
CSIsat: Interpolation for LA+EUF�

Tool Paper

Dirk Beyer1, Damien Zufferey2, and Rupak Majumdar3

1 Simon Fraser University, BC, Canada
2 EPFL, Switzerland
3 UCLA, CA, USA

Abstract. We present CSIsat, an interpolating decision procedure for
the quantifier-free theory of rational linear arithmetic and equality with
uninterpreted function symbols. Our implementation combines the effi-
ciency of linear programming for solving the arithmetic part with the
efficiency of a SAT solver to reason about the boolean structure. We
evaluate the efficiency of our tool on benchmarks from software verifica-
tion. Binaries and the source code of CSIsat are publicly available as
free software.

1 Overview

The Craig interpolant for a pair (φ1, φ2) of formulas such that φ1 ∧ φ2 is not
satisfiable, is a formula ψ such that φ1 implies ψ, the conjunction ψ ∧ φ2 is not
satisfiable, and ψ is over symbols that are common to φ1 and φ2 [4]. Craig inter-
polants have been applied successfully in formal verification and logic synthesis.
For example, several software verification tools use Craig interpolants derived
from infeasible counterexamples to refine their abstractions.

An interpolating decision procedure extends a decision procedure in the fol-
lowing way: it takes as input a pair (φ1, φ2) of formulas and has two possible
outcomes: the procedure returns (1) with the answer sat, if the conjunction
φ1 ∧ φ2 is satisfiable, or otherwise (2) with a formula ψ that is a Craig in-
terpolant for (φ1, φ2). CSIsat

1 is a new tool that implements an interpolating
decision procedure for boolean combinations of linear-arithmetic expressions and
equality with uninterpreted function symbols (LA+EUF).

Availability. The source code, executables, and all benchmarks for CSIsat are
available online at http://www.cs.sfu.ca/∼dbeyer/CSIsat/. The tool is free soft-
ware, released under the GPLv3 license. CSIsat is the first open-source interpo-
lating decision procedure available to verification researchers. We hope that other
researchers can integrate new interpolating decision procedures into CSIsat and
that developers find it easy to integrate the tool into more applications.

� Dirk Beyer and Damien Zufferey were supported in part by the Canadian NSERC grant
RGPIN 341819-07; Rupak Majumdar was supported in part by the NSF grants CCF 0546170
and CCF 0720882.

1 Available at http://www.cs.sfu.ca/∼dbeyer/CSIsat/

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 304–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.sfu.ca/~dbeyer/CSIsat/
http://www.cs.sfu.ca/~dbeyer/CSIsat/


CSIsat: Interpolation for LA+EUF 305

SAT Solver

Nelson Oppen

EUF LA

SMT Solver

Formulas

Interpolation

UNSAT cores
with additional
information

Interpolants
construction

EUF LA

Interpolant

Resolution 
proof from
the SAT solver

Fig. 1. Architecture of CSIsat

Related Tools. So far there are two published interpolation tools: Foci and
CLPprover. McMillan’s tool Foci

2 is an interpolation procedure for boolean
combinations of linear-arithmetic expressions and equality with uninterpreted
function symbols [6]. The tool is implemented as a proof-based theorem prover.
Rybalchenko’s tool CLPprover

3 is an interpolation procedure for conjunctions
of linear-arithmetic constraints and equality with uninterpreted function sym-
bols [9]. The tool is based on linear-constraint solving and implemented on top
of the CLP(Q,R) library [5] for SICStus Prolog.

These two existing tools have different advantages over each other:
CLPprover takes advantage of linear-constraint solving and can provide an ef-
ficient solution for conjunctions of linear-arithmetic expressions, and can con-
strain interpolants to be only over particular variables, if possible. Foci, on the
other hand, handles boolean combinations efficiently. CSIsat combines the ad-
vantages of both approaches, and uses efficient SMT algorithms to provide a fast
interpolation procedure. Our experimental evaluation provides evidence of good
performance. 4

2 Architecture and Algorithm

Figure 1 illustrates the architecture of CSIsat. Our goal is to provide a tool for
computing interpolants for boolean combinations of (rational) linear-arithmetic
expressions (LA) and equality with uninterpreted function symbols (EUF). In-
terpolants for pure conjunctions of linear-arithmetic constraints can be efficiently
computed using linear programming, and therefore, CSIsat uses the algorithm

2 Available at http://www.kenmcmil.com/foci.html
3 Available at http://www.mpi-sws.mpg.de/∼rybal/clp-prover/
4 The original motive for our work was a very practical one: Until now, we had two inter-

polation tools integrated in Blast: Foci and CLPprover. To verify different programs
we had to use different command-line options: -foci by default, and -clp for programs that
require to track linear-arithmetic expressions.

http://www.kenmcmil.com/foci.html
http://www.mpi-sws.mpg.de/~rybal/clp-prover/


306 D. Beyer, D. Zufferey, and R. Majumdar

of Rybalchenko and Sofronie-Stokkermans to compute interpolants for such for-
mulas [9].

The constraint-based algorithm cannot directly handle formulas that are not
convex in their geometrical interpretation. To solve this problem, Rybalchenko
and Sofronie-Stokkermans propose to convert both formulas φ1, φ2 to disjunctive
normal form (DNF), perform multiple queries to the CLP-based algorithm and
construct the final interpolant from the results of these queries [9]. Unfortunately,
the DNF conversion can often blow up in practice.

As a solution to this problem, we chose a two-step approach. For the first
step we use an SMT solver that integrates SAT with Nelson-Oppen style theory
reasoning [7,2,8]. If the conjunction of the formulas is satisfiable, the tool stops
with answer sat and returns a satisfiable subformula that implies the conjunction
of the two input formulas. If the conjunction is not satisfiable, CSIsat collects
the unsatisfiable core and computes the interpolants from this. For this second
step, we annotate the unsatisfiable core with additional information to avoid
overhead. This information comprises the equalities deduced by theory-specific
reasoning, and is used to compute partial interpolants. In addition, the resolution
proof from the SAT solver is passed to the interpolation step. We use McMillan’s
approach to construct interpolants for the EUF part [6]; the rules were adapted
to a graph-based framework. We construct interpolants for the linear-arithmetic
specific part using the constraint-interpolation technique [9], and combine the
interpolants using the technique of Yorsh et al. [10].

The interface to our tool is taken from Foci, i.e., CSIsat uses the same syntax
for the input formulas, and the same output syntax for the interpolants, such that
we can easily substitute one tool for the other. Our implementation is based on
two domain-specific components. For the linear-constraint solving part, we use
the GNU Linear Programming Kit (GLPK) 5. Our SMT algorithm is based on
an integrated SAT solver component. We have successfully experimented with
substituting PicoSAT

6 [1] for our own SAT solver. The linear-programming
component and the SAT solver component are both integrated through a wrap-
per interface, which can easily be adapted to other linear-programming or SAT
solver components.

3 Performance Results

We show that CSIsat is competitive by comparing all three publicly available
interpolation tools on some motivating examples from the software model checker
Blast. Our experiments indicate that CSIsat can efficiently find interpolants.

All experiments were performed on a GNU/Linux x86 64 machine with an
Intel Core 2 Duo processor and 2GB RAM. We limited the processor speed
to 1 GHz, in order to emphasize the difference. We report only the consumed
User CPU Time, in order to reduce the bias from input/output operations and
overhead for process setup. For all software components in our experiments,

5 Available at http://www.gnu.org/software/glpk/
6 Available at http://fmv.jku.at/picosat/

http://www.gnu.org/software/glpk/
http://fmv.jku.at/picosat/


CSIsat: Interpolation for LA+EUF 307

Table 1. Performance evaluation on Blast verification benchmarks

Program #queries Foci CLPprover CSIsat

kbfiltr 64 0.28 s 0.14 s 0.10 s
floppy 235 1.17 s 1.55 s 0.55 s
diskperf 119 0.56 s 0.61 s 0.23 s
cdaudio 130 0.60 s 0.70 s 0.26 s
ssh 6881 29 s — 17 s
alias swap.c 8 (908) 0.07 s 13.20 s 0.06 s

we used the latest publicly available versions, as of April 21, 2008: CSIsat 1.1;
CLPprover 0.22; Foci 2003; GLPK 4.28; PicoSAT 632.

Table 1 reports the run times of the three tools on interpolation queries that
occur during verification processes of different programs. The first column iden-
tifies each program that was verified by Blast. The first four programs are
MS Windows device drivers, ssh consists of several files from the SSH software
that were instrumented for verifying different properties, and alias swap.c is
from Blast’s regression test base. During each verification run, we dumped all
interpolation queries to files. Then we ran the interpolation procedures once
again only on the queries, and the time in the table is the sum of the run times
over all queries that were dumped for a program. The ssh experiment consisted
of 19 verification tasks (program code and property), each resulting in about 350
interpolation queries. The row in the table reports the sum of the run times over
all 19 verification tasks. The ssh interpolation queries contain a high number of
subformulas of the form a �= b. CLPprover does not support disjunctions, and
transforming each such subformula to a < b ∨ a > b, and the resulting overall
formula into DNF, resulted in an intractable number of conjunctive queries. The
example alias swap.c requires interpolants for formulas with disjunctions, be-
cause it uses pointer aliases. In this case, we did the transformation to DNF in
order to feed CLPprover. These last two examples demonstrate the importance
of efficient handling of boolean combinations.

Acknowledgments. We thank Alessandro Cimatti, Alberto Griggio, and
Roberto Sebastiani for interesting discussions relating to interpolation, and a
pointer to their recent paper [3].

References

1. Biere, A.: PicoSAT essentials. JSAT (submitted, 2008)
2. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., Rossum,

P.v., Sebastiani, R.: Efficient satisfiability modulo theories via delayed theory com-
bination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
335–349. Springer, Heidelberg (2005)

3. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satis-
fiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

http://www.cs.sfu.ca/~dbeyer/CSIsat/
http://www.mpi-sws.mpg.de/~rybal/clp-prover/
http://www.kenmcmil.com/foci.html
http://www.gnu.org/software/glpk/
http://fmv.jku.at/picosat/


308 D. Beyer, D. Zufferey, and R. Majumdar

4. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symb. Log. 22(3), 250–268 (1957)

5. Holzbaur, C.: OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09 (1995)

6. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

7. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
J. ACM 27(2), 356–364 (1980)

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

9. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007)

10. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer,
Heidelberg (2005)


	CSIsat: Interpolation for LA+EUF
	Overview
	Architecture and Algorithm
	Performance Results


