
ar
X

iv
:0

90
2.

00
19

v1
 [

cs
.P

L
]

 3
0

Ja
n

20
09

CPAchecker:

A Tool for Configurable Software Verification

Dirk Beyer M. Erkan Keremoglu

Technical Report No. SFU-CS-2009-02

January 30, 2009

School of Computing Science

Simon Fraser University

8888 University Drive

Burnaby, B.C., Canada, V5A 1S6

http://arXiv.org/abs/0902.0019v1

CPAchecker:

A Tool for Configurable Software Verification ⋆

(Tool Paper)

Dirk Beyer and M. Erkan Keremoglu

Simon Fraser University, B.C., Canada

Abstract. Configurable software verification is a recent concept for ex-
pressing different program analysis and model checking approaches in one
single formalism. This paper presents CPAchecker, a tool and frame-
work that aims at easy integration of new verification components. Every
abstract domain, together with the corresponding operations, is required
to implement the interface of configurable program analysis (CPA). The
main algorithm is configurable to perform a reachability analysis on ar-
bitrary combinations of existing CPAs. The major design goal during
the development was to provide a framework for developers that is flex-
ible and easy to extend. We hope that researchers find it convenient
and productive to implement new verification ideas and algorithms us-
ing this platform and that it advances the field by making it easier to
perform practical experiments. The tool is implemented in Java and runs
as command-line tool or as Eclipse plug-in. We evaluate the efficiency
of our tool on benchmarks from the software model checker Blast. The
first released version of CPAchecker implements CPAs for predicate ab-
straction, octagon, and explicit-value domains. Binaries and the source
code of CPAchecker are publicly available as free software.

1 Overview

The field of software verification is a fast growing area, and researchers contribute
new ideas and approaches with enormous pace. The more new approaches are
discovered, the more difficult it is to understand the essential insight or the fun-
damental difference that makes a new approach good and better. Experimental
evaluation is often a deciding factor for whether or not a new approach is con-
sidered an advancement of the field. But it requires a considerable engineering
effort to actually build the software infrastructure for evaluating verification al-
gorithms. Adapting a suitable parser frontend and transforming the abstract
syntax tree into a format that is convenient for verification algorithms is one
example. The interaction with a theorem prover is yet another issue that needs
to be considered. There are successful approaches in program analysis as well as
in model checking, but these techniques are rarely combined; the reason being
that it is indeed extremely difficult to combine them. Most published approaches

⋆ This research was supported by the NSERC grant RGPIN 341819-07.

are not even comparable, because the choice of the parser frontend, the choice
of the theorem prover, and the choice of the pointer-alias analysis algorithm in
the corresponding tool implementation, considerably influence the performance
and precision of the new verification algorithm. When evaluating a performance
comparison of two approaches, it is often difficult to identify what the new ap-
proach contributes and what is due to the different environment. In practice, it
was so far extremely difficult to perform an experimental performance evaluation
of one component while keeping all other components constant.

Configurable program analysis (CPA) provides a conceptual basis for ex-
pressing different approaches in the same formal setting. The CPA formalism
provides an interface for the definition of program analyses, which includes the
abstract domain, the post operator, the merge operator, and the stop opera-
tor [4]. Consequently, the corresponding tool implementation CPAchecker pro-
vides an implementation framework that allows the seamless integration of pro-
gram analyses that are expressed in the CPA framework. The comparison of
different approaches in the same experimental setting becomes easy and the ex-
perimental results will be more meaningful (valid). The tool can be seen as a
set of components that are loosely dependent on each other and that are easy
to substitute.

In many respects, CPAchecker is similar to Blast [3]. For example, we
implemented a predicate abstraction and an explicit-value analysis [5]. However,
Blast has several limitations that we need to eliminate, most prominently, that
the architecture and the design are not flexible enough to implement a pure
CPA-based analysis. As in the Blast project already, many ideas were taken
from Slam [2].

The source code, executables, and all benchmark programs for CPAchecker

are available online at http://www.cs.sfu.ca/∼dbeyer/CPAchecker. The tool is
free software, released under the Apache 2.0 license. CPAchecker is an open-
source implementation of the framework of configurable program analysis (CPA).
We hope that other researchers can integrate new techniques for software ver-
ification into CPAchecker and that software-verification technology becomes
more accessible for practitioners using this platform.

2 Architecture and Implementation

Figure 1 shows an overview of the CPAchecker architecture. The central
data structure is a set of control-flow automata (CFA) (similar to control-flow
graphs [1]), which consist of control-flow locations and control-flow edges. A lo-
cation represents a program-counter value, and an edge represents a program
operation, which is either an assume operation, an assignment block, a function
call, or a function return (we do not consider more complex operations due to
a well-known reduction called C intermediate language [7]). Before a program
analysis starts, the input program is transformed into a syntax tree, and further
into CFAs. The current version of CPAchecker uses the parser from the CDT 1,

1 Available at http://www.eclipse.org/cdt

2

http://www.cs.sfu.ca/~dbeyer/CPAchecker/
http://www.eclipse.org/cdt/

Fig. 1. CPAchecker — Architecture overview

a fully functional C and C++ IDE plug-in for the Eclipse platform. Our frame-
work provides interfaces to SMT solvers and interpolation procedures, such that
the CPA operators can be written in a concise and convenient way. Currently
we use Simplify

2 and MathSAT
3 as SMT solvers, and CSIsat

4 and MathSAT

as interpolation procedures. We use JavaBDD
5 as BDD package and provide

an interface to an Octagon6 representation as well.

The central algorithm is the program-analysis algorithm that performs the
reachability analysis [4]. (CPAchecker actually implements CPA+, i.e., CPA
with precision adjustment, but we skip this detail for better presentation.) The
analysis algorithm operates on an object of the abstract data type CPA, i.e.,
the algorithm applies operations from the CPA interface without knowing which
concrete CPA it is analyzing. For most configurations, the concrete CPA will
be a composite CPA [4], which implements the combination of several different
CPAs.

In order to extend CPAchecker by integrating an additional CPA for a new
abstract domain, only two steps are necessary. First, an entry in the global
properties file is necessary in order to announce the new CPA for composition.
Second, the interface for CPA needs to be implemented, and implementations of
all CPA operation interfaces need to be provided. Figure 2 shows the interaction:
The CPA algorithm (shown at the top in the figure) takes as input a set of
control-flow automata (CFA) representing the program, and a CPA, which is

2 Available at http://secure.ucd.ie/products/opensource/Simplify
3 Available at http://mathsat4.disi.unitn.it
4 Available at http://www.cs.sfu.ca/∼dbeyer/CSIsat
5 Available at http://javabdd.sourceforge.net
6 Available at http://www.di.ens.fr/∼mine/oct

3

http://secure.ucd.ie/products/opensource/Simplify/
http://mathsat4.disi.unitn.it/
http://www.cs.sfu.ca/~dbeyer/CSIsat/
http://javabdd.sourceforge.net/
http://www.di.ens.fr/~mine/oct/

Fig. 2. CPAchecker — Design for extension

in most cases a Composite CPA. The interfaces correspond one-to-one to the
formal framework [4].

The elements in the gray box (top right) in Fig. 2 represent the abstract
interfaces of the CPA and the CPA operations. The two gray boxes at the bot-
tom of the figure show two implementations of the CPA interfaces, one is a
Composite CPA that can combine several other CPAs, and the other is a User

CPA. For example, suppose we want to implement a CPA for shape analysis.
We would provide an implementation for CPA, possible called ShapeCPA, and
implementations for the operation interfaces on the right. If we want to experi-
ment with several different merge operators, we would provide several different
implementations of Merge Operator Interface that can be freely configured for
use in various experiments.

3 Experiments

We report experiments in order to demonstrate that the tool implementation
performs reasonable well on well-known benchmark examples. We pick a config-
uration for program analysis that was previously used [5], namely, the combi-
nation of an explicit-value analysis and a predicate-abstraction. Explicit-value
analysis, also known as constant propagation, keeps track of values of integer
variables. The predicate abstraction is based on Cartesian abstraction and lazy
abstraction [6]. We run the analysis on various verification problems for simpli-
fied versions of Windows device drivers. The verification property is always a
safety property (reachability of a certain error location under certain variable

4

Table 1. Performance results; runtime given in seconds of processor time; the
numbers in the column headings are the threshold values

Program 0 2 3 5 ∞

cdaudio simpl1 >1200.00 525.90 74.65 8.43 2.96

cdaudio simpl1 BUG 167.67 88.45 17.09 3.28 0.62

diskperf simpl1 >1200.00 >1200.00 36.95 21.19 280.10

floppy simpl3 110.38 104.02 21.94 11.91 0.88

floppy simpl3 BUG 42.33 37.55 7.98 2.37 0.35

floppy simpl4 199.22 173.92 30.17 11.22 1.43

floppy simpl4 BUG 42.95 36.15 8.03 2.16 0.36

kbfiltr simpl1 13.77 4.59 3.50 1.02 0.42

kbfiltr simpl2 30.89 9.98 5.48 1.83 0.89

kbfiltr simpl2 BUG 16.17 5.76 1.24 0.73 0.32

Table 2. Statistical data observed during the experiments; a dash indicates
that the experiment was aborted after 20min; ’Preds’ indicates the number of
predicates used in the verification run, and ’Refines’ indicates the number of
refinement steps

Program 0 2 3 5

Preds Refines Preds Refines Preds Refines Preds Refines

cdaudio simpl1 - - 81 332 12 76 2 11

cdaudio simpl1 BUG 112 242 56 140 12 38 2 10

diskperf simpl1 - - - - 20 61 4 34

floppy simpl3 81 219 51 167 20 51 4 21

floppy simpl3 BUG 47 125 38 93 13 28 6 5

floppy simpl4 96 307 54 219 20 58 4 19

floppy simpl4 BUG 47 125 38 93 13 28 6 5

kbfiltr simpl1 30 70 7 22 5 11 1 2

kbfiltr simpl2 48 133 7 40 5 11 1 2

kbfiltr simpl2 BUG 44 89 16 34 1 4 0 1

values) and is thus contained in the source code. The same program name end-
ing with a different number indicates that the same program is present with a
different simplification applied to the source code. If the program name ends
with “BUG” then a defect was artificially introduced into the program.

The overall performance results obtained in our initial development phase
of CPAchecker are satisfactory, although optimization was not the main de-
sign goal — rather we focussed on a portable and flexible environment to be
used for many different analysis purposes. All experiments were performed on a
GNU/Linux (Ubuntu 8.10) x86 32 machine with an Intel Core 2 Duo processor
and 2 GB RAM. We limited the memory for the Java virtual machine to 1.8GB
and set the time limit for termination to 1200 s.

Table 1 shows the performance results for different configurations. The first
column of the table lists the names of the programs. The next five columns
report the runtimes for the analysis configuration where predicate abstraction
and explicit-value analysis are used together. The threshold (the number in the
column heading) indicates how many different explicit values where tracked for
each variable (cf. [5] for the details). After reaching this threshold the value of

5

the variable is set to ⊤, i.e., nothing can be said about the value of the variable
in the explicit analysis. This might lead to an infeasible path and the predicate-
abstraction domain discovers predicates in order to track the missing variables
and to eliminate the infeasible program path. We experimented with five dif-
ferent threshold values, where 0 represents the extreme case of pure predicate
abstraction-based analysis, and ∞ represents the extreme case of pure explicit-
value analysis. Table 1 indicates that the best performance in total for this set
of programs is achieved with a threshold of 5, which represents a good tradeoff
between the expensive but abstract predicate abstraction and the simple but
exploding explicit-value analysis. It is interesting to observe that pure predicate
abstraction is not tractable for some of the experiments (time out reached).

Table 2 shows the number of predicates and the number of refinement iter-
ations needed to obtain the verification result. Surprisingly, many facts can be
tracked by explicit values, and thus the number of predicates in the abstract-
successor computations is drastically reduced. Also, the number of refinements
that are necessary to discover predicates is significantly reduced (note that many
different refinements might discover the same predicate for different locations).

Acknowledgments. We thank Tom Henzinger, Ranjit Jhala, and Rupak Ma-
jumdar for the fruitful collaboration in the Blast project. Blast served as exam-
ple for CPAchecker in several aspects. We also thank Alberto Griggio, Andreas
Holzer, and Michael Tautschnig for their valuable comments and for their code
contributions to CPAchecker. We thank Alberto especially for his contribution
to the predicate-abstraction analysis.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.
2. T. Ball and S. K. Rajamani. The Slam project: Debugging system software via

static analysis. In Proc. POPL, pages 1–3. ACM, 2002.
3. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker

Blast: Applications to software engineering. Int. J. Softw. Tools Technol. Transfer,
9(5-6):505–525, 2007.

4. D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:
Concretizing the convergence of model checking and program analysis. In Proc.

CAV, LNCS 4590, pages 504–518. Springer, 2007.
5. D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with dynamic

precision adjustment. In Proc. ASE. IEEE, 2008.
6. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.

POPL, pages 58–70. ACM, 2002.
7. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate language

and tools for analysis and transformation of C programs. In Proc. CC, LNCS 2304,
pages 213–228. Springer, 2002.

6

