they must remain
in the program.

4 Test-case generation

Section 2 introduced the model-checking algorithm, which
finds program paths that lead to particular program locations.
We now show how we can generate test vectors from these
paths, that is, sequences of input values that cause the desired

paths to be executed. We start with an overview of the method
using a small example.

4.1 Example

Consider the program of Fig. 9, which should compute the
middle value of three integers (but has a bug). The program
takes three inputs and invokes the functionmiddle on them.
A test vector for this program is a triple of input values, one
for each of the variablesx,y,z. Figure 10 shows the control-

#include <stdlib.h>
#include <stdio.h>

int readInt(void);

int middle(int x, int y, int z) {
L1: int m = z;
L2: if(y < z)
L3: if(x < y)
L5: m = y;
L6: else if(x < z)
L9: m = x;

else
L10: if(x > y)
L12: m = y;
L13: else if(x > z)
L15: m = x;
L7: return m;
}

int main() {
int x, y, z;
printf("Enter the 3 numbers: ");
x = readInt();
y = readInt();
z = readInt();
printf("Middle number: %d", middle(x,y,z));

}

Fig. 9 Program middle
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L1

L2

m = z;

L7

Pred(y>=z)
L3

Pred(y<z)

L8

return m;

L6

Pred(x>=y)

L5

Pred(x<y)

L10

Pred(x>=z)

L9

Pred(x<z)

L13

Pred(x<=y)

L12

Pred(x>y)

Pred(x<=z) L15

Pred(x>z)

m = x;

m = y;

m = x;

m = y;

Fig. 10 CFA for program middle

flow automaton (CFA) for function middle. For brevity,
we omit the CFA for function main. We first consider the
problem of location coverage, i.e., we wish to find a set of test
vectors such that for each location of the CFA, there is some
test vector in the set that drives the program to that location.

Phase 1: Model checking. To find a test vector that takes
the program, e.g., to location L5, we first invoke Blast to
check ifL5 is reachable. IfL5 is reachable, Blast produces a
feasible error path in the corresponding abstract reachability
tree (ART). In our example, the path to L5 is given by the
following sequence of operations: m=z;assume(y < z);
assume(x < y)where the first operation corresponds to the
assignment upon entry, and the second and third (assume)
operations correspond to the first two branch conditions being
taken.

Phase 2: Tests from counterexamples. In the second step,
we use the feasible error path from the model-checking phase
to find a test vector, i.e., an initial assignment for x,y,z
that takes the program to location L5. This is done as fol-
lows. First, we build the path formula (PF) for the error
path, which in this case is m = z ∧ y < z ∧ x < y.
Second, we find a satisfying assignment for the formula,
e.g., “x 
→ 0,y 
→ 1,z 
→ 2,m 
→ 2”, which after ignoring
the value for m, gives a test vector that takes the program
to L5. Notice that since the path to L5 is feasible, the PF is
guaranteed to be satisfiable.

x y z Error Path

0 0 0 L1,L2,L7,L8

0 1 2 L1,L2,L3,L5

0 0 1 L1,L2,L3,L6,L9

1 0 1 L1,L2,L3,L6,L10,L12

Fig. 11 Generated test vectors for program middle

We repeat these two phases for each location, noting that
one input takes us to several locations—those along the
path—until we have a set of test vectors that covers all
locations of the CFA. Along with each test vector, Blast

also produces a path in the corresponding ART that is exer-
cised by the test. A set of test vectors for location coverage
of middle is shown in Fig. 11. Each row in the table gives
an input test vector—initial values for x,y,z—and the cor-
responding path as a sequence of locations. For example, the
vector of test values for the target location L12 is (1,0,1),
and Blast reports the path 〈L1,L2,L3,L6,L10,L12〉,
which is easy to understand with the help of the CFA in
Fig. 10. The path is a prefix of a complete program execution
for the corresponding test vector.

The alert reader will have noticed that the tests do not cover
all locations; L13 and L15 remain uncovered, as denoted by
the absence of shading for two locations in Fig. 10. It turns out
that Blast proves that these locations are not reachable—
i.e., they are not visited for any initial values of x,y,z—and
hence there exists dead code in middle. A close analysis
of the source code reveals that a pair of braces is missing,
and that the indentation is misleading for the code without
braces: the if on L6 matches the else after L9, which is
meant for the if on L2.

4.2 The testing framework

Testing is usually carried out within a framework comprising
(1) a suitable representation of the program, (2) a
representation of test vectors, and a set of test vectors called a
test suite, (3) an adequacy criterion that determines whether
a test suite adequately tests the program, (4) a test generation
procedure that generates an adequate test suite, and (5) a test
driver that executes the program with a given test vector by
automatically feeding input values from the vector.

Programs and tests. As before, we use CFAs as our
representation of programs. We represent a test vector by
a sequence of input data required for a single run of the pro-
gram. This sequence contains the initial values for the formal
parameters of the function to be tested, and the sequence of
values supplied by the environment whenever the program
asks for input. In other words, in addition to input values, the
test vector also contains a sequence of return values for exter-
nal function calls. For example, when testing device drivers,
the test vector would contain a sequence of suitable return
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values for all calls to kernel functions made by the driver,
and a sequence of values for data read off the device.

Target predicate coverage. A test adequacy criterion is a
set of coverage goals that determine when the program has
been tested thoroughly. Ideally, one would like the test suite
to exercise all program paths (“path coverage”), and thus
expose most errors that the program might have. As such
test suites would be infinitely large for most programs, wea-
ker notions of test adequacy, for example, node and edge
coverage, are used to approximate when a program has been
tested sufficiently [67,82]. A test suite is adequate w.r.t. an
adequacy criterion if it contains enough tests to satisfy each
coverage goal in the criterion.

We use the following notion of target predicate coverage:
given a C program in the form of a set of CFAs, and a tar-
get predicate p, we say a test vector covers a location q of
some CFA w.r.t. p if the execution resulting from the test
vector takes the program into a state where it is in location q
and the variables satisfy the predicate p. We deem a test
suite adequate w.r.t. the target predicate coverage criterion
with predicate p if all p-reachable CFA locations are cove-
red w.r.t. p by some test vector in the test suite. A location q is
p-reachable if some program execution reaches a state where
the location is q and the variables satisfy p.

As a special case, if the target predicate p is true, the test-
generation algorithm outputs test vectors for all reachable
CFA locations. Furthermore, Blast reports all CFA locations
that are (provably) unreachable by any execution as dead
locations (they correspond to dead code). If we run Blast

on a program with both predicates p and ¬p, then for all CFA
locations q that can be reached with p either true or false,
we obtain two test vectors—one that causes the program to
reach q with p evaluating to true, and another one that causes
the program to reach q with p evaluating to false.

The notion of target predicate coverage corresponds to
location coverage (“node coverage”) if p = true. For edge
coverage, for an edge e that represents a branch condition pe,
we can find a test that takes the program to the source location
of e with the state satisfying the predicate pe, thus causing
the edge e to be traversed in the subsequent execution step.
We can similarly adapt our technique to generate tests for
other testing criteria [53,82]; we omit the details.

Test flow. The overall testing framework as implemented in
Blast is shown in Fig. 12. The test-suite generator takes
as input a program and a target predicate p, and produces a
test suite that is adequate w.r.t. p. The test-driver generator
takes as input a program, and produces a test driver. During
a testing run, the test driver reads the test suite, and executes
the program being tested once on each test vector, using the
values from the vector as input. It can be run on each indivi-
dual test vector separately, and the user can study the resulting
dynamic behavior, for example by using a debugger.

Pred
Target

Testing

Driver
TestTest

Suite

Test Suite
Generator Generator

Test Driver

Program

Fig. 12 Test flow

Example of target predicate coverage. The use of target
predicate coverage is illustrated on the simple program in
Fig. 13, which manipulates Unix security privileges using
setuid system calls. Unix processes can execute in several
privilege levels; higher privilege levels may be required to
access restricted system resources. Privilege levels are based
on process user id’s. Each process has a real user id, and an
effective user id. The system call seteuid is used to set the
effective id, and hence the privilege level of a process. The
user id 0 (or root) allows a process full privileges to access
all system resources. We assume for our program that the
real user id of the process is not zero, i.e., the real user does
not have root privileges. This specification is a simplification
of the actual behavior of setuid system calls in Unix [19],
but is sufficient for exposition.

The main routine first saves the real user id and the effec-
tive user id in the variablessaved_uid andsaved_euid,
respectively, and then sets the effective user id of the pro-
gram to the real user id. This last operation is performed
by the function call seteuid. The function get_root_
privileges changes the effective user id to the id of the
root process (id 0), and returns 0 on success. If the effec-
tive user id has been set to root, then the program does some
work (in the function work_and_drop_privileges)
and sets the effective user id back to saved_uid (the real
user id of the process) at the end (L9). To track the state
changes induced by the setuid system calls, we instru-
ment the code for the relevant system calls as follows. The
user id is explicitly kept in a new integer variable uid; the
function getuid is instrumented to return a nonzero value
(modeling the fact that the real user id of the process is not
zero); and the function geteuid is instrumented to nonde-
terministically return either a zero or a nonzero value. Finally,
we change the system call seteuid(x) so that the variable
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int saved uid, saved euid;

int get root privileges () {
L1: if (saved euid!=0) {
L2: return -1;

}
L3: seteuid(saved euid);
L4: return 0;
}
work and drop priv() {
L5: FILE *fp = fopen(FILENAME,"w");
L6: if (!fp) {
L7: return;

}
L8: // work
L9: seteuid(saved uid);
}
int main(int argc, char *argv[]) {
L10:saved uid = getuid();
L11:saved euid = geteuid();
L12:seteuid(saved uid);
L13: // work under normal mode
L14:if (get root privileges ()==0){
L15: work and drop priv();

}
L16:execv(argv[1], argv + 1);
}

Fig. 13 Program setuid

uid is updated with the argument x passed to seteuid as a
parameter. The instrumented versions are omitted for brevity.

Secure programming practice requires that certain system
calls that run untrusted programs should not be made with
root privileges [18], because the privileged process has full
permission to the system. For example, calls to exec and
systemmust never be made with root privileges. Therefore
it is useful to check which parts of the code may run with
root privileges.

This check is performed by generating a test suite with
the target predicate uid = 0. Perhaps surprisingly, the test
suite contains a test vector where the call to execv can
be executed while this predicate holds. Such a test vector
can now be used to explore the erroneous behavior of the
program. Closer inspection identifies a bug in the function
work_and_drop_privileges: if the call to fopen
fails, the function returns without dropping root privileges.

In the following subsections we describe how to generate
an adequate test suite, and how to generate a test driver that
can execute the program on the test vectors in the suite.

4.3 Test-suite generation

Recall that the model-checking algorithm described in Sect. 2
takes as input a set of CFAs and a configuration (q, p) of

target location and target predicate. Provided it terminates,
the algorithm returns either with outcome O1, a complete
ART T that is safe w.r.t. (q, p), or with outcome O2, a path
from the root node to a node n : (q, ·, ϕ) such that ϕ ∧ p
is satisfiable. Given a program and a target predicate p, the
test-suite generation now proceeds as follows.

Step 1. The locations of the CFAs are numbered in depth-
first order, and put into a worklist in decreasing
order of the numbering (i.e., the location numbered
last in DFS order is first on the worklist). We create
an initial ART that consists of a single node n :
(q0, s0, true), where q0 is the initial location of the
entry function and s0 is the empty stack. The initial
test suite is the empty set.

Step 2. If the worklist is empty, then we return the current
test suite; otherwise let q be the first CFA location
in the worklist. We invoke the model checker with
the current ART and the configuration (q, p).

Step 3. If the model checker returns with outcome O1, then
we conclude that for all locations q ′ such that the
new ART is safe w.r.t. (q ′, p), no test vector exists,
and so we delete all such locations from the work-
list. Otherwise, if the model checker returns with
outcome O2, then we have found a p-reachable
location q. We use the path to q to compute a test
vector that covers the location q w.r.t. p using a
procedure described below. We add this vector to
the test suite, and remove q from the worklist. In
either case, we proceed with step 2.

It can be shown that upon termination, the above procedure
returns a test suite that is adequate w.r.t. p according to our
criterion of target predicate coverage.

We incorporate several optimizations to the above loop.
First, the model checking of a location is not started from
scratch in step 2. Instead, the (incomplete) ART from the pre-
vious model-checking phase is reused to start the next run of
the model-checking algorithm. The current ART is searched
and updated to find p-reachable occurrences of location q.
Second, when a test vector is found, we can additionally
check (by symbolically executing the program on the vec-
tor) which other locations it covers, and we remove those
locations from the worklist. Third, the model-checking al-
gorithm uses heuristics to choose the next node to unfold
in the current ART. The nodes that need to be unfolded are
partitioned into those whose location has been covered by a
vector in the current test suite, and those whose location is
still uncovered. The model checker unfolds nodes of unco-
vered locations first, and it unfolds nodes of covered loca-
tions only if there remain no nodes of uncovered locations.
A node whose location has been covered by a previous test
may still need to be unfolded, because a path to an (as yet)
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uncovered location may go through it. Forth, the user has the
option to give a time-out for the model checking. Thus in
step 3, if instead of O1 or O2, the model checker times out,
then we give up on the location q, by deleting it from the
worklist and going back to step 2. We have found these op-
timizations to be essential for the algorithm to work on large
programs.
Example. Consider the example middle from Sect. 4.1.
The test-generation algorithm first prioritizes the locations
according to depth-first search order, which is 〈L1,L2,
L7,L8,L3,L6,L10,L13,L15,L12,L9,L5〉. The test-
generation algorithm runs the model checker starting with
L5 as target location and going downward in this order. For
the locationL5, the model checker builds the ART in breadth-
first order (since no location is covered so far, all locations
have equal priority). At this point, the model checker finds
a feasible path in the ART to location L5 (namely, the path
〈L1,L2,L3,L5〉). Since the predicate p is true, this does
not require extra work in this case. However, for a general
predicate p, a location q on the path is declared covered only
if the model checker finds a path to q such that p holds at
location q. The first test vector is generated for this path as
explained in the next section. The model checker marks the
locations on the path as covered by some test, and moves on
to the next uncovered location, L9.

When running the model checking procedure for loca-
tion L9, Blast uses the ART that was already built in the
previous stage, and continues to explore reachable locations.
Notice that this time, the locations L1, L2, L3, and L5
are treated as locations of lower priority. Hence, the algo-
rithm decides to expand L6 before L5. It then finds the path
〈L1,L2,L3,L6,L9〉, which is feasible. The current ART is
now used to search for the next uncovered location in the list,
L12. In this way, all remaining locations will be covered.

Generating tests from paths. When model checking in
step 2 ends with outcome O2, the resulting ART contains
a path to a node n : (q, ·, ϕ) such that the path ends at q and
ϕ ∧ p is satisfiable. We now describe how to extract from
this path a test vector that, when fed to the program, takes it
to location q satisfying the target predicate p.

First, we construct the PF for the path t in the ART leading
to q, and additionally conjoin the predicate p renamed with
the current names of variables at the end of the path. Next, we
use a decision procedure to produce a satisfying assignment
for the variables of the new formula. From the satisfying
assignment we build a test vector that drives the program
to the target location and target predicate. For a satisfiable
formulaϕ, let S(ϕ) be a satisfying interpretation of all special
variables that occur in the formula. A test vector that exercises
the path t is obtained by setting every input variable x of the
program to the initial value S(ϕ)(〈x, 1〉), and then providing,
through the test driver, the return value of any call to an

external function from the corresponding assignment to a
variable in S.

Figure 14a shows a small program, and Fig. 14b and 14c
show, respectively, a path to the program location LOC, and
the PF for that path. The constraint for each atomic opera-
tion of the path is shown to the right of the operation; the
PF is the conjunction of all constraints. Figure 14d shows a
satisfying interpretation for the special variables of the PF of
Fig. 14c. It is easy to check that if we set the inputs initially to
“x = 0,y = 0,z = 2,” then the program follows the
path of Fig. 14b. The generated test vector is shown in
Fig. 14e.

If the constraints in the PF only contain linear arithmetic,
then a satisfying assignment can be obtained by using a solver
for integer linear programming. The method can be extended
in the presence of disjunctions and uninterpreted functions
that model memory aliasing relationships. Of course, there
are programs for which our constraint-based test-generation
strategy fails, because the constraint language understood
by the constraint solver that is used to generate tests is not
expressive enough.

Library calls. If a program path contains library calls whose
source code is not available for analysis, or asks for user in-
put, the constraint generation assumes that the library call or
the user can return any value. Thus, some of our tests may not
be executable if the library calls always return values from
some subset of possible values. In this case, the user can mo-
del postconditions on library calls by writing stub functions
that restrict the possible return values.

4.4 Test-driver generation

Recall that a test vector generated by Blast is a sequence
of integer values (our test-vector generation is currently res-
tricted to integer inputs): these are the values that are fed
to the program by the test driver during the actual test; they
include the initial values for all formal parameters and the
return values for all external function calls.

The test-driver generator takes as input the original pro-
gram and instruments it at the source-code level to construct
a test driver, which consists of the following components:
(1) a wrapping function, (2) a test-feeding function, and
(3) a modified version of the original program. The test-
driver generator modifies the code of the original program
by replacing every call to an external function with a call to
the test-feeding function. The test driver can then be compi-
led and run to examine the behavior of the original program
on the test suite.

The wrapper is the main procedure of the test driver: it
reads a test vector and then calls the entry function of the
modified program, passing it initial values for the parame-
ters from the test vector. The test-feeding function reads the
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Fig. 14 Generating a test
vector. a Program, b Path, c Path
formula, d Assignment, e Test
vector

Example() {
if (y == x) assume(y=x) y↪1 = x↪1 x↪1 → 0

y ++ ; y = y+1 y↪2 = y↪1 +1 y↪1 → 0
if (z <= x) assume(¬ z≤x) z↪1 x↪1 y↪2 → 1

y ++ ; z↪1 → 2
a = y - z a = y−z a↪1 = y↪2 z↪1 a↪1 → −1
if (a < x) assume(a<x) a↪1 < x↪1

LOC:
}

(a) (b) (c) (d)

x 0
y 0
z 2

(e)

;

Table 2 Experimental results for Sect. 4

Program LOC CFA locations Locations Tests Predicates Time

Live Dead Fail Total Average

kbfiltr 5,933 381 298 83 0 39 112 10 5 min

floppy 8,570 1,039 780 259 0 111 239 10 25 min

cdaudio 8,921 968 600 368 0 85 246 10 25 min

parport 12,288 2,518 1,895 442 181 213 509 8 91 min

parclass 30,380 1,663 1,326 337 0 219 343 8 42 min

ping 1,487 814 754 60 0 134 41 3 7 min

ftpd 8,506 6,229 4,998 566 665 231 380 5 1 day

next value from the test vector and returns it. We are guaran-
teed that the vector will have taken the program to the tar-
get when the test-feeding function has consumed the entire
vector. Hence, once the test vector is consumed, the feeder
returns arbitrary values.

4.5 Experiments

We ran Blast to generate test suites for several benchmark
programs. The first five programs are Microsoft Windows
device drivers: kbfiltr, floppy, cdaudio, parport, and parclass.
The program ping is an implementation of the ping utility,
and ftpd is a GNU/Linux port of the BSD implementation of
the ftp daemon. The experiments were run on a GNU/Linux
machine with a 3.06 GHz Intel P4 Xeon processor and 4 GB
memory.

Table 2 presents the results of our experiments for
checking the reachability of code. The target predicate was
always true: we checked which program locations are live
(reachable on some feasible path) and dead (not reachable
on any feasible path), and we generated test vectors that cover
all live locations. Syntactically plausible paths (for example,
control-flow paths, or data flows) may not be semantically
possible, for example, due to correlated branching [14]. This
is called the infeasibility problem in testing [56,82]. The
usual approach to deal with infeasible error paths is to argue
manually on a case-by-case basis, or to resort to adequacy
scores (the percentage of all static paths covered by tests).
By using Blast we can automatically detect dead code, and
generate tests for live code.

In the table, the first column lists the program name, the
second column (“LOC”) lists the number of lines in the pro-
gram. CFAs represent programs compactly; each basic block
is a single edge. The third column (“CFA locations”) shows
the number of locations of the CFAs which are syntactically
reachable by exploring the corresponding call graph of the
program. The column “live” shows the number of reachable
locations, “dead” the number of unreachable locations, and
“fail” the number of locations on which our tool failed.
Ideally, the total number of CFA locations is equal to the
sum of the live and dead locations. However, we set a time-
out of 10 min per location in our experiments. So in practice,
the tool fails on a small percentage of locations. The failure is
due both to time-outs, and to not finding suitable predicates
for abstraction.

The column “Tests” gives the number of generated test
vectors. The implementation does not run the model checker
for a location that is already covered by a previous test vec-
tor. Thus, the number of test vectors is usually much smaller
than the number of reachable locations. This is especially
apparent for the larger programs. The column “total” is the
total number of predicates, over all locations, generated by
the model-checking process. The column “average” is the
average number of predicates active at any one program lo-
cation. The average number of predicates at any location is
much smaller than the total number of predicates, thus confir-
ming our belief that local and precise abstractions can scale
to large programs. Finally, the column “Time” is the running
time rounded to minutes (except for ftpd, where the tool
ran for two overnight runs).
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We found many locations that were not reachable because
of correlated branches. For example, in floppy, we found
the following code:

driveLetterName.Length = 0;
// cut 15 lines
...
if (driveLetterName.Length != 4 ||
driveLetterName.Buffer[0] < ’A’ ||
driveLetterName.Buffer[0] > ’Z’) { ...

}

Here, the predicate driveLetterName.Length != 4
is true; so the other tests are never executed. Another rea-
son we get dead code is that certain library functions (like
memset) make many comparisons of the size of a struc-
ture with different built-in constants. If called from a proper
client, most of these comparisons fail, giving rise to many
dead locations.

Further, the Windows device drivers were already anno-
tated with a safety specification that deals with I/O request
packet (IRP) completion. Hence, the percentage of unrea-
chable locations in these drivers is high, because statements
for error handling are not reached. For example, the driver
checks in certain situations if the observing state machine
was in the proper state, and called an error function other-
wise. On all feasible paths, the state machine was in a proper
state, and therefore the error functions are unreachable.

5 State of the Blast project

The challenge. Regardless of their competence and expe-
rience, programmers make mistakes while programming, and
they spend much of their time on hunting and fixing bugs in
their programs. Automatic proof- and bug-finding tools can
aid programmers in the search for bugs; they hold the poten-
tial both for reducing the time and cost of the development
cycle, and for producing more robust and reliable code. The
development of such semantic code-checking tools, which
extend simple syntax, type, and style checkers available
today, is an important research goal for software enginee-
ring (cf. [51] for an overview).

The convergence of technologies. Over the past decades,
several research communities worked on improvements of
techniques that were fundamentally different in how they
approach the problem of program verification. Recently,
however, we have seen a convergence of the different
verification approaches. The most promising current solu-
tions to program verification consist of ingredients from
model checking—for effective techniques to exhaustively
search state spaces and to represent boolean data—from abs-
tract interpretation—for techniques to formalize and sym-
bolically execute abstract representations of programs—and
from theorem proving—for techniques to solve constraints

and decide logical theories. Blast is a witness to this conver-
gence: it uses ideas that originated in the model-checking
community for representing and searching state spaces, and
for counterexample-guided abstraction refinement; it is most
naturally formalized as a path-sensitive static analysis over an
adjustable abstract domain; and it calls on automatic theo-
rem provers for constructing abstract state transitions, for
checking the feasibility of abstract error paths, and for com-
puting interpolants. It is thus mostly for historical reasons
that we call Blast a “model checker [11].”

The results. Our experiments show that CEGAR-based soft-
ware model checkers like Blast are able to analyze pro-
grams of medium size (thousands of lines of code), and
that they can be successfully applied to software enginee-
ring practices such as checking temporal safety properties
and generating test cases. Blast is released as open source
under the BSD license and available online.1 The software
includes an Eclipse plug-in to provide model-checking tech-
niques within an integrated development environment [8].
The Blast web site provides also a supplementary web page
for this paper, including the example C programs, and the
version of Blast that we have used for the experiments in
this paper.

Current and future directions. Our recent research in the
Blast project has focused on three topics: first, to make
Blast more usable in the software engineering process;
second, to extend the algorithmic capabilities of Blast to
handle larger programs and deeper properties; and third, to
handle multi-threaded software. To improve the usability of
Blast, we provide a high-level language to specify queries
about a code base as well as proof decomposition strategies
[7]. We also provide incremental verification capabilities so
that Blast can be incorporated within a regression
testing/verification framework, without restarting the veri-
fication process from scratch after every program modifi-
cation [48]. While Blast has been used successfully for
checking control-dominated programs, such as device dri-
vers and protocols, it is still inadequate for reasoning about
large programs that use heap data structures. We are currently
augmenting Blast with more expressive abstract domains to
support a more precise heap analysis within the CEGAR fra-
mework [10,11]. We are also exploring the automatic syn-
thesis of temporal interfaces for software components, as
well as the verification of code against such interfaces [45].
Such techniques for summarizing the correct usage and ef-
fects of procedures and libraries are crucial for obtaining a
modular, scalable approach to verification, and for the ana-
lysis of partial programs. Finally, a main strength of model
checking is its ability to explore nondeterministic program
behavior resulting from the interleaving of multiple threads.

1 http://mtc.epfl.ch/blast.
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To control verification complexity, assumptions about the
interference between threads, like component interfaces,
need to be synthesized and discharged. An extension of
Blast in this direction has been used to check concurrent
programs for the presence of data races [44].
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