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Abstract—The construction and analysis of an abstract reach-
ability tree (ART) are the basis for a successful method for
software verification. The ART represents unwindings of the
control-flow graph of the program. Traditionally, a transit ion
of the ART represents a single block of the program, and
therefore, we call this approach single-block encoding (SBE).
SBE may result in a huge number of program paths to be
explored, which constitutes a fundamental source of inefficiency.
We propose a generalization of the approach, in which transitions
of the ART represent larger portions of the program; we call
this approach large-block encoding (LBE). LBE may reduce the
number of paths to be explored up to exponentially. Within
this framework, we also investigate symbolic representations: for
representing abstract states, in addition to conjunctionsas used
in SBE, we investigate the use of arbitrary Boolean formulas;
for computing abstract-successor states, in addition to Cartesian
predicate abstraction as used in SBE, we investigate the useof
Boolean predicate abstraction. The new encoding leveragesthe
efficiency of state-of-the-art SMT solvers, which can symbolically
compute abstract large-block successors. Our experimentson
benchmark C programs show that the large-block encoding
outperforms the single-block encoding.

I. Introduction

Software model checking is an effective technique for software
verification. Several advances in the field have lead to tools
that are able to verify programs of considerable size, and show
significant advantages over traditional techniques in terms of
precision of the analysis (e.g., SLAM [3] and BLAST [4]).
However, efficiency and scalability remain major concerns in
software model checking and hamper the adaptation of the
techniques in industrial practice. A successful approach to
software model checking is based on the construction and
analysis of an abstract reachability tree (ART), and predicate
abstraction is one of the favorite abstract domains. The ART
represents unwindings of the control-flow graph of the pro-
gram. The search is usually guided by the control flow of the
program. Nodes of the ART typically consist of the control-
flow location, the call stack, and formulas that represent the
data states. During the refinement process, the ART nodes are
incrementally refined.

In the traditional ART approach, each program operation
(assignment operation, assume operation, function call, func-
tion return) is represented by a single edge in the ART.
Therefore, we call this approachsingle-block encoding(SBE).
A fundamental source of inefficiency of this approach is the

1Technical Report SFU-CS-2009-09, DISI-09-026, FBK-irst-2009.04.005.
2Supported in part by the Canadian NSERC grant RGPIN 341819-07

and by the SFU grant PRG 06-3.3Supported in part by the European
Commission grant FP7-2007-IST-1-217069 COCONUT.4Supported in part
by the SRC/GRC grant 2009-TJ-1880 WOLFLING and by the MIUR grant
PRIN 20079E5KM8002.

fact that the control-flow of the program can induce a huge
number of paths (and nodes) in the ART, which are explored
independently of each other.

We propose a novel, broader view on ART-based software
model checking, where a much more compact abstract space
is used, resulting thus in a much smaller number of paths
to be enumerated in the ART. Instead of using edges that
represent single program operations, we encode entire parts
of the program in one edge. In contrast to SBE, we call our
new approachlarge-block encoding(LBE). In general, the new
encoding may result in an exponential reduction of the number
of ART nodes.

The generalization from SBE to LBE has two main con-
sequences. First, LBE requires a more general representation
of abstract states than SBE. SBE is typically based on mere
conjunctionsof predicates. Because the LBE approach sum-
marizes large portions of the control flow, conjunctions arenot
sufficient, and we need to usearbitrary Boolean combinations
of predicates to represent the abstract states. Second, LBE
requires a more accurate abstraction in the abstract-successor
computations. Intuitively, an abstract edge represents many
different paths of the program, and therefore it is necessary
that the abstract-successor computations take the relationships
between the predicates into account.

In order to make this generalization practical, we rely on
efficient solvers for satisfiability modulo theories (SMT).In
particular, enabling factors are the capability of performing
Boolean reasoning efficiently (e.g., [18]), the availability of ef-
fective algorithms for abstraction computation (e.g., [8], [15]),
and interpolation procedures to extract new predicates [6], [9].

Considering Boolean abstraction and large-block encod-
ing in addition to the traditional techniques, we obtain the
following interesting observations: (i) whilst the SBE ap-
proach requires a large number of successor computations, the
LBE approach reduces the number of successor computations
dramatically (possibly exponentially); (ii) whilst Cartesian
abstraction can be efficiently computed with a linear number
of SMT solver queries, Boolean abstraction is expensive to
compute because it requires an enumeration of all satisfiable
assignments for the predicates. Therefore, two combinations of
the above strategies provide an interesting tradeoff: The com-
bination of SBE with Cartesian abstraction was successfully
implemented by tools like BLAST and SLAM. We investigate
the combination of LBE with Boolean abstraction, by first for-
mally defining LBE in terms of a summarization of the control-
flow automaton for the program, and then implementing this
LBE approach together with a Boolean predicate abstraction.
We evaluate the performance and precision by comparing it
with the model checker BLAST and with an own implemen-
tation of the traditional approach. Our own implementationof
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the SBE and LBE approach is integrated as a new component
into CPACHECKER [5]1. The experiments show that our new
approach outperforms the previous approach.

Example. We illustrate the advantage of LBE over SBE on the
example program in Fig. 1 (a). In SBE, each program location
is modeled explicitly, and an abstract-successor computation is
performed for each program operation. Figure 1 (b) shows the
structure of the resulting ART. In the figure, abstract states are
drawn as ellipses, and labeled with the location of the abstract
state; the arrows indicate that there exists an edge from the
source location to the target location in the control-flow. The
ART represents all feasible program paths. For example, the
leftmost program path is taking the ‘then’ branch of every ‘if’
statement. For every edge in the ART, an abstract-successor
computation is performed, which potentially includes several
SMT solver queries. The problems given to the SMT solver
are usually very small, and the runtime sums up over a large
amount of simple queries. Therefore, model checkers that are
based on SBE (like BLAST) experience serious performance
problems on programs with such an exploding structure (cf. the
test_locks examples in Table I). In LBE, the control-flow
graph is summarized, such that control-flow edges represent
entire subgraphs of the original control-flow. In our example,
most of the program is summarized into one control-flow edge.
Figure 1 (c) shows the structure of the resulting ART, in which
all the feasible paths of the program are represented by a single
edge. The exponential growth of the ART does not occur.�

Related Work. The model checkers SLAM and BLAST are
typical examples for the SBE approach [3], [4], both based on
counterexample-guided abstraction refinement (CEGAR) [10].
Also the tool SATABS is based on CEGAR, but it performs a
fully symbolic search in the abstract space [12]. In contrast,
our approach still follows the lazy-abstraction paradigm [14],
but it abstracts and refines chunks of the program “on-the-fly”.
The work of McMillan is also based on lazy abstraction, but
instead of using predicate abstraction for the abstract domain,
Craig interpolants from infeasible error paths are directly
used, thus avoiding abstract-successor computations [16]. A
fundamentally different approach to software model checking
is bounded model checking (BMC), with the most prominent
example CBMC [11]. Programs are unrolled up to a given
depth, and a formula is constructed which is satisfiable iff
one of the considered program executions reaches a certain
error location. The analysis tool CALYSTO is an example of
an “extended static checker”, following an approach similar
to BMC when generating verification conditions [1], while
possibly abstracting away some irrelevant parts of the program.
The BMC approaches are targeted towards discovering bugs,
and can not be used to prove program safety.

Structure. Section II provides the necessary background. Sec-
tion III explains our contribution in detail. We experimentally
evaluate our novel approach in Sect. IV. In Sect. V, we draw
some conclusions and outline directions for future research.

1Available athttp://www.cs.sfu.ca/∼dbeyer/CPAchecker

II. Background

A. Programs and Control-Flow Automata

We restrict the presentation to a simple imperative program-
ming language, where all operations are either assignments
or assume operations, and all variables range over integers.2

We represent a program by acontrol-flow automaton(CFA).
A CFA A = (L,G) consists of a setL of program locations,
which model the program counterl and a setG⊆ L×Ops×L
of control-flow edges, which model the operations that are
executed when control flows from one program location to
another. The set of variables that occur in operations fromOps
is denoted byX. A program P= (A, l0, lE) consists of a CFA
A = (L,G) (which models the control flow of the program),
an initial program locationl0 ∈ L (which models the program
entry) such thatG does not contain any edge(·, ·, l0), and
a target program locationlE ∈ L (which models the error
location).

A concrete data stateof a program is a variable assignment
c : X → Z that assigns to each variable an integer value.
The set of all concrete data states of a program is denoted
by C . A set r ⊆ C of concrete data states is calledregion.
We represent regions using first-order formulas (with free
variables fromX): a formula ϕ represents the setS of all
data statesc that imply it (i.e. S= {c | c |= ϕ}). A concrete
stateof a program is a pair(l ,c) where l ∈ L is a program
location andc is a concrete data state. A pair(l ,ϕ) represents
the following set of all concrete states:{(l ,c) | c |= ϕ}. The
concrete semanticsof an operationop∈ Ops is defined by
the strongest postcondition operatorSPop: for a formula ϕ ,
SPop(ϕ) represents the set of data states that are reachable
from any of the states in region represented byϕ after the
execution ofop. Given a formulaϕ that represents a set of
concrete data states, for an assignment operations := e, we
haveSPs:=e(ϕ) = ∃ŝ : ϕ[s7→ŝ]∧ (s= e[s7→ŝ]); and for an assume
operationassume(p), we haveSPassume(p)(ϕ) = ϕ ∧ p.

A pathσ is a sequence〈(op1, l1), ...,(opn, ln)〉 of pairs of op-
erations and locations. The pathσ is calledprogram pathif for
everyi with 1≤ i ≤ n there exists a CFA edgeg= (l i−1,opi , l i),
i.e.,σ represents a syntactical walk through the CFA. Thecon-
crete semantics for a program pathσ = 〈(op1, l1), ...,(opn, ln)〉
is defined as the successive application of the strongest post-
operator for each operation:SPσ (ϕ) = SPopn

(...SPop1
(ϕ)...).

The set of concrete states that result from runningσ is
represented by the pair(ln,SPσ (true)). A program pathσ is
feasible if SPσ (true) is satisfiable. A concrete state(ln,cn)
is called reachableif there exists a feasible program pathσ
whose final location isln and such thatcn |= SPσ (true). A
location l is reachable if there exists a concrete statec such
that(l ,c) is reachable. A program issafeif lE is not reachable.

B. Predicate Abstraction

Let P be a set of predicates over program variables in a
quantifier-free theoryT . A formula ϕ is a Boolean combi-

2Our implementation is based onCPACHECKER, which operates on
C programs that are given in the CIL intermediate language [17]; function
calls are supported.
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L1: if(p1) {
L2: x1 = 1;

}
L3: if(p2) {
L4: x2 = 2;

}
L5: if(p3) {
L6: x3 = 3;

}
L7: if(p1) {
L8: if (x1 != 1) goto ERR;

}
L9: if (p2) {
L10: if (x2 != 2) goto ERR;

}
L11: if (p3) {
L12: if (x3 != 3) goto ERR;

}
L13: return EXIT_SUCCESS;
ERR: return EXIT_FAILURE;
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(a) Example C program (b) ART for SBE (c) ART for LBE

Fig. 1. Example program and corresponding ARTs for SBE and LBE; this example was mentioned as verification challenge for ART-based approaches by
several colleagues.

nation of predicates fromP. A precision for a formulais a
finite subsetπ ⊂P of predicates.

Cartesian Predicate Abstraction.Let π be a precision. The
Cartesian predicate abstractionϕπ

C
of a formula ϕ is the

strongest conjunction of predicates fromπ entailed byϕ :
ϕπ

C
:=

∧
{p∈ π | ϕ ⇒ p}. Such a predicate abstraction of a

formulaϕ that represents a region of concrete program states,
is used as anabstract state(i.e., an abstract representation of
the region) in program verification. For a formulaϕ and a
precisionπ , the Cartesian predicate abstractionϕπ

C
of ϕ can

be computed by|π | SMT-solver queries. The abstract strongest
postoperatorSP

π for a predicate abstractionπ transforms the
abstract stateϕπ

C
into its successorϕ ′πC for a program oper-

ation op, written asϕ ′πC = SP
π
op(ϕπ

C
), if ϕ ′πC is the Cartesian

predicate abstraction ofSPop(ϕπ
C
), i.e., ϕ ′πC = (SPop(ϕπ

C
))π

C
.

For more details, we refer the reader to the work of Ball et
al. [2].

Boolean Predicate Abstraction.Let π be a precision. The
Boolean predicate abstractionϕπ

B
of a formula ϕ is the

strongest Boolean combination of predicates fromπ that is
entailed byϕ . For a formulaϕ and a precisionπ , the Boolean
predicate abstractionϕπ

B
of ϕ can be computed by querying an

SMT solver in the following way: For each predicatepi ∈ π ,
we introduce a propositional variablevi . Now we ask an SMT
solver to enumerate all satisfying assignments ofv1, ...,v|π |
in the formula ϕ ∧

∧
pi∈π(pi ⇔ vi). For each satisfying as-

signment, we construct a conjunction of all predicates from
π whose corresponding propositional variable occurs positive
in the assignment. The disjunction of all such conjunctionsis
the Boolean predicate abstraction forϕ . The abstract strongest
postoperatorSP

π for a predicate abstractionπ transforms
the abstract stateϕπ

B
into its successorϕ ′πB for a program

operationop, written asϕ ′πB = SP
π
op(ϕπ

B
), if ϕ ′πB is the Boolean

predicate abstraction ofSPop(ϕπ
B
), i.e., ϕ ′πB = (SPop(ϕπ

B
))π

B
.

For more details, we refer the reader to the work of Lahiri et
al. [15].

C. ART-based Software Model Checking with SBE

The precision for a programis a functionΠ : L→ 2P , which
assigns to each program location a precision for a formula.
An ART-based algorithm for software model checking takes
an initial precisionΠ (which is typically very coarse) for the
predicate abstraction, and constructs an ART for the input
program andΠ. An ART is a tree whose nodes are labeled
with program locations and abstract states [4] (i.e.,n= (l ,ϕ)).
For a given ART node, all children nodes are labeled with
successor locations and abstract successor states, according
to the strongest postoperator and the predicate abstraction. A
noden = (l ,ϕ) is calledcoveredif there exists another ART
noden′ = (l ,ϕ ′) that entailsn (i.e., s.t.ϕ ′ |= ϕ). An ART is
calledcompleteif every node is either covered or all possible
abstract successor states are present in the ART as childrenof
the node. If a complete ART is constructed and the ART does
not contain any error node, then the program is considered
correct [14]. If the algorithm adds an error node to the ART,
then the corresponding pathσ is checked to determine ifσ
is feasible (i.e., if the corresponding concrete program path
is executable) or infeasible (i.e., if there is no corresponding
program execution). In the former case the path represents
a witness for a program bug. In the latter case the path is
analyzed, and a refinementΠ′ of Π is generated, such that the
same path cannot occur again during the ART exploration. The
concept of using an infeasible error path for abstraction refine-
ment is called counterexample-guided abstraction refinement
(CEGAR) [10]. The concept of iteratively constructing an ART
and refining only the precisions along the considered path is
called lazy abstraction [14]. Craig interpolation is a successful
approach to predicate extraction for refinement [13]. Afterthe
refining the precision, the algorithm continues with the next
iteration, usingΠ′ instead ofΠ to construct the ART, until
either a complete error-free ART is obtained, or an error is
found (note that the procedure might not terminate). For more
details and a more in-depth illustration of the overall ART
algorithm, we refer the reader to the BLAST article [4].
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In order to make the algorithm scale on practical examples,
implementations such as BLAST or SLAM use the simple
but coarse Cartesian abstraction, instead of the expensive
but precise Boolean abstraction. Despite its potential impre-
cision, Cartesian abstraction has been proved successful for
the verification of many real-world programs. In the SBE
approach, given the large number of successor computations,
the computation of the Boolean predicate abstraction is in fact
too expensive, as it may require an SMT solver to enumerate
an exponential number of assignments on the predicates in
the precision, for each single successor computation. The
reason for the success of Cartesian abstraction if used together
with SBE, is that for a given program path, state overap-
proximations that are expressible as conjunctions of atomic
predicates —for which Boolean and Cartesian abstractions are
equivalent— are often good enough to prove that the error
location is not reachable in the abstract space.

III. Large-Block Encoding

A. Summarization of Control-Flow Automata

The first, main step of LBE is the summarization of the
program CFA, in which each large control-flow subgraph that
is free of loops is replaced by a single control-flow edge with
a large formula that represents the removed subgraph. This
process, which we callsummarizationof the CPA, consists
of the fixpoint application of three rewriting rules that we
describe below: first we apply Rule 0 once, and then we
repeatedly apply Rules 1 and 2, until no rule is applicable
anymore.

Let P = (A, l0, lE) be a program with CFAA = (L,G).

Rule 0 (Error Sink). We remove all edges(lE, ·, ·) from
G, i.e., the target locationlE becomes a sink node with no
outgoing edges.

Rule 1 (Sequence). If G con-
tains an edge (l1,op1, l2) with l1 6= l2

l2

l1

l3 l4

l1

l3 l4

op1 ; op3

op1 ; op2

op1

op2 op3

and no other incoming edges
for l2 (i.e. edges(·, ·, l2)), and
G→l2 is the subset ofG of out-
going edges forl2, then we
change the CFAA in the fol-
lowing way: (1) we remove lo-
cation l2 from L, and (2) we
remove the edges(l1,op1, l2) and all the edges inG→l2 from
G, and for each edge(l2,opi , l i) ∈ G→l2 , we add the edge
(l1,op1 ; opi , l i) to G, whereSPop1 ;opi (ϕ) = SPopi (SPop1(ϕ)).
(Note thatG→l2 might contain an edge(l2, ·, l1).)

Rule 2 (Choice). If L2 = {l1, l2} and A|L2
= (L2,G2)

l2

l1

op1 op2

l2

l1

op1 ‖ op2

is the subgraph ofA with nodes
from L2 and the setG2 of edges
contains the two edges(l1,op1, l2)
and (l1,op2, l2), then we change
the CFA A in the following way:
(1) we remove the two edges(l1,op1, l2) and (l1,op2, l2)
from G and add the edge(l1,op1 ‖ op2, l2) to G, where
SPop1‖op2

(ϕ) = SPop1(ϕ)∨SPop2(ϕ). (Note that there might
be a backwards edge(l2, ·, l1).)

Let P = (A, l0, lE) be a program and letA′ be another CFA
for P. The CFAA′ is thesummarizationof A if A′ is obtained
from A via stepwise application of the two rules, and none of
the two rules can be further applied.

Example. Figure 2 shows a program (a) and its correspond-
ing CFA (b). The control-flow automaton (CFA) is stepwise
transformed to its summarization CFA (h) as follows: Rule 1
eliminates location 6 to (c), Rule 1 eliminates location 3 to
(d), Rule 1 eliminates location 4 to (e), Rule 2 eliminates one
edge 2–5 to (f), Rule 1 eliminates location 5 to (g), Rule 1
eliminates location 2 to (h). �

In the context of this article, we use the summarization CFA
for program analysis, i.e., we want to verify if an error state
of the program is reachable. The following theorem, which
is proved in Appendix A, states that our summarization of a
CFA is correct in this sense.

Theorem 3.1 (Correctness of Summarization):Let
P = (A, l0, lE) be a program and letA′ = (L′,G′) be the
summarization ofA. Then: (i) {l0, lE} ⊆ L′, and (ii) lE is
reachable in(A′, l0, lE) if and only if lE is reachable inP.

The summarization can be performed in polynomial time.
The time taken by Rule 0 is proportional to the number
of outgoing edges forlE. Since each application of Rule
1 or Rule 2 removes at least one edge, there can be at
most |G| − 1 such applications. A naive way to determine
the set of locations and edges to which to apply each rule
requiresO(|V| · k) time, wherek is the maximum out-degree
of locations. Finally, each application of Rule 2 requiresO(1)
time, and each application of Rule 1O(k) time. Therefore,
a naive summarization algorithm requiresO(|G| · |V| ·k) time,
which reduces toO(|G| · |V|) if k is bounded (i.e., if we rewrite
a priori all switches into nestedifs).3

B. LBE versus SBE for Software Model Checking

The use of LBE instead of the standard SBE requires no
modification to the general model-checking algorithm, which
is still based on the construction of an ART with CEGAR-
based refinement. The main difference is that the LBE has no
one-to-one correspondence between ART paths and syntactical
program paths. A single CFA edge corresponds to aset of
paths between its source and target location, and a single
ART path corresponds to aset of program paths; an ART
node represents an overapproximation of the data region that
is reachable by followinganyof the program paths represented
by the ART path that leads to it. This difference leads to two
observations.

First, LBE can lead to exponentially-smaller ARTs than
SBE, and thus it can drastically reduce the number successor
computations (cf. example in Sect. I) and the number of
abstraction-refinement steps for infeasible error paths. Each
of these operations, however, is typically more expensive than
with SBE, because the formulas involved are larger and have
a more complex structure.

3In our implementation, we use a more efficient algorithm, which we do
not describe here for lack of space.
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1: while

4: else

5

2: if

L1: while (i>0) {
L2: if (x==1) {
L3: z = 0;

} else {
L4: z = 1;

}
L5: i = i-1;
L6: }

Fig. 2. CFA Transformation: a) Program, b) CFA, c)–g) Intermediate CFAs, h) Summarization CFA. In the CFAs,assume(p) is represented as[p], op1 ; op2
is represented by puttingop2 underop1, andop1 ‖ op2 by putting op2 besideop1.

Second, LBE requires a more general representation of ab-
stract states. When using SBE, abstract states are typically rep-
resented as sets/conjunctions of predicates. This is sufficient
for practical examples because each abstract state represents
a data region reachable by a single program path, which can
be encoded essentially as a conjunction of atomic formulas.
With LBE, such representation would be too coarse, since
each abstract state represents a data region that is reachable on
several different program paths. Therefore, we need to use a
representation for arbitrary (and larger) Boolean combinations
of predicates. This generalization of the representation of the
abstract state requires a generalization of the representation of
the transition, i.e., the replacement of the Cartesian abstraction
with a more precise form of abstraction. In this paper, we
evaluate the use of the Boolean abstraction, which allows for
a precise representation of arbitrary Boolean combinations of
predicates.

With respect to the traditional SBE approach, LBE allows
us to trade part of the cost of theexplicit enumeration of
program paths with that of thesymbolic computation of
abstract successor states: rather than having to build large
ARTs by performing a substantial amount of relatively cheap
operations (Cartesian abstract postoperator applications along
single edges and counterexample analysis of individual pro-
gram paths), with LBE we build smaller ARTs by performing
more expensive symbolic operations (Boolean abstract postop-
erator applications along large portions of the control flowand
counterexample analysis of multiple program paths), involving
formulas with a complex Boolean structure. With LBE, the
cost of each symbolic operation, rather than theirnumber,
becomes a critical performance factor.

To this extent, LBE makes it possible to fully exploit
the power and functionality of modern SMT solvers: First,
the capability of modern SMT solvers of performing large
amounts of Boolean reasoning allows for handling possibly-
big Boolean combinations of atomic expressions, instead of
simple conjunctions. Second, the capability of some SMT
solvers to perform All-SMT and interpolant computation
(see, e.g., [7]) allows for effectively performing SMT-based

Boolean abstraction computation [8], [15] and interpolation-
based counterexample analysis [9] respectively, which was
shown to outperform previous approaches, especially when
dealing with complex formulas. With SBE, instead, the use
of modern SMT technology does not lead to significant im-
provements of the whole ART-based algorithm, because each
SMT query involves simple (and often small) conjunctions
only.

IV. Performance Evaluation

Implementation. In order to evaluate the proposed verification
method, we integrate our algorithm as a new component into
the configurable software verification toolkitCPACHECKER[5].
This implementation is written in JAVA . All example programs
are preprocessed and transformed into the simple intermediate
language CIL [17]. For parsing C programs,CPACHECKER

uses a library from the Eclipse C/C++ Development Kit. For
efficient querying of formulas in the quantifier-free theory
of rational linear arithmetic and equality with uninterpreted
function symbols, we leverage the SMT solver MATHSAT [7],
which is integrated as a library (written in C++). We use binary
decision diagrams (BDDs) for the representation of abstract-
state formulas.

We run all experiments on a 1.8 GHz Intel Core2 machine
with 2 GB of RAM and 2 MB of cache, running GNU/Linux.
We used a timeout of 1 800 s and a memory limit of 1.8 GB.

Example Programs. We use three categories of benchmark
programs. First, we experiment with programs that are specif-
ically designed to cause an exponential blowup of the ART
when using SBE (test_locks*, in the style of the example in
Sect. I). Second, we use the device-driver programs that were
previously used as benchmarks in the BLAST project. Third,
we solve various verification problems for the SSH client and
server software (s3_clnt* and s3_srvr*), which share the
same program logic, but check different safety properties.The
safety property is encoded as conditional calls of a failure
location and therefore reduces to the reachability of a certain
error location. All benchmarks programs from the BLAST
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web page are preprocessed with CIL . For the second and
third groups of programs, we also performed experiments with
artificial defects introduced.

Experimental Configurations. For a careful and fair perfor-
mance comparison, we run experiments on three different con-
figurations. First, we use BLAST, version 2.5, which is a highly
optimized state-of-the-art software model checker. BLAST is
implemented in the programming language OCAML . We run
BLAST using all four combinations of breadth-first search
(-bfs) versus depth-first search (-dfs), both with and without
heuristics for improving the predicate discovery. BLAST pro-
vides five different levels of heuristics for predicate discovery,
and we use only the lowest (-predH 0) and the highest option
(-predH 7). Interestingly, every combination is best for some
particular example programs, with considerable differences in
runtime and memory consumption. The configuration using
-dfs -predH 7 is the winner (in terms of solved problems and
total runtime) for the programs without defects, but is not able
to verify four example programs (timeout). In the performance
table, we provide results obtained using this configuration
(column -dfs -predH 7), and also the best result among
the four configurations for every single instance (column
best result). For the unsafe programs,-bfs -predH 7 per-
forms best. All four configurations use the command-line op-
tions-craig 2 -nosimplemem -alias "", which specify that
BLAST runs with lazy, Craig-interpolation-based refinement,
no CIL preprocessing for memory access, and without pointer
analysis. In all experiments with BLAST, we use the same
interpolation procedure (MATHSAT) as in ourCPACHECKER-
based implementation. (The results of all four configurations
are provided in Appendix B, to the reviewers.)

Second, in order to separate the optimization efforts in
BLAST from the conceptual essence of the traditional lazy
abstraction algorithm, we developed a re-implementation of
the traditional algorithms as described in the BLAST tool
article [4]. This re-implementation is integrated as component
into CPACHECKER, so that the difference between SBE and
LBE is only in the algorithms, not in the environment (same
parser, same BDD package, same query optimization, etc.).
Our SBE implementation uses a DFS algorithm. This column
is labeled as SBE.

Third, we run the experiments using our new LBE algo-
rithm, which is also implemented withinCPACHECKER. Our
LBE implementation uses a DFS algorithm. This column is
labeled as LBE. Note that the purpose of our experiments is
to give evidence of the performance difference between SBE
and LBE, because these two settings are closest to each other,
since SBE and LBE differ only in the CFA summarization and
Boolean abstraction. The other two columns are provided to
give evidence that the new approach beats the highly optimized
traditional implementation BLAST.

We actually configured and ran experiments with all four
combinations: SBE versus LBE, and Cartesian versus Boolean
abstraction. The experimentation clearly showed that SBE
does not benefit from Boolean abstraction in terms of pre-
cision, with substantial degrade in performance: the only pro-
grams for which it terminated successfully were the first five

TABLE III
PERFORMANCE RESULTS, PROGRAMS WITH ARTIFICIAL BUGS.

BLAST CPACHECKER
Program (best result) SBE LBE
cdaudio.BUG.i.cil.c 18.79 74.39 9.85
diskperf.BUG.i.cil.c 889.79 26.53 6.78
floppy.BUG.i.cil.c 119.60 36.49 4.30
kbfiltr.BUG.i.cil.c 46.80 75.45 11.52
parport.BUG.i.cil.c 1.67 14.62 2.64
s3 clnt.blast.01.BUG.i.cil.c 8.84 1514.90 3.33
s3 clnt.blast.02.BUG.i.cil.c 9.02 843.42 3.27
s3 clnt.blast.03.BUG.i.cil.c 6.64 780.72 2.61
s3 clnt.blast.04.BUG.i.cil.c 9.78 724.04 3.18
s3 srvr.blast.01.BUG.i.cil.c 7.59 MO 2.09
s3 srvr.blast.02.BUG.i.cil.c 7.16 >1800.00 2.10
s3 srvr.blast.03.BUG.i.cil.c 7.42 >1800.00 2.08
s3 srvr.blast.04.BUG.i.cil.c 7.33 >1800.00 1.93
s3 srvr.blast.06.BUG.i.cil.c 39.81 MO 5.08
s3 srvr.blast.07.BUG.i.cil.c 310.84 >1800.00 28.35
s3 srvr.blast.08.BUG.i.cil.c 40.51 >1800.00 36.47
s3 srvr.blast.09.BUG.i.cil.c 265.48 >1800.00 4.94
s3 srvr.blast.10.BUG.i.cil.c 40.24 >1800.00 12.01
s3 srvr.blast.11.BUG.i.cil.c 49.05 >1800.00 4.80
s3 srvr.blast.12.BUG.i.cil.c 38.66 >1800.00 6.11
s3 srvr.blast.13.BUG.i.cil.c 251.56 >1800.00 15.20
s3 srvr.blast.14.BUG.i.cil.c 39.94 1656.54 4.63
s3 srvr.blast.15.BUG.i.cil.c 40.19 >1800.00 10.19
s3 srvr.blast.16.BUG.i.cil.c 39.54 >1800.00 5.21
TOTAL (solved/time) 24 / 2296.25 10 / 5747.10 24 / 188.67

instances of thetest_locks group. Similarly, the combination
of LBE with Cartesian abstraction fails to solve any of the
experiments, due to loss of precision. Thus, we report only on
the two successful configurations, i.e., SBE in combination
with Cartesian abstraction, and LBE in combination with
Boolean abstraction.

Discussion of Evaluation Results.Tables I and III present
performance results of our experiments, for the safe and unsafe
programs respectively. All runtimes are given in seconds of
processor time, ‘>1800.00’ indicates a timeout, ‘MO’ indi-
cates an out-of-memory. Table II shows statistics about the
algorithms for SBE and LBE only.

The first group of experiments in Table I shows that the
time complexity of SBE (and BLAST) can grow exponentially
in the number of nested conditional statements, as expected.
Table II explains why the SBE approach exhausts the memory:
the number of abstract nodes in the reachability tree grows
exponentially in the number of nested conditional statements.
Therefore, this approach does not scale. The LBE approach
reduces the loop-free part of the branching control-flow struc-
ture to a few edges (cf. example in the introduction), and
the size of the ART is constant, because only the structure
inside the body of the loop changes. There are no refinement
steps necessary in the LBE approach, because the edges to
the error location are infeasible. Therefore, no predicates are
used. The runtime of the LBE approach slightly increases with
the size of the program, because the formulas that are sent to
the SMT solver are slightly increasing. Although in principle
the complexity of the SMT problem grows exponentially in
the size of the formulas, the heuristics used by SMT solvers
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TABLE I
PERFORMANCE RESULTS

BLAST CPACHECKER
Program (best result) (-dfs -predH 7) SBE LBE
test locks 5.c 4.50 4.96 4.01 0.29
test locks 6.c 7.81 8.81 7.22 0.32
test locks 7.c 13.91 15.15 12.63 0.34
test locks 8.c 25.00 26.49 23.93 0.57
test locks 9.c 46.84 49.29 52.04 0.38
test locks 10.c 94.57 97.85 131.39 0.40
test locks 11.c 204.55 208.78 MO 0.70
test locks 12.c 529.16 533.97 MO 0.46
test locks 13.c 1229.27 1232.87 MO 0.49
test locks 14.c >1800.00 >1800.00 MO 0.50
test locks 15.c >1800.00 >1800.00 MO 0.56
cdaudio.i.cil.c 175.76 264.12 MO 53.55
diskperf.i.cil.c >1800.00 >1800.00 MO 232.00
floppy.i.cil.c 218.26 >1800.00 MO 56.36
kbfiltr.i.cil.c 23.55 32.80 41.12 7.82
parport.i.cil.c 738.82 915.79 MO 378.04
s3 clnt.blast.01.i.cil.c 33.01 1000.41 755.81 19.51
s3 clnt.blast.02.i.cil.c 62.65 312.77 1075.45 16.00
s3 clnt.blast.03.i.cil.c 60.62 314.74 746.31 49.50
s3 clnt.blast.04.i.cil.c 63.96 197.65 730.80 25.45
s3 srvr.blast.01.i.cil.c 811.27 1036.89 >1800.00 125.33
s3 srvr.blast.02.i.cil.c 360.47 360.47 >1800.00 122.83
s3 srvr.blast.03.i.cil.c 276.19 276.19 >1800.00 98.47
s3 srvr.blast.04.i.cil.c 175.64 301.85 >1800.00 71.77
s3 srvr.blast.06.i.cil.c 304.63 304.63 >1800.00 59.70
s3 srvr.blast.07.i.cil.c 478.05 666.53 >1800.00 85.82
s3 srvr.blast.08.i.cil.c 115.76 115.76 >1800.00 61.29
s3 srvr.blast.09.i.cil.c 445.21 1037.09 >1800.00 126.47
s3 srvr.blast.10.i.cil.c 115.10 115.10 >1800.00 63.36
s3 srvr.blast.11.i.cil.c 367.98 844.28 >1800.00 162.76
s3 srvr.blast.12.i.cil.c 304.05 304.05 >1800.00 170.33
s3 srvr.blast.13.i.cil.c 580.33 878.54 >1800.00 74.49
s3 srvr.blast.14.i.cil.c 303.21 303.21 >1800.00 50.38
s3 srvr.blast.15.i.cil.c 115.88 115.88 >1800.00 21.01
s3 srvr.blast.16.i.cil.c 305.11 305.11 >1800.00 127.82
TOTAL (solved/time) 32 / 8591.12 31 / 12182.03 11 / 3580.71 35 / 2265.07
TOTAL w/o test_locks* 23 / 6435.51 22 / 10003.06 5 / 3349.48 24 / 2260.07

avoid the exponential enumeration that we observe in the case
of SBE.

For the two other classes of experiments, we see that LBE
is able to successfully complete all benchmarks, and shows
significant performance gains over SBE. SBE is able to solve
only about one third of all benchmarks, and for the ones that
complete, it is clearly outperformed by LBE. In Table II, we
see that SBE has in general a much larger ART. In Table I
we observe not only that LBE performs significantly better
than the -dfs -predH 7 configuration of BLAST, but that
LBE is better than any BLAST configuration (columnbest
result). LBE performed best also in finding the error paths
(cf. Table III), clearly outperforming both SBE and BLAST.

In summary, the experiments show that the LBE approach
outperforms the SBE approach, both for correct and defective
programs. This provides evidence of the benefits of a “more
symbolic” analysis as performed in the LBE approach. One
might argue that ourCPACHECKER-based SBE implementation
might be sub-optimal although it uses the same implemen-
tation and execution environment as LBE; this is why we
compare with BLAST as well, and the experiments become

even more impressive when considering that BLAST is the
result of several years of fine-tuning.

V. Conclusion and Future Work

We have proposed LBE as an alternative to the SBE model-
checking approach, based on the idea that transitions in the
abstract space represent larger fragments of the program.
Our novel approach results in significantly smaller ARTs,
where abstract successor computations are more involved, and
thus trading cost of many explicit enumerations of program
paths with the cost of symbolic successor computations. A
thorough experimental evaluation shows the advantages of
LBE against both our implementation of SBE and the state-
of-the-art BLAST system.

In our future work, we plan to implement McMillan’s
interpolation-based lazy-abstraction approach [16], andex-
periment with SBE versus LBE versions of his algorithm.
Furthermore, we plan to investigate the use of adjustable
precision-based techniques for the construction of the large
blocks on-the-fly (instead of the current preprocessing step).
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TABLE II
DETAILED COMPARISON BETWEENSBE AND LBE ENCODINGS; ENTRIES MARKED WITH (*) DENOTE PARTIAL STATISTICS FOR ANALYSES THAT

TERMINATED UNSUCCESSFULLY(IF AVAILABLE ).

SBE LBE
ART # ref # predicates ART # ref # predicates

Program size steps Tot Avg Max size steps Tot Avg Max
test locks 5.c 1344 50 10 3 10 4 0 0 0 0
test locks 6.c 2301 72 12 4 12 4 0 0 0 0
test locks 7.c 3845 98 14 5 14 4 0 0 0 0
test locks 8.c 6426 128 16 6 16 4 0 0 0 0
test locks 9.c 10926 162 18 7 18 4 0 0 0 0
test locks 10.c 19091 200 20 8 20 4 0 0 0 0
test locks 11.c 24779(*) 242(*) 22(*) 9(*) 22(*) 4 0 0 0 0
test locks 12.c 28119(*) 288(*) 24(*) 10(*) 24(*) 4 0 0 0 0
test locks 13.c 31739(*) 338(*) 26(*) 10(*) 26(*) 4 0 0 0 0
test locks 14.c 35178(*) 392(*) 28(*) 11(*) 28(*) 4 0 0 0 0
test locks 15.c 38777(*) 450(*) 30(*) 12(*) 30(*) 4 0 0 0 0
cdaudio.i.cil.c 53323(*) 445(*) 147(*) 9(*) 78(*) 6909 140 79 5 16
diskperf.i.cil.c – – – – – 4890 145 56 6 21
floppy.i.cil.c 31079(*) 301(*) 79(*) 7(*) 35(*) 9668 176 58 4 13
kbfiltr.i.cil.c 19640 153 53 5 27 1577 47 18 2 6
parport.i.cil.c 26188(*) 360(*) 143(*) 4(*) 41(*) 38488 474 168 4 17
s3 clnt.blast.01.i.cil.c 122678 557 59 20 59 36 5 47 11 47
s3 clnt.blast.02.i.cil.c 354132 532 55 19 55 36 5 51 12 51
s3 clnt.blast.03.i.cil.c 196599 534 55 19 55 39 5 75 18 75
s3 clnt.blast.04.i.cil.c 172444 538 55 19 55 36 5 47 11 47
s3 srvr.blast.01.i.cil.c 232195(*) 774(*) 70(*) 20(*) 70(*) 101 6 88 22 88
s3 srvr.blast.02.i.cil.c 254667(*) 745(*) 79(*) 19(*) 78(*) 109 7 75 18 75
s3 srvr.blast.03.i.cil.c – – – – – 91 6 85 21 85
s3 srvr.blast.04.i.cil.c – – – – – 103 7 82 20 82
s3 srvr.blast.06.i.cil.c 295698(*) 576(*) 63(*) 14(*) 63(*) 94 6 84 21 84
s3 srvr.blast.07.i.cil.c – – – – – 92 5 85 21 85
s3 srvr.blast.08.i.cil.c 279991(*) 549(*) 57(*) 15(*) 57(*) 89 5 88 22 88
s3 srvr.blast.09.i.cil.c 189541(*) 720(*) 72(*) 16(*) 71(*) 193 4 72 18 72
s3 srvr.blast.10.i.cil.c 307671(*) 597(*) 55(*) 16(*) 55(*) 91 5 79 19 79
s3 srvr.blast.11.i.cil.c – – – – – 48 6 69 17 69
s3 srvr.blast.12.i.cil.c 258546(*) 563(*) 57(*) 15(*) 57(*) 99 6 94 23 94
s3 srvr.blast.13.i.cil.c 167333(*) 682(*) 70(*) 18(*) 69(*) 90 5 81 20 81
s3 srvr.blast.14.i.cil.c 318982(*) 643(*) 65(*) 13(*) 64(*) 92 6 83 20 83
s3 srvr.blast.15.i.cil.c 279319(*) 579(*) 58(*) 15(*) 58(*) 71 4 71 17 71
s3 srvr.blast.16.i.cil.c 346185(*) 596(*) 59(*) 12(*) 58(*) 98 6 86 21 86

This would enable a dynamic adjustment of the size of the
large blocks, and thus we could fine-tune the amount of work
that is delegated to the SMT solver. Also, we plan to explore
other techniques for computing abstract successors which are
more precise than Cartesian abstraction but less expensivethan
Boolean abstraction.

Acknowledgments.We thank Roman Manevich for interest-
ing discussions about BLAST’s performance bottlenecks.
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Appendix

A. Proof of Theorem 3.1

In order to prove Theorem 3.1, we introduce some auxiliary
lemmas.

Lemma A.1:Let (l ,op, l ′) be a CFA edge, and{ϕi}i a
collection of formulas. Then

SPop(
∨

i ϕi)≡
∨

i SPop(ϕi).

Proof: If op is an assignment operations := e, then

SPs:=e(
∨

i ϕi) = ∃ ŝ.((
∨

i ϕi)[s7→ŝ]∧ (s= e[s7→ŝ]))

≡ ∃ ŝ.(
∨

i(ϕi [s7→ŝ]∧ (s= e[s7→ŝ])))

≡
∨

i(∃ ŝ.(ϕi [s7→ŝ]∧ (s= e[s7→ŝ])))

≡
∨

i SPs:=e(ϕi)

If op is an assume operationassume(p), then

SPassume(p)(
∨

i ϕi) = (
∨

i ϕi)∧ p

≡
∨

i(ϕi ∧ p)

≡
∨

i SPassume(p)(ϕi)

The remaining two cases can be proven by induction.
If op= op1 ; op2, then

SPop1 ;op2
(
∨

i ϕi) = SPop2
(SPop1

(
∨

i ϕi))

≡ SPop2(
∨

i SPop1(ϕi))

≡
∨

i SPop2
(SPop1

(ϕi))

≡
∨

i SPop1 ;op2(ϕi)

If op= op1 ‖ op2, then

SPop1‖op2
(
∨

i ϕi) = SPop1
(
∨

i ϕi)∨SPop2
(
∨

i ϕi)

≡ (
∨

i SPop1
(ϕi))∨ (

∨
i SPop2

(ϕi))

≡
∨

i(SPop1
(ϕi)∨SPop2

(ϕi))

≡
∨

i SPop1‖op2
(ϕi)

�

Lemma A.2:Let A= (L,G) be a CFA, and letA′ = (L′,G′)
be a summarization ofA. Let σ be a path inA such that its
initial and final locations occur also inL′. Then for allϕ , there
exists a pathσ ′ in A′, with the same initial and final locations
asσ , such thatSPσ (ϕ) |= SPσ ′(ϕ).

Proof: CFA A′ is obtained fromA by a sequence ofn
rule applications. Ifn= 0 we haveA′ = A. If the lemma holds
for one rule application, we can show by induction that the
lemma holds for any finite sequence of rule applications.

We now show that the lemma holds for one rule application.
Let σ = σ1,(l i ,opi , l j). The proof is by induction on the length
of σ . (The base case is whenσ1 is empty.)

If l i ∈ L′, by the inductive hypothesis there exists a path
σ ′1 in A′ such thatSPσ1(ϕ) |= SPσ ′1

(ϕ). If (l i ,opi , l j) ∈ G′,
then we can takeσ ′ = σ ′1,(l i ,opi , l j). Otherwise,(l i ,opi , l j )
must have been removed by an application of Rule 2,4 and
so G′ contains an edge(l i ,opi ‖ ·, l j ). Therefore, we can take
σ ′ = σ ′1,(l i ,opi ‖ ·, l j).

If l i 6∈ L′, then by hypothesisσ ≡ σ2,(lk,opk, l i),(l i ,opi , l j).
Moreover,l i has been removed by an application of Rule 1. By
the definition of Rule 1,(lk,opk, l i) is the only incoming edge
for l i in G. Therefore,G′ contains an edge(lk,opk ; opi , l j) and
clearly lk ∈ L′. Thus, by the inductive hypothesis there exists
a pathσ ′2 in A′ such thatSPσ2(ϕ) |= SPσ ′2

(ϕ), and so we can
takeσ ′ = σ ′2,(lk,opk ; opi , l j ). �

Lemma A.3:Let A= (L,G) be a CFA, and letA′ = (L′,G′)
be a summarization ofA. Let σ ′ be a path inA′. Then for all
ϕ , there exists a setΣ of paths inA, with the same initial and
final locations asσ ′, such thatSPσ ′(ϕ)≡

∨
σ∈Σ SPσ (ϕ).

Proof: CFA A′ is obtained fromA by a sequence ofn
rule applications. Ifn = 0 we haveA′ = A. If the lemma holds
for one rule application, we can show by induction that the
lemma holds for any finite sequence of rule applications.

We now show that the lemma holds for one rule application.
Let σ ′ = σ ′p,(l i ,opi , l j) be a path inA′. The proof is by
induction on the length ofσ ′. (The base case is whenσ ′p
is empty.)

First, we observe that all locations inσ ′ occur also inG.
By the inductive hypothesis, there exists a setΣp of paths

in A, with the same initial and final locations asσ ′p, such that
SPσ ′p(ϕ)≡

∨
σp∈Σp

SPσp(ϕ).
If (l i ,opi , l j) ∈ G, then we can take Σ =
{σp,(l i ,opi , l j) | σp ∈ Σp} (by Lemma A.1).

Otherwise,(l i ,opi , l j) was generated by an application of
one of the Rules. If it was generated by Rule 1, thenG contains
two edges(l i ,op′i , lk) and(lk,opk, l j ) such thatopi = op′i ; opk.
Then we can takeΣ = {σp,(l i ,op′i , lk),(lk,opk, l j ) | σp ∈ Σp}
(by Lemma A.1). If (l i ,opi , l j) was generated by Rule 2,
then G contains two edges(l i ,op′i , l j ) and (l i ,op′′i , l j) such
that opi = op′i ‖ op′′i . Let Σ1 = {σp,(l i ,op′i , l j ) | σp ∈ Σp}
and Σ2 = {σp,(l i ,op′′i , l j) | σp ∈ Σp}. Then we can take
Σ = Σ1∪Σ2 (by Lemma A.1).

�

Proof: Now we prove Theorem 3.1.

(i) The only Rule that removes locations is Rule 1. Since
l0 has no incoming edges (by definition) andlE has
no outgoing edges (because of Rule 0), they cannot be
removed by Rule 1.

(ii) “→” Follows from Lemma A.2 and (i).
“←” Follows from Lemma A.3 and (i).

�

B. Comparison among different BLAST configurations

4It could not have been removed by Rule 1, because when Rule 1 removes
the edges(·, ·, l) and (l , ·, ·), it removes also the locationl .
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TABLE IV
COMPARISON AMONG DIFFERENT CONFIGURATIONS OFBLAST. (NP INDICATES ’ NO NEW PREDICATES FOUND DURING REFINEMENT’.)

BLAST 1 BLAST 2 BLAST 3 BLAST 4 BLAST B
Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

test locks 5.c 8.36 8.40 4.50 4.96 4.50
test locks 6.c 17.63 17.29 7.81 8.81 7.81
test locks 7.c 39.90 37.83 13.91 15.15 13.91
test locks 8.c 86.98 86.69 25.00 26.49 25.00
test locks 9.c 173.63 189.96 46.84 49.29 46.84
test locks 10.c 500.30 483.07 94.57 97.85 94.57
test locks 11.c 1645.90 1534.20 204.55 208.78 204.55
test locks 12.c >1800.00 >1800.00 529.16 533.97 529.16
test locks 13.c >1800.00 >1800.00 1229.27 1232.87 1229.27
test locks 14.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00
test locks 15.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00
cdaudio.i.cil.c 380.83 475.67 175.76 264.12 175.76
diskperf.i.cil.c – >1800.00 NP >1800.00 >1800.00
floppy.i.cil.c 218.26 >1800.00 NP >1800.00 218.26
kbfiltr.i.cil.c 23.55 69.07 NP 32.80 23.55
parport.i.cil.c 738.82 >1800.00 NP 915.79 738.82
s3 clnt.blast.01.i.cil.c 72.55 526.77 33.01 1000.41 33.01
s3 clnt.blast.02.i.cil.c 80.57 268.67 62.65 312.77 62.65
s3 clnt.blast.03.i.cil.c 124.99 440.25 60.62 314.74 60.62
s3 clnt.blast.04.i.cil.c 140.60 138.75 63.96 197.65 63.96
s3 srvr.blast.01.i.cil.c 1030.27 MO 811.27 1036.89 811.27
s3 srvr.blast.02.i.cil.c >1800.00 811.77 1088.43 360.47 360.47
s3 srvr.blast.03.i.cil.c 1166.38 424.53 961.72 276.19 276.19
s3 srvr.blast.04.i.cil.c 208.89 175.64 1393.08 301.85 175.64
s3 srvr.blast.06.i.cil.c >1800.00 >1800.00 653.62 304.63 304.63
s3 srvr.blast.07.i.cil.c >1800.00 >1800.00 478.05 666.53 478.05
s3 srvr.blast.08.i.cil.c >1800.00 411.92 647.87 115.76 115.76
s3 srvr.blast.09.i.cil.c >1800.00 1296.56 445.21 1037.09 445.21
s3 srvr.blast.10.i.cil.c >1800.00 >1800.00 645.23 115.10 115.10
s3 srvr.blast.11.i.cil.c 1692.77 1011.15 367.98 844.28 367.98
s3 srvr.blast.12.i.cil.c >1800.00 1188.43 658.16 304.05 304.05
s3 srvr.blast.13.i.cil.c >1800.00 MO 580.33 878.54 580.33
s3 srvr.blast.14.i.cil.c >1800.00 463.95 653.85 303.21 303.21
s3 srvr.blast.15.i.cil.c >1800.00 604.01 645.35 115.88 115.88
s3 srvr.blast.16.i.cil.c >1800.00 653.87 651.30 305.11 305.11
TOTAL (solved/time) 19 / 8351.18 23 / 11318.45 29 / 13233.06 31 / 12182.03 32 / 8591.12
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TABLE V
COMPARISON AMONG DIFFERENT CONFIGURATIONS OFBLAST, PROGRAMS WITH ARTIFICIAL BUGS. (NP INDICATES ’ NO NEW PREDICATES FOUND

DURING REFINEMENT’.)

BLAST 1 BLAST 2 BLAST 3 BLAST 4 BLAST B
Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

cdaudio.BUG.i.cil.c 108.85 99.82 26.83 18.79 18.79
diskperf.BUG.i.cil.c 889.79 >1800.00 926.70 >1800.00 889.79
floppy.BUG.i.cil.c 119.60 >1800.00 127.68 >1800.00 119.60
kbfiltr.BUG.i.cil.c 70.83 144.25 NP 46.80 46.80
parport.BUG.i.cil.c 5.70 10.95 1.67 2.24 1.67
s3 clnt.blast.01.BUG.i.cil.c 1003.92 28.30 304.63 8.84 8.84
s3 clnt.blast.02.BUG.i.cil.c 118.48 9.02 131.42 12.26 9.02
s3 clnt.blast.03.BUG.i.cil.c 167.73 6.64 133.97 12.20 6.64
s3 clnt.blast.04.BUG.i.cil.c 187.18 9.78 139.04 11.70 9.78
s3 srvr.blast.01.BUG.i.cil.c 103.06 7.59 >1800.00 162.90 7.59
s3 srvr.blast.02.BUG.i.cil.c 123.00 7.16 >1800.00 183.34 7.16
s3 srvr.blast.03.BUG.i.cil.c 55.21 7.42 1434.01 49.74 7.42
s3 srvr.blast.04.BUG.i.cil.c 79.16 7.33 >1800.00 53.22 7.33
s3 srvr.blast.06.BUG.i.cil.c 1623.73 56.11 558.18 39.81 39.81
s3 srvr.blast.07.BUG.i.cil.c 1582.86 310.84 1327.50 MO 310.84
s3 srvr.blast.08.BUG.i.cil.c >1800.00 73.59 530.10 40.51 40.51
s3 srvr.blast.09.BUG.i.cil.c >1800.00 265.48 1284.77 MO 265.48
s3 srvr.blast.10.BUG.i.cil.c >1800.00 66.88 528.29 40.24 40.24
s3 srvr.blast.11.BUG.i.cil.c 722.64 49.05 1515.26 207.09 49.05
s3 srvr.blast.12.BUG.i.cil.c 620.03 38.66 555.60 39.28 38.66
s3 srvr.blast.13.BUG.i.cil.c 831.45 251.56 1600.65 626.93 251.56
s3 srvr.blast.14.BUG.i.cil.c 773.26 53.93 557.13 39.94 39.94
s3 srvr.blast.15.BUG.i.cil.c >1800.00 77.51 530.85 40.19 40.19
s3 srvr.blast.16.BUG.i.cil.c 973.44 55.97 558.44 39.54 39.54
TOTAL (solved/time) 20 / 10159.92 22 / 1637.84 20 / 12772.72 20 / 1675.56 24 / 2296.25
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