
Invariant Synthesis for Combined Theories�

Dirk Beyer1, Thomas A. Henzinger2,
Rupak Majumdar3, and Andrey Rybalchenko2,4

1 Simon Fraser University, Surrey, B.C., Canada
2 EPFL, Lausanne, Switzerland

3 University of California, Los Angeles, USA
4 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We present a constraint-based algorithm for the synthesis
of invariants expressed in the combined theory of linear arithmetic and
uninterpreted function symbols. Given a set of programmer-specified in-
variant templates, our algorithm reduces the invariant synthesis problem
to a sequence of arithmetic constraint satisfaction queries. Since the com-
bination of linear arithmetic and uninterpreted functions is a widely ap-
plied predicate domain for program verification, our algorithm provides
a powerful tool to statically and automatically reason about program
correctness. The algorithm can also be used for the synthesis of invari-
ants over arrays and set data structures, because satisfiability questions
for the theories of sets and arrays can be reduced to the theory of lin-
ear arithmetic with uninterpreted functions. We have implemented our
algorithm and used it to find invariants for a low-level memory allocator
written in C.

1 Introduction

The classical approach to the verification of temporal safety properties of pro-
grams requires the construction of inductive invariants [9, 16] at each program
point, that is, assertions that are true on every program execution reaching that
point, and moreover, that are closed under the strongest postcondition operator.
Automation of this construction is the main challenge in program verification.

One promising approach for automated invariant computation is template-
based, where the user specifies a parameterized form of the invariant, and a
constraint-based analysis generates relationships on the parameters such that
every instantiation of the parameters satisfying the relationships guarantees that
the resulting assertions are indeed inductive invariants. This approach has been
successfully applied to numerical invariants [5, 6, 13, 19, 20, 21], using constraint
solving in linear or nonlinear arithmetic. Unlike dataflow analysis techniques,
which achieve low running time and convergence at the cost of lost precision
(e.g., by widening [7]), the template-based techniques are sound and complete

� This research was sponsored in part by the grants NSF-CCF-0427202 and NSF-
CCF-0546170.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 378–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Invariant Synthesis for Combined Theories 379

modulo the templates used: if there is an inductive invariant expressible using
the template, then the methods guarantee to synthesize such an invariant.

Unfortunately, the application of these techniques have been confined so far
to numerical domains, where linear-programming based techniques, or decision
procedures for the theories of rationals/reals, provide natural constraint solvers.
In practice, program verification uses more general predicate domains, for ex-
ample, combinations of linear arithmetic and equality with uninterpreted func-
tions [1, 8, 11, 18, 10]. Uninterpreted functions are especially useful for modeling
memory (for example, dereference operations and field accesses can be modeled
as uninterpreted functions).

We present a constraint-based invariant synthesis algorithm for the com-
bined domain of linear arithmetic and uninterpreted functions. Given invariant
templates in the language of parameterized linear arithmetic and uninterpreted
functions, our algorithm instantiates the parameters such that the resulting as-
sertions are inductive invariants. Moreover, if such an instantiation exists, then
the algorithm will find it. The key technical idea of our approach is hierarchic
theory combination [23], whereby the uninterpreted function terms are compiled
away to produce arithmetic constraints. The compilation instantiates “enough”
functionality axioms to ensure that functions produce equal outputs for equal
inputs. In the worst case, a factorial number of constraint-satisfaction problems
in linear arithmetic with parametric coefficients needs to be solved.

Our technique enables us to construct invariants for programs that manip-
ulate pointers. Furthermore, using recent results that reduce theories of data
structures such as arrays and sets to the combined theory of linear arithmetic
and uninterpreted functions [2,14], we obtain an invariant-generation technique
for templates that involve arrays and set data structures.

We have implemented our algorithm for invariant synthesis and applied it to
generate invariants for a simplified low-level memory allocator used in an OS
kernel. Our tools infer invariants that contain both arithmetic operations and
memory operations (address-of and pointer dereferencing), which are approxi-
mated by uninterpreted function symbols. Heuristics for automatically searching
through the space of candidate templates are left for future work.

2 Example

We illustrate our approach with the small example shown in Fig. 1. We want
to prove the assertion at the end of the while loop. One way to prove an asser-
tion φ in a program is to find an inductive assertion map, that is, a function
η that maps every program location to a set of states such that (I0) the initial
location of the program is marked true, (I1) for each edge � → �′ of the control
flow graph marked with operation op, we have SP(η.�, op) |=LI+UIF η.�′, and (I2)
η.�φ |=LI+UIF φ for the location �φ of the assertion. Here |=LI+UIF denotes the
implication in the theory used to write invariants and program statements, which
is linear arithmetic combined with uninterpreted function symbols in our case.

380 D. Beyer et al.

main() {
int d1, d2;

d1 = 3;
d2 = f(4);

while (nondet()) {
d1 = f(d1+1);
d2 = f(d2+1);

}

assert(d2=f(d1+1));
}

�1

�2

�3

d1 = 3;
d2 = f(4);

d1=f(d1+1);
d2=f(d2+1);

assert(d2=f(d1+1));

Fig. 1. Example program [10] and its control-flow graph. The invariant to prove is
asserted at the location �3.

SP denotes the strongest postcondition operation. For ease of exposition, we
shall concentrate on the loop invariant at the location �2 in the example.

We shall use a template-based technique to infer inductive invariant maps,
that is, the user provides a parameterized expression denoting the shape of the
invariant, and our inference technique finds instantiations of the parameters
that result in an inductive invariant map. For the example, we assume that the
template ψ for the loop invariant is

ψ : cd1d1+ cd2d2 + cff(cfd1d1 + cfd2d2+ cfd) = cd,

where c∗ are parameters to be instantiated. This fixes the form of the invariant
to a linear equality between a constant and a linear term where the function
f occurs once with a linear argument. We use ψ′ to denote the primed version
of the template, where the program variables d1 and d2 are replaced by their
primed versions d1′ and d2′. The primed variables denote the updated values of
variables.

Given a template, our algorithm generates a set of constraints between the
parameters that must be satisfied for any parameter instantiation to be an invari-
ant. Condition (I1) requires that the template is true when the loop is entered
for the first time

d1′ = 3 ∧ d2′ = f(4) |=LI+UIF ψ′, (1)

and that it must be preserved under the loop iteration

ψ ∧ d1′ = f(d1 + 1) ∧ d2′ = f(d2 + 1) |=LI+UIF ψ′. (2)

Condition (I2) requires that the invariant implies the desired assertion

ψ |=LI+UIF d2 = f(d1+ 1). (3)

We now translate each implication into a constraint over the template param-
eters. This translation is the crucial part of our algorithm, and it computes a

Invariant Synthesis for Combined Theories 381

Table 1. Purified terms and corresponding definitions for the program in Fig. 1

Fresh Definition
v f(cfd1d1 + cfd2d2 + cfd)
w f(cfd1d1′ + cfd2d2

′ + cfd)
x f(d1 + 1)
y f(d2 + 1)
z f(4)

constraint system that has a solution if and only if there exist a valuation of the
parameters that yields a desired inductive invariant.

The first step in the translation process is purification, which introduces fresh
variables for non-arithmetic subterms and stores their definitions. We purify the
template and the assertions that describe the program, which produces linear
arithmetic assertions together with a set of definitions for the fresh variables.
For our template, purification produces the new template

cd1d1+ cd2d2 + cfv = cd,

where v is a new variable whose definition is

v = f(cfd1d1+ cfd2d2 + cfd).

We show the definition of fresh variables that are created by purification in
Table 1.

Now, each implication (1), (2), and (3) is passed to a function Consec, which
translates the implications into constraints in linear arithmetic. We informally
describe how Consec transforms the implication (2). The other cases are similar.

We observe that reasoning about implication (2) requires handling of func-
tionality axioms, that is, the proof of the implication may rely on the fact that
the function f produces the same outputs for the same inputs. Since some as-
sertions in (2) are parameterized, we do not know a priori which instances of
the functionality axioms may appear in the proof. The function Consec finds
such instances automatically, which are in this case

if d1+ 1 = cfd1d1 + cfd2d2+ cfd then x = v,

if d2 + 1 = cfd1d1
′ + cfd2d2

′ + cfd then y = w.

Given these axiom instances, we can focus on the following version of the impli-
cation (2) that now holds in linear arithmetic:

cd1d1 + cd2d2+ cfv = cd ∧ d1′ = x ∧ d2′ = y ∧ x = v ∧ y = w

|=LI

cd1d1
′ + cd2d2

′ + cfw = cd.

(4)

Note that (4) is equivalent to (2) under the assumption that the latter is prov-
able by using the above axiom instances, but (4) does not require any reason-
ing about uninterpreted function symbols. Consec translates (4) by applying

382 D. Beyer et al.

Farkas’ lemma of linear programming, which states that (4) holds if the conse-
quent of the implication can be obtained from the antecedents by taking a linear
combination thereof.

Additionally, Consec needs to justify that its choice of the above axiom
instances is valid. Let ϕ denote the (purified) left-hand side of (4) without
the conjuncts x = v and y = w that arise from the axiom instances, that is,
ϕ ≡ cd1d1 + cd2d2 + cfv = cd ∧ d1′ = x ∧ d2′ = y. To justify the choice of
the above axiom instances, Consec includes constraints that the premise of the
first instance follows from ϕ, and that the premise of the second instance follows
from ϕ conjoined with x = v:

ϕ |=LI d1 + 1 = cfd1d1 + cfd2d2 + cfd

ϕ ∧ x = v |=LI d2 + 1 = cfd1d1
′ + cfd2d2

′ + cfd.
(5)

The justification of both facts translates to arithmetic constraints on template
coefficients, again by applying Farkas’ lemma.

We solve the conjunction of the constraints that encode the validity of implica-
tions (4) and (5) together with the constraints for similar implications obtained
by translating (1) and (3) into linear arithmetic under particular choice of axiom
instances. The resulting parameter instantiation below defines the loop invariant
d2− f(d1+ 1) = 0.

cd1 cd2 cf cfd1 cfd2 cfd cd
0 1 −1 1 0 1 0

3 Preliminaries

Constraints. Let x be a set of variables, and let a state be a valuation of the
variables from x. We shall represent sets of states using (quantifier-free) first
order formulas with free variables from x.

A signature Σ = (F, P) for a first order theory consists of a set of function
symbols F and a set of predicate symbols P . We assume that the arity of function
and predicate symbols are encoded in their names. A constant is a function of
arity zero. For a signature Σ = (F, P), the set of Σ-terms over x is the smallest
set such that (1) each free variable is a Σ-term, (2) each constant symbol u ∈ F
is a Σ-term, and (3) f(t1, . . . , tn) is a Σ-term, given f ∈ F is a function symbol
of arity n, and each ti is a Σ-term, for i = 1, . . . , n. The set of Σ-atoms is
the smallest set such that (1) s = t is a Σ-atom if s and t are Σ-terms, and
(2) p(t1, . . . , tn) is a Σ-atom for a predicate symbol p ∈ P of arity n and each
ti is a Σ-term, for i = 1, . . . , n. The set of Σ-constraints is the smallest set
such that each Σ-atom is a Σ-constraint, and ¬ϕ and ϕ ∧ ψ are Σ-constraints
whenever ϕ and ψ are Σ-constraints. Finally, the set of Σ-formulas is the smallest
set containing the Σ-atoms that is closed under conjunction, disjunction, and
negation. Semantics of formulas is given using Σ-models in the usual way [3].

In this paper, we assume a constraint language of linear arithmetic and unin-
terpreted functions. That is, in addition to the usual arithmetic operations, we

Invariant Synthesis for Combined Theories 383

assume that the language has a set of uninterpreted function symbols that can be
used as primitive operations. Formally, our signature consists of the constant c
for each c ∈ Q, the functions + and −, together with a set of uninterpreted
function symbols, and the predicate ≤.

A Σ-theory is a set of Σ-formulas that is closed under logical consequences.
The satisfiability problem for a Σ-theory T asks, given a Σ-formula ϕ, whether
some model of the theory T satisfies ϕ. The theory of linear arithmetic (LI) is
the theory of the structure of the rationals 〈Q, 0, 1, +, ≤〉. The theory of equality
with uninterpreted functions (UIF) is the theory of equality together with the
axiom

∀c1, . . . , cn, d1, . . . , dn :
n∧

i=1

ci = di → f(c1, . . . , cn) = f(d1, . . . , dn),

for each uninterpreted function symbol f of arity n. We refer to the right-
hand side of the above implication as the head of the axiom. Given two terms
f(c1, . . . , cn) and f(d1, . . . , dn) we write c ≈ d to denote the premise

∧n
i=1 ci = di

of the corresponding axiom. We write |=LI and |=LI+UIF to denote implication
in the theory of linear arithmetic and in its combination with uninterpreted
function symbols, respectively.

In the following, we work in the combined theory of linear arithmetic and
equality with uninterpreted functions, denoted LI+UIF. We reason about
LI+UIF using the hierarchic approach [23]. This approach allows one to re-
duce the reasoning about certain combinations of base and extension theories
to the reasoning in the base theory. The reduction is performed by introducing
instantiations of the axioms of the extension theory to the base theory. In par-
ticular, the combination of linear arithmetic and uninterpreted function symbols
admits hierarchic combination [23].

Theorem 1. [18,23] The satisfiability problem for LI+UIF is decidable.

Control Flow Graphs. We assume an abstract representation of programs by
transition systems [16]. A program P = (x, locs, �0, T , Good) consists of a set x
of variables, a set locs of control locations, an initial location �0 ∈ locs, a set T
of transitions, and a constraint Good over the variables from x that describes
the ‘good’ states. Each transition τ ∈ T is a tuple (�, ρ, �′) where �, �′ ∈ locs are
control flow locations, and ρ is a constraint over free variables from x∪x′, where
the variables from x′ denote the values of the variables from x in the next state.

A state of the program P is a valuation of the variables from x. The set of
all states is written val.x. We shall represent sets of states using constraints.
A computation of the program P is a sequence 〈m0, s0〉〈m1, s1〉 . . . 〈mk, sk〉 ∈
(locs×val.x)∗ where m0 = �0 is the initial location and for each i ∈ {0, . . . , k−1},
there is a transition (mi, ρ, mi+1) ∈ T such that (si, si+1) |=LI+UIF ρ. A state s
is reachable at � if 〈�, s〉 appears in some computation. A program is unsafe if
some state s �∈ Good is reachable.

384 D. Beyer et al.

Invariants. An invariant at a location � ∈ locs of P is a set of states containing
the states reachable at �. An invariant map is a mapping η from locs to LI+UIF
constraints such that the following conditions hold:

(I0: Initiation) for the entry location �0, we have η.�0 = true.
(I1: Inductiveness) for each �, �′ ∈ locs such that (�, ρ, �′) ∈ T , we

have η.� ∧ ρ |=LI+UIF η.�′. Here, η.�′ is the constraint obtained by
substituting variables from x′ for the variables from x in η.�.

(I2: Safety) for each � ∈ locs we have η.� |=LI+UIF Good.

The invariant synthesis problem is to construct an invariant map for a given
program. For ease of exposition, we assume that an invariant map assigns an
invariant to each program location. For efficiency, one can require invariants to
be defined only over a program cutset, i.e., a set of program locations such that
every syntactic cycle in the control flow graph passes through some location in
the cutset.

4 Invariant Synthesis for LI+UIF

We now describe our algorithm for invariant synthesis for linear arithmetic and
uninterpreted function symbols. Our algorithm follows the constraint-based ap-
proach [6, 20, 19, 21, 13], which has already provided successful algorithms for
the synthesis of linear and non-linear invariants and ranking functions. Our al-
gorithm extends the applicability of invariant generation to the combination of
linear arithmetic and uninterpreted function symbols. First, we briefly describe
the constraint-based approach, and outline our method of handling uninterpreted
function symbols. Then, we provide a formal description of our algorithm.

Constraint-based Invariant Synthesis. The constraint-based approach to
invariant generation reduces the computation of an invariant to a constraint
solving problem. The approach consists of three steps. First, a template asser-
tion that represents an invariant is fixed in an a priori chosen language. The
parameters in the template are the unknown coefficients that determine the
invariant. Second, a set of constraints over these parameters is defined which
encodes the definition of the invariant. This means that every solution to the
constraint system yields an inductive invariant. Third, an invariant is obtained
by solving the resulting constraint system.

4.1 Invariant Templates

An invariant template is an a priori fixed parameterized assertion over the pro-
gram variables. It identifies the unknown parameters, and restricts the “dimen-
sions” of the invariant, e.g., the number of conjuncts and the number of function
applications. This means that the form of the template determines the form of
the resulting invariant.

We provide the formal definition of the invariant template for a given set
of program variables and functions symbols. Let c range over the set of integer

Invariant Synthesis for Combined Theories 385

constants, v over the set of program variables, f over a fixed set of uninterpreted
functions symbols, and α over a fixed set of template parameters. The following
grammar defines the set of constraint templates:

Terms t ::= v | f(e1, . . . , en)
Expressions e ::= c | c × t | α × t | e1 + e2 | e1 − e2
Constraints i ::= e ≤ c | e1 = e2
Templates ξ ::= i | i ∧ ξ

An invariant template is a finite conjunction of inequalities. An invariant is
expressible by the invariant template if there exists a valuation of the template
parameters that yields the invariant. Our algorithm computes invariants that
are expressible by a given template.

4.2 Algorithm

The invariant synthesis algorithm Inv(LI+UIF) takes as input a program and a
template map that assigns an invariant template to each program location. The
algorithm computes an invariant map that assigns an invariant to each program
location, if there exists an invariant that is expressible by the given invariant
template. The algorithm is shown in Fig. 2. It applies an auxiliary function
Consec shown in Fig. 3. The function Consec generates constraints between
the parameters in the invariant template that ensure the conditions (I0), (I1),
and (I2). (We assume that the template map assigns true to the initial location
�0, thus (I0) is satisfied.) Any satisfying assignment to these constraints gives
an instantiation of the invariant template that is an invariant. Next, we describe
each step of the algorithm.

Purification. We first purify all (sub-) terms that appear in the invariant tem-
plates, and in the program representation. A formula (or constraint) is purified
if the only atom with an uninterpreted function is of the form x = f(t1, . . . , tn)
where x is a variable and t1, . . . , tn are linear terms. A purified formula may be
obtained by replacing each subterm of the form f(e1, . . . , en) by a fresh vari-
able, and recording the corresponding definition. This step creates a map pur
that records the correspondence between terms and their purified versions, and
a map def that keeps the definitions for fresh variables.

Constraint Generation. We create the constraints by applying the func-
tion Consec. The function Consec computes a constraint on the parameters
of the templates ϕpre and ϕpost over program variables and primed program
variables, respectively, for a transition relation ρ. Let Params be the set of pa-
rameters that appear in the templates ϕpre and ϕpost. The output of Consec is
the constraint over Params such that the implication

ϕpre ∧ ρ |=LI+UIF ϕpost (6)

is valid for some valuation of Params if and only if such a valuation satisfies the
constraint.

386 D. Beyer et al.

function Inv(LI+UIF)
input

Program P = (x, locs, �0, T , Good)
tmpl: invariant template map

local
Params: set of parameters that appear in the invariant templates
pur: purification map that assigns purified LI-terms to LI+UIF-terms
def: set of definitions for fresh variables created by purification
Φ := constraint over parameters of invariant templates

output
inv: invariant map from locs to invariants, which is an instantiation of tmpl

begin
Params := parameters that appear in invariant templates
pur, def := purification of {tmpl(�) | � ∈ locs} ∪ {Good} ∪ T
Φ := 0 ≤ 1
foreach (�, ρ, �′) ∈ T do

Φ := Φ ∧ Consec(pur(tmpl(�)), pur(ρ), pur(tmpl(�′)), def)
done
foreach � ∈ locs do

Φ := Φ ∧ Consec(pur(tmpl(�)), 0 ≤ 1, pur(Good), def)
done
if ∃Params : Φ then

let μ : Params → Q be a satisfying assignment of Φ
foreach � ∈ locs do

inv(�) := tmpl(�) where parameters are instantiated by μ
and fresh variables replaced by definitions in def

done
return “Invariant map: inv.”

else
return “No invariant expressible by template tmpl exists.”

end.

Fig. 2. Algorithm Inv(LI+UIF) for the synthesis of invariants in linear arithmetic and
uninterpreted function symbols. The auxiliary function Consec is shown in Fig. 3.

Consec takes as inputs three linear arithmetic assertions and a set of defini-
tions for fresh variables. The first assertion

(PPpre) (x
xpre) ≤ p

represents the purified version of ϕpre, and is given over the program variables x
and a vector of the corresponding fresh variables xpre. The second assertion

(RR′Rrel)
(x

x′
xrel

)
≤ r

Invariant Synthesis for Combined Theories 387

function Consec

input
(PPpre)

(x
xpre

)
≤ p: purified template for pre-location with fresh variables xpre

(RR′Rrel)
(x

x′
xrel

)
≤ r: purified transition relation with fresh variables xrel

(QQpost)
(

x′
xpost

)
≤ q: purified template for post-location with fresh variables xpost

Def: set of definitions for fresh variables xpre, xrel, and xpost

local
Φ: auxiliary constraint over the template parameters P, Ppre, p and Q, Qpost, q that

encodes an implication induced by a particular sequence of axiom instances
fresh : fresh variables defined by Def

output
Ψ : consecution constraint over the template parameters P, Ppre, p and Q,Qpost, q

begin
Ψ := 1 ≤ 0
fresh := xpre ∪ xrel ∪ xpost

Inst := {c ≈ d → c = d | c, d ∈ fresh and c = f(c1, . . . , cn) ∈ Def and
d = f(d1, . . . , dn) ∈ Def}

foreach n ∈ {0, . . . , |Inst|} do

{ci ≈ di → ci = di}n
i=1 := select sequence of n axiom instances from Inst

(EpreErelEpost)
(xpre

xrel
xpost

)
≤ e := inequality representation of

∧n
i=1 ci = di

Φ := ∃Λ ∈ Q
|q|×(|p|+|r|+|e|)
≥0 :

Λ

⎛

⎜⎝
P 0 Ppre 0 0
R R′ 0 Rrel 0
0 0 Epre Erel Epost

⎞

⎟⎠ =
(
0 Q 0 0 Qpost

)
∧ Λ

(
p
r
e

)
≤ q

foreach k ∈ {1, . . . , n} do

(FpreFrelFpost)
(xpre

xrel
xpost

)
≤ f := inequality representation of

∧k−1
i=1 ci = di

(GGpreGrelGpost)
(x

xpre
xrel

xpost

)
≤ g := purified representation of ck ≈ dk

Φ := Φ ∧ ∃Λ ∈ Q
|g|×(|p|+|r|+|f |)
≥0 :

Λ

⎛

⎜⎝
P 0 Ppre 0 0
R R′ 0 Rrel 0
0 0 Fpre Frel Fpost

⎞

⎟⎠ =
(
G 0 Gpre Grel Gpost

)
∧ Λ

(p
r
f

)
≤ g

done
Ψ := Ψ ∨ Φ

done
return Ψ

end.

Fig. 3. Function Consec computes a constraint over the template parameters which
encodes the consecution condition for a given transition relation and invariant tem-
plates for the pre- and post-locations

388 D. Beyer et al.

represents the purified version of the transition relation ρ, and is given over the
program variables x, their primed versions x′, and a vector of the corresponding
fresh variables xrel. The third assertion

(QQpost)
(

x′

xpost

)
≤ q

is similar to the first one, where the program variables x are substituted by their
primed versions x′. The resulting constraint Ψ over the parameters P, Ppre, p and
Q, Qpost, q is satisfiable if and only if implication (6) is valid for some valuation
of the parameters.

The constraint computed by the function Consec captures all sequences of
instantiations of functionality axioms that may potentially appear in a proof of
implication (6). For each such a sequence, which can be empty, we introduce a
disjunct that encodes two conditions. The first condition says that the implica-
tion holds in the theory of linear arithmetic once all axioms from the sequence
are applied. The second condition justifies the application of each axiom in the
sequence. We take the disjunction of constraints computed for each sequence,
which encodes the choice of an arbitrary sequence.

In algorithm Inv(LI+UIF), we call Consec to capture the constraints (I1),
and (I2). First, for each transition we compute the consecution constraint that
ensures the closure under the application of the transition relation. Then, we
encode the condition that the resulting invariant is sufficiently strong, i.e., it
only contains ‘good’ states.

Correctness. We state the correctness of the algorithm Inv(LI+UIF) in the
following theorems.

Theorem 2 (Soundness of Inv(LI+UIF)). The algorithm Inv(LI+UIF)
computes an invariant map that is expressible by a given invariant template.

Proof. We show that the resulting map inv satisfies the consecution condition.
The proof that inv also satisfies the initiation and strength conditions is similar.

Let ϕpre and ϕpost be invariant templates instantiated by the algorithm. We
show that the implication (6) holds. Let Ψ be the constraint that is computed
by applying Consec on the input that corresponds to the transition relation ρ.
The valuation of template parameters that defines inv satisfies Ψ . Let Φ be a
disjunct of Ψ that is satisfied. We assume that Φ corresponds to the following
sequence of instances of the functionality axioms:

c1 ≈ d1 → c1 = d1, . . . , cn ≈ dn → cn = dn.

Let (PPpre) (x
xpre) ≤ p, (RR′Rrel)

(x
x′
xrel

)
≤ r, and (QQpost)

(
x′

xpost

)
≤ q be the

purified version of ϕpre, ρ, and ϕpost, respectively.
The first conjunct of Φ ensures that the following implication holds, by Farkas’

lemma [22]:

(PPpre) (x
xpre) ≤ p ∧ (RR′Rrel)

(x
x′

xrel

)
≤ r ∧

n∧

i=1

ci =di |=LI (QQpost)
(

x′

xpost

)
≤ q.

Invariant Synthesis for Combined Theories 389

This implication means that the above sequence of instances of functionality
axioms is sufficient to prove the implication. The remaining conjuncts of Φ ensure
that the axiom instances are applicable, because their premises are satisfied.
This follows from the implications below, which are encoded by the remaining
conjuncts of Φ. For each k ∈ {1, . . . , n} we have

(PPpre) (x
xpre) ≤ p ∧ (RR′Rrel)

(x
x′
xrel

)
≤ r ∧

k−1∧

i=1

ci = di |=LI ck ≈ dk.

Since purification preserves satisfiability, we conclude that the invariant ϕpre is
closed under the transition relation ρ by the invariant ϕpre.
�

Theorem 3 (Completeness of Inv(LI+UIF)). The algorithm Inv(LI+UIF)
computes an invariant map if it is expressible by a given invariant template.

Proof. Let inv be an invariant map that satisfies the invariant template. We show
that the consecution constraint computed by the function Consec is satisfiable.
The proof that it is also satisfiable in conjunction with initiation and strength
constraints is similar.

Let ϕpre and ϕpost be assertions such that for a transition relation ρ the im-
plication (6) holds. By Theorem 5 in [23] we have that the following implication
is valid in the theory of linear arithmetic for some sequence of instances of func-
tionality axioms. Furthermore, these instances are only created for the terms
that appear in the assertions ϕpre, ϕpost, and ρ. Let

c1 ≈ d1 → c1 = d1, . . . , cn ≈ dn → cn = dn

be such a sequence. Since purification preserve the satisfiability, we conclude
that the conjuncts of Φ encode that (i) the purified version of the assertion
ϕpost is implied by the purified version of ϕpre ∧ ρ in conjunction with heads∧n

i=1 ci = di of functionality axiom instances from the sequence, and (ii) for
each k ∈ {1, . . . , n} the premise ck ≈ dk of each axiom instance is implied
by ϕpre ∧ ρ in conjunction with the axiom heads

∧k−1
i=1 ci = di applied so far.

All implications hold in the theory of linear arithmetic. Hence, the constraint
computed by Consec is satisfiable.
�

We obtain the following corollary of Theorems 2 and 3.

Corollary 1. The existence of a LI+UIF-invariant map that is expressible by a
given template is decidable.

Complexity and Optimizations. Let n be the number of applications of
function symbols in the template and in the program description. The algorithm
Inv(LI+UIF) needs to solve at most n! quantifier elimination problems for ra-
tional/real arithmetic constraints of the second degree, where the size of each
problem is linear in program description and quadratic in n. The time complexity
of each problem is exponential in its size [4].

390 D. Beyer et al.

int alloc() {
assume (kfreelist != 0 && *(kfreelist + 4) == RESERVED);

// First page is always reserved.
prev = kfreelist; curr = *kfreelist; permission = curr + 4;
while(curr!=0 && *permission == RESERVED) {

prev = curr; curr = *curr;
permission = curr + 4;

}
L1: assert(*(prev + 4) == RESERVED);
L2: assert(*prev == curr);
if (curr!=0) *prev = *curr;
return curr;

}

Fig. 4. A kernel allocator. Our algorithm automatically constructs the loop invariant
*(prev+4)-curr+perm-RESERVED==4 && perm==curr+4, which implies the first asser-
tion, and the invariant *prev==curr, which implies the second assertion.

We observe that the construction of the constraint that considers all possible
axiom sequences can be done lazily, i.e., we consider new sequences only if the
previously discovered ones do not yield a desired invariant map. Such a lazy
construction is crucial for practical applicability of Inv(LI+UIF), since in many
cases only short sequences consisting of at most a pair of axioms suffice.

5 Experiences

We have implemented algorithm Inv(LI+UIF) in Sicstus Prolog [15] with linear
programming solver [12] and applied it to the verification of low level memory
allocators in an operating system. We apply a heuristics that prefers shorter
candidate sequences of axiom instances to longer ones while lazily constructing
constraints. The invariant templates need to be supplied manually. Solving of
non-linear constraints was done by heuristic instantiation of the values for Λ,
cf. Fig. 3, and subsequent solving of the resulting linear constraint.

Figure 4 shows a simplified low level memory allocator used in an OS kernel.
The variable kfreelist is the head of a free list of memory pages. Each memory
block contains a pointer to the next free block and also a permission bit that
says whether the block can be given to a user process. The permission bit is
accessed using address arithmetic by adding 4 bytes to the base address of the
memory block. For simplicity, we have removed the type casts from the example
code and also ignore overflow issues. We assume that the free list has at least
one block and the first block is reserved by the kernel.

The while loop iterates over the free list, looking for the first unreserved free
block. This block is returned. The iteration uses two pointers, curr pointing to
the current block, and prev pointing to the previous block. We want to prove
the assertion L1, which states that pointer prev points to a reserved block, and

Invariant Synthesis for Combined Theories 391

assertion L2, which states that the next block from pointer prev is the block
pointed to by curr (or null). The invariant requires both linear arithmetic (for
the address arithmetic) and uninterpreted functions (for the dereferences).

Assertion L1: Our invariant synthesis for proving the first assertion required
3.25 s on a 1.7GHz Linux laptop. The tool tried 105 axiom sequences. Consid-
ering sequences of length at most one was sufficient. We used a template that
is a conjunction of two equalities1 (where ref (·) denotes the address-of operator
and der (·) is the dereference operator):

c1
prevprev + c1

currcurr + c1
permperm + c1

RESERVEDRESERVED+

c1
refref (c1

refprevprev + c1
refcurrcurr + c1

refpermperm + c1
refRESERVEDRESERVED + c1

ref)+

c1
derder(c1

derprevprev + c1
dercurrcurr + c1

derpermperm + c1
derRESERVEDRESERVED + c1

der) = c1

∧

c2
prevprev + c2

currcurr + c2
permperm + c2

RESERVEDRESERVED = c2.

This template leads to the loop invariant

−curr + perm − RESERVED + der(prev + 4) = 4 ∧ −curr + perm = 4.

Assertion L2: For the second assertion we used a template that contains only
the first conjunct from the template above, and we obtained the loop invariant

−curr + der(prev) = 0.

Our implementation computed an invariant that implies the second assertion in
1.28 s, which required enumeration of 44 axiom sequences.

We are working on scaling our algorithm to larger programs. The main com-
plexity arises because invariants can be Boolean combinations of atomic facts.

6 Applications to Data Structures

We now present applications of algorithm Inv(LI+UIF) to the synthesis of in-
variants in programs that use abstract data structures. The key technical idea is
that of a reduction function. Let Σ and Ω be signatures with Ω ⊆ Σ. Let T be
a Σ-theory and R an Ω-theory, such that R ⊆ T . We say T reduces to R if there
is a computable map from Σ-formulas to Ω-formulas such that when applied to
a Σ-formula ϕ, we get an Ω-formula ϕ∗ such that ϕ and ϕ∗ are T -equivalent,
that is, |=T ϕ ↔ ϕ∗, and ϕ∗ is R-satisfiable iff ϕ is T -satisfiable.

Given a theory T and a reduction function from T to LI+UIF, we can extend
the algorithm Inv(LI+UIF) to generate invariants over T from templates that
contain symbols from the theory T in the following way. The intuitive idea is
that we first apply the reduction function to reduce templates in the theory T

1 The implementation supports direct handling of equality and inequality constraints.

392 D. Beyer et al.

to templates in the theory LI+UIF and then apply the invariant generation algo-
rithm for LI+UIF. The resulting invariant is an invariant also for the theory T .
Technically, the purification step is identical, while in Consec, we apply the
reduction function to each definition and then generate the constraints for the
resulting formula using the theory LI+UIF. We omit the technical details.

We now show that reduction functions to LI+UIF exist for two interesting
theories: the array property fragment and the theory of sets.

Arrays. The theory of arrays has a signature Σarray with the function symbols
read and write together with the axiom [17]:

read(write(a, i, e), i) = e ,

i �= j ⇒ read(write(a, i, e), j) = read(a, j) ,

(∀ i)(read(a, i) = read(b, i)) ⇒ a = b .

The variables in the second position of read and write are the index variables.
Let I be a set of index variables, which we assume are distinct from the

program variables. An array property [2] is a universally quantified formula

∀I : ϕ(I) → ψ(I),

where the formula ϕ(I) is a constraint on the index variables and ψ(I) may
contain array operations indexed by variables from I. Both ϕ(I) and ψ(I) are
syntactically restricted. The index guard ϕ(I) is a Boolean expression over linear
arithmetic inequalities over I and the program variables such that each inequality
is one of the following:

– a comparison i ≤ j between two index variables i, j ∈ I,
– a comparison i ≤ e or e ≤ i between an index variable i ∈ I and a linear

expression e over program variables.

The value guard ψ(I) is restricted in the following way w.r.t. the usage of the
universally quantified index variables I. Every occurrence of such a variable i
must be in the index position of a read operation read(a, i) for some array a.
Additionally, no nested read operations that are allowed in ψ(I). The array
property fragment is the combination of linear arithmetic, uninterpreted function
symbols, and array property formulas.

Sets. The theory of sets (with finite cardinality constraints) has a signature
Σset containing the constant symbols ∅ (empty set) and � (full set), the bi-
nary function symbols ∪ (union), ∩ (intersection), and \ (difference), the unary
function symbol {·} (singleton), and the binary predicate symbol ∈ with the
standard semantics. In addition it has, for each natural number k, the unary
predicate symbols | · | ≥ k and | · | = k. The element domain is assumed to be
finite. The theory Tset is the set of all Σset-sentences that are true in all standard
set-structures.

We use the following results on reductions, proved in [2, 14].

Invariant Synthesis for Combined Theories 393

Theorem 4 (Reductions to LI+UIF).

1. [2] The set of formulas in the array property fragment reduces to LI+UIF.
2. [14] The quantifier-free theories of arrays and sets reduce to LI+UIF.

From the theorem, and the discussion on invariant generation, we get the fol-
lowing corollary.

Corollary 2. The existence of a T -invariant map that is expressible by a given
template is decidable, where T is the theory of arrays, sets, or formulas in the
array property fragment.

7 Conclusion

We presented an algorithm for the synthesis of invariants in the theory of linear
arithmetic and uninterpreted function symbols. While expressive, in that many
interesting aspects of program behavior can be modeled in (or reduced to) this
logic, our technique is ultimately limited by the large space of possible tem-
plates that the user must search to provide good templates. In particular, the
search space usually becomes too big in the presence of disjunctions in invari-
ant templates. We leave the identification of heuristics for the property-guided
construction of invariant templates for future work.

Acknowledgments. We thank Viorica Sofronie-Stokkermans for valuable discus-
sions on hierarchic theory combination.

References

1. T. Ball and S. K. Rajamani. The Slam project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

2. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
Proc. VMCAI, LNCS 3855, pages 427–442. Springer, 2006.

3. C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 3rd edition, 1990.
4. G. E. Collins. Quantifier elimination for real closed fields by cylindrical alge-

braic decomposition. In Automata Theory and Formal Languages, LNCS 33, pages
134–183. Springer, 1975.

5. M. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation
using non-linear constraint solving. In Proc. CAV, LNCS 2725, pages 420–432.
Springer, 2003.

6. P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. In Proc. VMCAI,
LNCS 3385. Springer, 2005.

7. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Proc. PLILP, LNCS 631,
pages 269–295. Springer, 1992.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proc. PLDI, pages 234–245. ACM, 2002.

394 D. Beyer et al.

9. R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Com-
puter Science, pages 19–32. AMS, 1967.

10. S. Gulwani and A. Tiwari. Combining abstract interpreters. In Proc. PLDI, pages
376–386. ACM, 2006.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

12. C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute
for Artificial Intelligence, Vienna, 1995. TR-95-09.

13. D. Kapur. Automatically generating loop invariants using quantifier elimination.
In Proc. Deduction and Applications, volume 05431. IBFI Schloss Dagstuhl, 2006.

14. D. Kapur and C. Zarba. A reduction approach to decision procedures. Technical
Report TR-CS-2005-44, University of New Mexico, 2005.

15. T. I. S. Laboratory. SICStus Prolog User’s Manual. Swedish Institute of Computer
Science, PO Box 1263 SE-164 29 Kista, Sweden, October 2001. Release 3.8.7.

16. Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety.
Springer, 1995.

17. J. McCarthy. Towards a mathematical science of computation. In Proc. IFIP
Congress, pages 21–28. North-Holland, 1962.

18. G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox
Palo Alto Research Center, 1981.

19. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In Proc. SAS, LNCS 3148, pages 53–68. Springer, 2004.

20. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant gen-
eration using Gröbner bases. In Proc. POPL, pages 318–329. ACM, 2004.

21. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Proc. VMCAI, LNCS 3385, pages
25–41. Springer, 2005.

22. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
23. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In Proc.

CADE, LNCS 3632, pages 219–234. Springer, 2005.

	Introduction
	Example
	Preliminaries
	Invariant Synthesis for LI+UIF
	Invariant Templates
	Algorithm

	Experiences
	Applications to Data Structures
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

