arxiv:0904.4709v1 [cs.SE] 29 Apr 2009

Software Model Checking via Large-Block Encoding

Dirk Beyer Alessandro Cimatti Alberto Griggio
M. Erkan Keremoglu Roberto Sebastiani

Technical Report No. SFU-CS-2009-09
April 29, 2009

DR School of Computing Science
4 Simon Fraser University

- £ 8888 University Drive
s SOMMES ?Yjﬁh

Burnaby, B.C., Canada, V5A 1S6

http://arxiv.org/abs/0904.4709v1

Software Model Checking via Large-Block Encoding

Alessandro Cimat#
FBK-irst

Dirk Beyer?
Simon Fraser Univ.

Abstract—The construction and analysis of an abstract reach-
ability tree (ART) are the basis for a successful method for
software verification. The ART represents unwindings of the
control-flow graph of the program. Traditionally, a transit ion
of the ART represents a single block of the program, and
therefore, we call this approach single-block encoding (SB).
SBE may result in a huge number of program paths to be
explored, which constitutes a fundamental source of ineffiency.
We propose a generalization of the approach, in which transions
of the ART represent larger portions of the program; we call
this approach large-block encoding (LBE). LBE may reduce tle
number of paths to be explored up to exponentially. Within
this framework, we also investigate symbolic representatins: for
representing abstract states, in addition to conjunctionsas used
in SBE, we investigate the use of arbitrary Boolean formulas
for computing abstract-successor states, in addition to Qéesian
predicate abstraction as used in SBE, we investigate the uss
Boolean predicate abstraction. The new encoding leveragebe
efficiency of state-of-the-art SMT solvers, which can symHially
compute abstract large-block successors. Our experimentsn
benchmark C programs show that the large-block encoding
outperforms the single-block encoding.

[. Introduction

Alberto Griggio®*
Univ. of Trento & Simon Fraserin

M. Erkan Keremogld Roberto Sebastiafi
Simon Fraser Univ. Univ. of Trento

fact that the control-flow of the program can induce a huge
number of paths (and nodes) in the ART, which are explored
independently of each other.

We propose a novel, broader view on ART-based software
model checking, where a much more compact abstract space
is used, resulting thus in a much smaller number of paths
to be enumerated in the ART. Instead of using edges that
represent single program operations, we encode entirg part
of the program in one edge. In contrast to SBE, we call our
new approackarge-block encodingLBE). In general, the new
encoding may result in an exponential reduction of the numbe
of ART nodes.

The generalization from SBE to LBE has two main con-
sequences. First, LBE requires a more general represamtati
of abstract states than SBE. SBE is typically based on mere
conjunctionsof predicates. Because the LBE approach sum-
marizes large portions of the control flow, conjunctionsraoe
sufficient, and we need to usebitrary Boolean combinations
of predicates to represent the abstract states. Second, LBE
requires a more accurate abstraction in the abstract-ssmce
computations. Intuitively, an abstract edge representayma
different paths of the program, and therefore it is necgssar

Software model checking is an effective technique for safev that the abstract-successor computations take the reséiios
verification. Several advances in the field have lead to todi§tween the predicates into account.

that are able to verify programs of considerable size, and/sh

significant advantages over traditional techniques in $eofn
precision of the analysis (e.g., SLAM| [3] andLBsT [@]).

In order to make this generalization practical, we rely on
efficient solvers for satisfiability modulo theories (SMTi.
particular, enabling factors are the capability of perfiorgn

However, efficiency and scalability remain major concems Boolean reasoning efficiently (e.d.. [18]), the availabibf ef-

software model checking and hamper the adaptation of tigstive algorithms for abstraction computation (elg.,

[8E)).

techniques in industrial practice. A successful approach nd interpolation procedures to extract new predicate$ds]
software model checking is based on the construction andConsidering Boolean abstraction and large-block encod-
analysis of an abstract reachability tree (ART), and praeic ing in addition to the traditional techniques, we obtain the
abstraction is one of the favorite abstract domains. The Afgllowing interesting observations: (i) whilst the SBE ap-
represents unwindings of the control-flow graph of the préroach requires a large number of successor computattuns, t
gram. The search is usually guided by the control flow of tHBE approach reduces the number of successor computations
program. Nodes of the ART typically consist of the controldramatically (possibly exponentially); (i) whilst Casien

flow location, the call stack, and formulas that represeat t@bstraction can be efficiently computed with a linear number
data states. During the refinement process, the ART nodes @reéSMT solver queries, Boolean abstraction is expensive to

incrementally refined.

compute because it requires an enumeration of all satisfiabl

In the traditional ART approach, each program operatig®signments for the predicates. Therefore, two combinsité

(assignment operation, assume operation, function aail-f

the above strategies provide an interesting tradeoff: Tme-c

tion return) is represented by a single edge in the ARfpination of SBE with Cartesian abstraction was successfull

Therefore, we call this approasingle-block encodin¢SBE).

implemented by tools like BasT and SLAM. We investigate

1Technical Report SFU-CS-2009-09, DISI-09-026, FBK-2669.04.005.

mally defining LBE in terms of a summarization of the control-
flow automaton for the program, and then implementing this

2Supported in part by the Canadian NSERC grant RGPIN 341819-0 BE approach together with a Boolean predicate abstraction

and by the SFU grant PRG 06-§Supported in part by the European
Commission grant FP7-2007-IST-1-217069 COCONL‘3$upported in part
by the SRC/GRC grant 2009-TJ-1880 WOLFLING and by the MIURNgr

PRIN 20079E5KM8002.

We evaluate the performance and precision by comparing it
with the model checker BasT and with an own implemen-
tation of the traditional approach. Our own implementatién

2 BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAR MODEL CHECKING VIA LARGE-BLOCK ENCODING

the SBE and LBE approach is integrated as a new compondnt Background
into CPACHECKER [B] . The experiments show that our new
approach outperforms the previous approach. A. Programs and Control-Flow Automata

We restrict the presentation to a simple imperative program
Example. We illustrate the advantage of LBE over SBE on thghing language, where all operations are either assignments
example program in Figll 1 (a). In SBE, each program locatigft assume operations, and all variables range over intBgers
is modeled explicitly, and an abstract-successor comiputé& e represent a program bycantrol-flow automator{CFA).
performed for each program operation. Figlire 1 (b) shows theCFA A = (L,G) consists of a set of program locations,
structure of the resulting ART. In the figure, abstract State \yhich model the program counteand a seG C L x Opsx L
drawn as eIIipseS, and labeled with the location of the abstr of control-flow edgesi which model the Opera‘[ions that are
state; the arrows indicate that there exists an edge from %Cuted when control flows from one program location to
source location to the target location in the control-floleT another. The set of variables that occur in operations f6gus
ART represents all feasible program paths. For example, f&edenoted byx. A program P= (A,lo,lg) consists of a CFA
leftmost program path is taking the ‘then’ branch of evefy ‘i o — (L,G) (which models the control flow of the program),
statement. For every edge in the ART, an abstract-succesg@finitial program locatioty € L (which models the program
computation is performed, which potentially includes sele entry) such thatG does not contain any edge,-,lp), and
SMT solver queries. The prOblemS given to the SMT SOlVg target program locatiofg € L (Wthh models the error
are usually very small, and the runtime sums up over a larggation).
amount of simple queries. Therefore, model checkers tleat ar A concrete data statef a program is a variable assignment
based on SBE (like BAST) experience serious performance : X — 7 that assigns to each variable an integer value.
problems on programs with such an exploding structurelfef. tThe set of all concrete data states of a program is denoted
test _| ocks examples in Tablgl I). In LBE, the COﬂtrOl-ﬂOWby ¢. A setr C & of concrete data states is callegion
graph is summarized, such that control-flow edges represey represent regions using first-order formulas (with free
entire subgraphs of the original control-flow. In our exaeplvariables fromX): a formula¢ represents the se& of all
most of the program is summarized into one control-flow edggata states that imply it (i.e. S= {c|ck=¢}). A concrete
Figure[l (c) shows the structure of the resulting ART, in Wahicstate of a program is a paitl,c) wherel € L is a program
all the feasible paths of the program are represented bygéesingcation andc is a concrete data state. A pgir¢) represents
edge. The exponential growth of the ART does not océlr. the following set of all concrete state§(l,c) |cl= ¢}. The

concrete semanticef an operationop € Ops is defined by

Related Work. The model checkers SLAM andLBsT are the strongest postcondition operatfop: for a formula ¢,
typical examples for the SBE appranh [ﬁ, [4], both based &Fop(¢) represents the set of data states that are reachable
counterexample-guided abstraction refinement (CEGAR]) [16rom any of the states in region represented oyafter the
Also the tool SARBS is based on CEGAR, but it performs aéxecution ofop. Given a formulag that represents a set of
fully symbolic search in the abstract spatel[12]. In contragoncrete data states, for an assignment operatiene, we
our approach still follows the lazy-abstraction paradigii]] haveSPs—e(¢) = 3S: ¢js g A (S=€s.g); and for an assume
but it abstracts and refines chunks of the program “on-tHe-flypperationassumep), we haveSPassumep) (9) = ¢ A p.

The work of McMillan is also based on lazy abstraction, but A patho is a sequencgopy, l1), ..., (0p,, In)) of pairs of op-
instead of using predicate abstraction for the abstractaitom erations and locations. The pattis calledprogram pathf for
Craig interpolants from infeasible error paths are digecteveryi with 1<i<nthere exists a CFA edge= (li-1,0p,li),
used, thus avoiding abstract-successor computat@s JL6]i.e., 0 represents a syntactical walk through the CFA. Tbe-
fundamentally different approach to software model chegki crete semantics for a program path= ((opy,11), ..., (0P, In))

is bounded model checking (BMC), with the most promineri$ defined as the successive application of the strongest pos
example CBMC [[11]. Programs are unrolled up to a givepperator for each operatiofPq(¢) = SPop,(.--SPop, (§).-.)-
depth, and a formula is constructed which is satisfiable iffthe set of concrete states that result from runnimgis
one of the considered program executions reaches a certgpresented by the paft,, SPg(true)). A program patho is
error location. The analysis toolATYSTO is an example of feasibleif SP(true) is satisfiable. A concrete statén, cn)
an “extended static checker”, following an approach similds calledreachableif there exists a feasible program path
to BMC when generating verification conditiorld [1], whilevhose final location idy and such that, |= SPs(true). A
possibly abstracting away some irrelevant parts of theqarng location| is reachable if there exists a concrete statguch
The BMC approaches are targeted towards discovering bult(l,c) is reachable. A program &afeif |g is not reachable.
and can not be used to prove program safety.

Structure. Sectior[1l provides the necessary background. Se%‘— Predicate Abstraction

tion[explains our contribution in detail. We experimaly Let & be a set of predicates over program variables in a

evaluate our novel approach in Sdcf] IV. In SEdt. V, we draguantifier-free theory7. A formula ¢ is a Boolean combi-

some conclusions and outline directions for future redearc
20ur implementation is based o8 PACHECKER which operates on
C programs that are given in theiCintermediate languagé [17]; function
1Available athtt p: // www. ¢s. sf u. ca/ ~dbeyer/ CPAchecker calls are supported.

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAREMODEL CHECKING VIA LARGE-BLOCK ENCODING 3

L1 if(pl) {

L2: x1 = 1;
}

L3: if(p2) {

L4: X2 = 2;
}

L5: if(p3) {

L6: x3 = 3;
}

L7: if(pl) {

L8: if (x1!=1) goto ERR
}

L9: if (p2) {

L10: if (x21=2) goto ERR
}

L11: if (p3) {

L12: if (x3 !=3) goto ERR
}

L13: return EX T_SUCCESS;
ERR: return EXI T_FAI LURE;

(a) Example C program (b) ART for SBE (c) ART for LBE

Fig. 1. Example program and corresponding ARTs for SBE an#;LtBis example was mentioned as verification challenge feT-Based approaches by
several colleagues.

nation of predicates fron®?. A precision for a formulas a C. ART-based Software Model Checking with SBE
finite subsetrt C & of predicates.

The precision for a progranis a functionrl : L — 27, which

. . - . assigns to each program location a precision for a formula.
Cartesian pregllcat_e abstractlo_rpc of a formulg 9 is th.e An XRT—based algori%hm for software model checking takes
stTrTo.ngest conjunction of greorl:cates gom entéuled pyq&. Fan initial precision (which is typically very coarse) for the
oc =N {pem|¢= p} Suc apre Icate abstraction o aggedicate abstraction, and constructs an ART for the input
Prbgram and1. An ART is a tree whose nodes are labeled
with program locations and abstract states [4] (nes(1,9)).

For a given ART node, all children nodes are labeled with
successor locations and abstract successor states, iagcord
?o the strongest postoperator and the predicate absima&io
noden= (I, ¢) is calledcoveredif there exists another ART
noden’ = (I,¢’) that entailsn (i.e., s.t.¢' = ¢). An ART is

Cartesian Predicate Abstraction.Let 11 be a precision. The

is used as amabstract statgi.e., an abstract representation o
the region) in program verification. For a formu¢a and a
precisionrt, the Cartesian predicate abstractipfi of ¢ can
be computed by SMT-solver queries. The abstract stronge
postoperatoBP™ for a predicate abstractiom transforms the
abstract statey” into its successop’¢ for a program oper-

. . 218 _ T T . JTT .
atlon_ op, Wrgten as_q) . SPOPST%?’ i ¢,§‘% LS tshs Car;es};an calledcompleteif every node is either covered or all possible
predicate abstraction @Pop(¢¢), i-€., ¢'c = (SPop(¢¢))c- bstract successor states are present in the ART as chdtiren
For more details, we refer the reader to the work of Ball at

al ﬁ] %he node. If a complete ART is constructed and t.he ART does
TR not contain any error node, then the program is considered
correct]. If the algorithm adds an error node to the ART,
Boolean Predicate Abstraction.Let 1 be a precision. The then the corresponding path is checked to determine i
Boolean predicate abstractiogp] of a formula ¢ is the is feasible (i.e., if the corresponding concrete prograrh pa
strongest Boolean combination of predicates framthat is is executable) or infeasible (i.e., if there is no correstiog
entailed byg. For a formulag and a precisiomnt, the Boolean program execution). In the former case the path represents
predicate abstractiop of ¢ can be computed by querying ana witness for a program bug. In the latter case the path is
SMT solver in the following way: For each predicgtec i1, analyzed, and a refinemelit of N is generated, such that the
we introduce a propositional variable Now we ask an SMT same path cannot occur again during the ART exploration. The
solver to enumerate all satisfying assignmentsvpt..,v;; concept of using an infeasible error path for abstractifinee
in the formula¢ A Apcn(pi & vi). For each satisfying as- ment is called counterexample-guided abstraction refinéme
signment, we construct a conjunction of all predicates fro@@CEGAR) [10]. The concept of iteratively constructing an AR
m whose corresponding propositional variable occurs p@sitiand refining only the precisions along the considered path is
in the assignment. The disjunction of all such conjunctiisns called lazy abstraction [14]. Craig interpolation is a sssful
the Boolean predicate abstraction fiorThe abstract strongestapproach to predicate extraction for refineméent [13]. After
postoperatorSP™ for a predicate abstractiom transforms refining the precision, the algorithm continues with the tnex
the abstract statgf into its successoq)/]g for a program iteration, usingll’ instead off1 to construct the ART, until
operationop, written as¢’":Sng(¢]§), if % is the Boolean either a complete error-free ART is obtained, or an error is
predicate abstraction GPop(@f), i.e., ¢'F = (SPop(¢f))F. found (note that the procedure might not terminate). Foremor
For more details, we refer the reader to the work of Lahiri eletails and a more in-depth illustration of the overall ART
al. [15]. algorithm, we refer the reader to the BsT article [4].

4 BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAR MODEL CHECKING VIA LARGE-BLOCK ENCODING

In order to make the algorithm scale on practical examples,Let P = (A lo,lg) be a program and Ie¥' be another CFA
implementations such asLBST or SLAM use the simple for P. The CFAA’ is thesummarizatiorof A if A’ is obtained
but coarse Cartesian abstraction, instead of the expendigen A via stepwise application of the two rules, and none of
but precise Boolean abstraction. Despite its potentialrémp the two rules can be further applied.

cision, Cartesian abstraction has been proved successful xample. Figure[2 shows a program (a) and its correspond-

the verification of many real-world programs. In the SBE g CFA (b). The control-flow automaton (CFA) is stepwise
n

approach, gi\(en the large number Of successor c_ompu';atiqp sformed to its summarization CFA (h) as follows: Rule 1
the computation of the Boolean predicate abstraction iaéh f eliminates location 6 to (c), Rule 1 eliminates location 3 to

too expenS|\/t§,|as I rgay rfequwg an S'\CT So"{ﬁr to e(rj]_umter:i\ , Rule 1 eliminates location 4 to (e), Rule 2 eliminates on
an exponential number of assignments on the precdicatesyiiye 5 _5 1o (f), Rule 1 eliminates location 5 to (g), Rule 1
the precision, for each single successor computation. TEI‘?m' :

; o inates location 2 to (h). O
reason for the success of Cartesian abstraction if usethige
with SBE, is that for a given program path, state overap-In the context of this article, we use the summarization CFA
proximations that are expressible as conjunctions of atoniPr program analysis, i.e., we want to verify if an error stat
predicates —for which Boolean and Cartesian abstractions &f the program is reachable. The following theorem, which
equivalent— are often good enough to prove that the erigrproved in AppendiXA, states that our summarization of a
location is not reachable in the abstract space. CFA is correct in this sense.

Theorem 3.1 (Correctness of Summarizatiobgt
lll. Large-Block Encoding P = (Alo,lg) be a program and le&' = (L',G') be the
summarization ofA. Then: (i) {lo,le} C L', and (ii) Ig is
reachable in(A' lg,lg) if and only if Ig is reachable irP.

The first, main step of LBE is the summarization of the o . N
rogram CFA, in which each large control-flow subgraph th The_ summarization can be_ performe_d in polynomial time.
P ' e time taken by Rule 0 is proportional to the number

is free of loops is replaced by a single control-flow edge wit . . L
a large formula that represents the removed subgraph. T flsoutgomg edges foil. Since each application of Rule

; o . or Rule 2 removes at least one edge, there can be at
process, which we cakbummarizationof the CPA, consists o) X
most |G| — 1 such applications. A naive way to determine

of the fixpoint application of three rewriting rules that w . .
describe below: first we apply Rule 0 once, and then V?t/ge set of locations and edges to which to apply each rule

repeatedly apply Rules 1 and 2, until no rule is a Iicab[equiresO(|V|-k) time, wherek is the maximum out-degree
P y apply ' PP St locations. Finally, each application of Rule 2 requit¥4)
anymore. time, and each application of Rule Q(k) time. Therefore
Let P= (Alp,lg) be a program with CFAA = (L, G). ! anp . ; X . '
, a naive summarization algorithm requir®$|G| - |V| - k) time,
Rule O (Error Sink). We remove all edgeslg,-,-) from

; : :) which reduces t®(|G|- |V|) if kis bounded (i.e., if we rewrite
G, ie., the target locatiohe becomes a sink node with no, priori all swi t ches into nested f s)
outgoing edges.

Rule 1 (Sequence). If G con- B | BE versus SBE for Software Model Checking
tains an edge (l1,0p,l2) with li # 1

and no other incoming edges
for 1, (i.e. edges(-,-,l»)), and
GE is the subset ofs of out-
going edges forl,, then we —=>

A. Summarization of Control-Flow Automata

The use of LBE instead of the standard SBE requires no
modification to the general model-checking algorithm, vahic

is still based on the construction of an ART with CEGAR-
based refinement. The main difference is that the LBE has no
change the CFAA in the fol- op/ ‘ops one-to-one correspondence between ART paths and sytiactic
lowing way: (1) we remove lo- program paths. A single CFA edge corresponds teet of
cation |, from L, and (2) we @ @ paths between its source and target location, and a single
remove the edgedl1,op;,l2) and all the edges i, from ART path corresponds to set of program pathsan ART

G, and for each edgélp,op,li) € G, we add the edge node represents an overapproximation of the data regidn tha
(I1,0p;; op,li) to G, whereSPqp, :op (¢2) = SPop (SPop, (9)).- is reachable by followingnyof the program paths represented

(o]

0py ;

(Note thatG; might contain an edgdy, -,11).) by the ART path that leads to it. This difference leads to two

Rule 2 (Choice). If L, = {l1,l} and Ay, = (L,Gy) ObServations. ,

is the subgraph oA with nodes @ First, LBE can lead to _exponenually—smaller ARTs than

from L, and the seG, of edges SBE, and thus it can drastically reduce the number successor

contains the two edge@:,opy,12) op, >Op2:> opy [lop, COMputations (cf. example in S_e(ﬂ.) and the number of
abstraction-refinement steps for infeasible error patteshE

and (I1,0p,,l2), then we change) (i)
the CFA A in the following way:

(1) we remove the two edgefi;,op;,l2) and (I1,0p,,l2)
from G and add the edgél;,op; || op,,l2) to G, where

SPopyjop, (¢) = SPop, (@) V SPop, (¢). (Note that there might s, o implementation, we use a more efficient algorithm, alihive do
be a backwards edgé,-.l1).) not describe here for lack of space.

of these operations, however, is typically more expensiaa t
with SBE, because the formulas involved are larger and have
a more complex structure.

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAREMODEL CHECKING VIA LARGE-BLOCK ENCODING 5

L1: while (i>0) {
L2: if (x==1) {

L3: z = 0; C2:if>
} else { vzzl’ :X#ll @D
L4: z=1 @i then) @ elsp

Fig. 2. CFA Transformation: a) Program, b) CFA, c)—g) Intediate CFAs, h) Summarization CFA. In the CFassumép) is represented ap|, op; ; op,
is represented by puttingp, underop,;, andop; || op, by putting op, besideop;.

Second, LBE requires a more general representation of &@wolean abstraction computatidﬂ [8ﬂ15] and interpaolati
stract states. When using SBE, abstract states are typiepd based counterexample analys@ [9] respectively, which was
resented as sets/conjunctions of predicates. This is iguffic shown to outperform previous approaches, especially when
for practical examples because each abstract state rafgesgealing with complex formulas. With SBE, instead, the use
a data region reachable by a single program path, which aca@hmodern SMT technology does not lead to significant im-
be encoded essentially as a conjunction of atomic formulgsovements of the whole ART-based algorithm, because each
With LBE, such representation would be too coarse, sin&GMT query involves simple (and often small) conjunctions
each abstract state represents a data region that is réacimabonly.
several different program paths. Therefore, we need to use a
representation for arbitrary (and larger) Boolean comtimna |\/ performance Evaluation
of predicates. This generalization of the representatfothe
abstract state requires a generalization of the repragamtsf Implementation. In order to evaluate the proposed verification
the transition, i.e., the replacement of the Cartesiarratisbn method, we integrate our algorithm as a new component into
with a more precise form of abstraction. In this paper, we configurable software verification toolKiPACHECKERB].
evaluate the use of the Boolean abstraction, which allows fphis implementation is written ina¥A . All example programs
a precise representation of arbitrary Boolean combinat@n are preprocessed and transformed into the simple inteateedi
predicates. language @ [17]. For parsing C programs;PACHECKER

With respect to the traditional SBE approach, LBE allowsses a library from the Eclipse C/C++ Development Kit. For
us to trade part of the cost of thexplicit enumeration of efficient querying of formulas in the quantifier-free theory
program paths with that of theymbolic computation of of rational linear arithmetic and equality with uninterjae
abstract successor states: rather than having to build lafgnction symbols, we leverage the SMT solvea€i SAT 171,
ARTs by performing a substantial amount of relatively cheaphich is integrated as a library (written in C++). We use byna
operations (Cartesian abstract postoperator applicadtong decision diagrams (BDDs) for the representation of abstrac
single edges and counterexample analysis of individual prgtate formulas.
gram paths), with LBE we build smaller ARTs by performing We run all experiments on a 1.8 GHz Intel Core2 machine
more expensive symbolic operations (Boolean abstracbpestwith 2 GB of RAM and 2 MB of cache, running GNU/Linux.
erator applications along large portions of the control flovd We used a timeout of 1800s and a memory limit of 1.8 GB.
counterexample analysis of multiple program paths), ¥ing Example Programs.We use three categories of benchmark
formulas with a complex Boolean structure. With LBE, th@rograms_ First, we experiment with programs that are §peci
cost of each symbolic operation, rather than thaumber jcally designed to cause an exponential blowup of the ART
becomes a critical performance factor. when using SBEt(est _| ocks+, in the style of the example in

To this extent, LBE makes it possible to fully exploitSect[]). Second, we use the device-driver programs tha¢ wer
the power and functionality of modern SMT solvers: Firsipreviously used as benchmarks in theABT project. Third,
the capability of modern SMT solvers of performing largeve solve various verification problems for the SSH client and
amounts of Boolean reasoning allows for handling possiblgerver softwares@_cl nt+ and s3_srvr=), which share the
big Boolean combinations of atomic expressions, instead sime program logic, but check different safety properfiége.
simple conjunctions. Second, the capability of some SMJafety property is encoded as conditional calls of a failure
solvers to perform AIl-SMT and interpolant computatiorocation and therefore reduces to the reachability of aagert
(see, e.g.,l]?]) allows for effectively performing SMT-leals error location. All benchmarks programs from thae BT

6 BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAR MODEL CHECKING VIA LARGE-BLOCK ENCODING

TABLE Il

web page are preprocessed with. CFor the second and PERFORMANCE RESULTS PROGRAMS WITH ARTIFICIAL BUGS.

third groups of programs, we also performed experiments wit

artificial defects introduced. BLAST CPACHECKER

. . . . Program (best result) SBE LBE
Experimental C;onﬁgurauons. For.a careful and fa|r perfor- —qaudio BUG I ailc 18.79 2439 985
mance comparison, we run experiments on three different corjiskperf.BUG.i.cil.c 889.79 26.53 6.78
figurations. First, we uselB\ST, version 2.5, which is a highly floppy.BUG.i.cil.c 119.60 36.49 4.30
optimized state-of-the-art software model checkara®r is kbfilt.BUG.i.cil.c 46.80 75.45 11.52
implemented in the programming language L. We run ggrgl‘r’]?ﬁ:ﬁ(;f'gz(; — 1'86;4 15111'23 ;f;
BLAST using all fou_r combinations of bre.adth—flrst. searchs:‘,;clmlblast'oz.BUG'i_C”'C 9.02 843.42 397
(- bf s) versus depth-first searchdf s), both with and without 3 ¢int.blast.03.BUG.i.cil.c 6.64 780.72 261
heuristics for improving the predicate discovery.A3T pro- s3 cInt.blast.04.BUG.i.cil.c 9.78 724.04 3.18
vides five different levels of heuristics for predicate digery, = s3srvr.blast01.BUG.i.cil.c 7.59 MO 2.09
and we use only the lowestg edH 0) and the highest option S3-SMVr-blast02.BUG.icil.c /.19 >1800.00 210
-predH 7). Interestingly, every combination is best for someSs‘srw'blast'oa'BUG"'C'I'C 742 >1800.00 2.08
(-pre : aly, ye , , SOME 53 srvr.blast.04.BUG.i.cil.c 7.33 >1800.00 1.93
particular example programs, with considerable diffeesnio s3 sryrblast.06.BUG.i.cil.c 39.81 MO 508
runtime and memory consumption. The configuration using3 srvr.blast.07.BUG.i.cil.c 310.84 >1800.00 28.35
-dfs -predH 7 is the winner (in terms of solved problems and s3.srvr.blast.08.BUG.i.cil.c 40.51 >1800.00 36.47
total runtime) for the programs without defects, but is raea 22—2:&:3:::22332:35 228';‘2 iiggg'gg l‘;'g‘;
to verify four example programs.(umeou.t). In the perfqrmq s3 srvr.blast.11.BUG.icil.c 4908 =1800.00 480
table, we provide results obtained using this configurations sryr.blast.12.BUG.i.cil.c 38.6d >1800.00 6.11
(column -dfs -predH 7), and also the best result among s3 srvr.blast.13.BUG.i.cil.c 251.56 >1800.00 15.20
the four configurations for every single instance (columns3.srvr.blast.14.BUG.i.cil.c 39.94 1656.54 4.63

ici g

best result). For the unsafe programspfs -predH 7 per- S3SVrblast15.BUG.cilc 4019 >1800.00 10.19
f best. All f fi ti th d-li _ s3 srvr.blast.16.BUG.i.cil.c 39.54 >1800.00 5.21
orms best. All four configurations use the commana-iin€ 0P a7a (solvedriime) 2472296.25 | 10/5747.10 24/188.67

tions-craig 2 -nosi npl enem -alias "", which specify that
BLAST runs with lazy, Craig-interpolation-based refinement,

no CL preprocessing for memory access, and without pointer o o
analysis. In all experiments with (BsT, we use the same instances of theest_I ocks group. Similarly, the combination
interpolation procedure (MrHSAT) as in ourcPAcHecker Of LBE with Cartesian abstraction fails to solve any of the

based implementation. (The results of all four configuratio €xPeriments, due to loss of precision. Thus, we report only o
are provided in AppendikIB, to the reviewers.) the two successful configurations, i.e., SBE in combination

Second, in order to separate the optimization efforts Eith Cartesian abstraction, and LBE in combination with

BLAST from the conceptual essence of the traditional la

abstraction algorithm, we developed a re-implementatibn piscussion of Evaluation ResultsTables[l andTll present
the traditional algorithms as described in theABT tool performance results of our experiments, for the safe andfans
article [4]. This re-implementation is integrated as comgnt programs respectively. All runtimes are given in seconds of
into CPACHECKER, so that the difference between SBE an@rocessor time,>1800.00’ indicates a timeout, ‘MO’ indi-
LBE is only in the algorithms, not in the environment (samgates an out-of-memory. Tablg Il shows statistics about the
parser, same BDD package, same query optimization, etelyorithms for SBE and LBE only.

Our SBE implementation uses a DFS algorithm. This column the first group of experiments in Tadle | shows that the

is labeled as SBE. time complexity of SBE (and BAST) can grow exponentially
Third, we run the experiments using our new LBE algdn the number of nested conditional statements, as expected
rithm, which is also implemented withi®PACHECKER Our TableTl explains why the SBE approach exhausts the memory:
LBE implementation uses a DFS algorithm. This column ighe number of abstract nodes in the reachability tree grows
labeled as LBE. Note that the purpose of our experimentsdgponentially in the number of nested conditional statemen
to give evidence of the performance difference between SBfherefore, this approach does not scale. The LBE approach
and LBE, because these two settings are closest to each oth®fuces the loop-free part of the branching control-flowestr
since SBE and LBE differ only in the CFA summarization angjre to a few edges (cf. example in the introduction), and
Boolean abstraction. The other two columns are provided fi§e size of the ART is constant, because only the structure
give evidence that the new approach beats the highly opginiznside the body of the loop changes. There are no refinement
traditional implementation BAST. steps necessary in the LBE approach, because the edges to
We actually configured and ran experiments with all fouhe error location are infeasible. Therefore, no predxaie
combinations: SBE versus LBE, and Cartesian versus Boolassed. The runtime of the LBE approach slightly increasel wit
abstraction. The experimentation clearly showed that SBEe size of the program, because the formulas that are sent to
does not benefit from Boolean abstraction in terms of préie SMT solver are slightly increasing. Although in prireip
cision, with substantial degrade in performance: the onty p the complexity of the SMT problem grows exponentially in
grams for which it terminated successfully were the first fivihe size of the formulas, the heuristics used by SMT solvers

oolean abstraction.

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI:

SOFTWARBMODEL CHECKING VIA LARGE-BLOCK ENCODING

TABLE |

PERFORMANCE RESULTS

BLAST CPACHECKER
Program (best result) (-dfs -predH 7) SBE LBE
test locks 5.c 4.50 4.96 4.01 0.29
test locks 6.c 7.81 8.81 7.22 0.32
test locks 7.c 13.91 15.15 12.63 0.34
test locks 8.c 25.00 26.49 23.93 0.57
test locks 9.c 46.84 49.29 52.04 0.38
test locks 10.c 94.57 97.85 131.39 0.40
test locks 11.c 204.55 208.78 MO 0.70
test locks 12.c 529.16 533.97 MO 0.46
test locks 13.c 1229.27 1232.87 MO 0.49
test locks 14.c >1800.00 >1800.00 MO 0.50
test locks 15.c >1800.00 >1800.00 MO 0.56
cdaudio.i.cil.c 175.76 264.12 MO 53.55
diskperf.i.cil.c >1800.00 >1800.00 MO 232.00
floppy.i.cil.c 218.26 >1800.00 MO 56.36
kbfiltr.i.cil.c 23.55 32.80 41.12 7.82
parport.i.cil.c 738.82 915.79 MO 378.04
s3 clnt.blast.01.i.cil.c 33.01 1000.41 755.81 19.51
s3 clnt.blast.02.i.cil.c 62.65 312.77 1075.45 16.00
s3 clnt.blast.03.i.cil.c 60.62 314.74 746.31 49.50
s3 clnt.blast.04.i.cil.c 63.96 197.64% 730.80 25.45
s3 srvr.blast.01.i.cil.c 811.27 1036.89 >1800.00 125.33
s3 srvr.blast.02.i.cil.c 360.47 360.4y >1800.00 122.83
s3 srvr.blast.03.i.cil.c 276.19 276.19 >1800.00 98.47
s3 srvr.blast.04.i.cil.c 175.64 301.85 >1800.00 71.77
s3 srvr.blast.06.i.cil.c 304.63 304.63 >1800.00 59.70
s3 srvr.blast.07.i.cil.c 478.05 666.58 >1800.00 85.82
s3 srvr.blast.08.i.cil.c 115.76 115.76 >1800.00 61.29
s3 srvr.blast.09.i.cil.c 445.21 1037.0p >1800.00 126.47
s3 srvr.blast.10.i.cil.c 115.10 115.10 >1800.00 63.36
s3 srvr.blast.11.i.cil.c 367.98 844.28 >1800.00 162.76
s3 srvr.blast.12.i.cil.c 304.05 304.05 >1800.00 170.33
s3 srvr.blast.13.i.cil.c 580.33 878.54 >1800.00 74.49
s3 srvr.blast.14.i.cil.c 303.21 303.21 >1800.00 50.38
s3 srvr.blast.15.i.cil.c 115.88 115.88 >1800.00 21.01
s3 srvr.blast.16.i.cil.c 305.11 305.11 >1800.00 127.82
TOTAL (solved/time) 32/8591.12 31/12182.03 11/3580.71 35/2265.07
TOTAL w/o test_| ocks= 23/6435.51 22/10003.06 5/3349.48 2412260.07

avoid the exponential enumeration that we observe in the caven more impressive when considering thataBT is the
of SBE. result of several years of fine-tuning.

For the two other classes of experiments, we see that LBE
is able to successfully complete all benchmarks, and shows
significant performance gains over SBE. SBE is able to solve
only about one third of all benchmarks, and for the ones théte have proposed LBE as an alternative to the SBE model-
complete, it is clearly outperformed by LBE. In Talglé 1l, wechecking approach, based on the idea that transitions in the
see that SBE has in general a much larger ART. In THbleabstract space represent larger fragments of the program.
we observe not only that LBE performs significantly betteDur novel approach results in significantly smaller ARTSs,
than the-dfs -predH 7 configuration of BRAST, but that where abstract successor computations are more involaed, a
LBE is better than any BasT configuration (columrbest thus trading cost of many explicit enumerations of program
resul t). LBE performed best also in finding the error pathpaths with the cost of symbolic successor computations. A
(cf. Table[T), clearly outperforming both SBE and-BsT. thorough experimental evaluation shows the advantages of

In summary, the experiments show that the LBE approatBE against both our implementation of SBE and the state-
outperforms the SBE approach, both for correct and defectiof-the-art B AST system.
programs. This provides evidence of the benefits of a “moreln our future work, we plan to implement McMillan’s
symbolic” analysis as performed in the LBE approach. Oneterpolation-based lazy-abstraction approa@ [16], amd
might argue that ou€ PAcHECKER-Dased SBE implementationperiment with SBE versus LBE versions of his algorithm.
might be sub-optimal although it uses the same implemeRdrthermore, we plan to investigate the use of adjustable
tation and execution environment as LBE; this is why wprecision-based techniques for the construction of thgelar
compare with BAST as well, and the experiments becomélocks on-the-fly (instead of the current preprocessing)ste

Conclusion and Future Work

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAR MODEL CHECKING VIA LARGE-BLOCK ENCODING

TABLE I
DETAILED COMPARISON BETWEENSBEAND LBE ENCODINGS ENTRIES MARKED WITH (*) DENOTE PARTIAL STATISTICS FOR ANALYSES THAT
TERMINATED UNSUCCESSFULLY(IF AVAILABLE).

SBE LBE
ART # ref # predicates ART # ref # predicates
Program size steps Tot Avg Max size steps Tot Avg Max
test locks 5.c 1344 50 10 3 10 4 0 O 0 0
test locks 6.c 2301 72 12 4 12 4 0 0 0 0
test locks 7.c 3845 98 14 5 14 4 0 O 0 0
test locks 8.c 6426 128 16 6 16 4 0 0 0 0
test locks 9.c 10926 162 18 7 18 4 0 O 0 0
test locks 10.c 19091 200 20 8 20 4 0 0 0 0
test locks 11.c 24779(*) 242(*) 22(*) 9*) 22(* 4 0 o0 0 0
test locks 12.c 28119(*) 288(*) 24(*) 10(*) 24(%) 4 0 o0 0 0
test locks 13.c 31739(%) 338(*) 26(*) 10(*) 26(*) 4 0 O 0 0
test locks 14.c 35178(*) 392(*) 28(*) 11(*) 28(*) 4 0 o0 0 0
test locks 15.c 38777(*) 450(*) 30(*) 12(*) 30(%) 4 0 o0 0 0
cdaudio.i.cil.c 53323(*%) 445(*) 147(*) 9(*) 78(*)| 6909 140 79 5 16
diskperf.i.cil.c - - - - —| 4890 145 56 6 21
floppy.i.cil.c 31079(*) 301(*) 79(*) 7(*) 35(% 9668 176 58 4 13
kbfiltr.i.cil.c 19640 153 53 5 27| 1577 47 18 2 6
parport.i.cil.c 26188(*) 360(*) 143(*) 4(*) 41(*) | 38488 474 168 4 17
s3 cint.blast.01.i.cil.c 122678 557 59 20 59 36 5 47 11 47
s3 cInt.blast.02.i.cil.c 354132 532 55 19 55 36 5 51 12 51
s3 cint.blast.03.i.cil.c 196599 534 55 19 55 39 5 75 18 75
s3 clnt.blast.04.i.cil.c 172444 538 55 19 55 36 5 47 11 47
s3 srvrblast.0l.icil.c | 232195(*) 774(*) 70(*) 20(*) 70(*)| 101 6 83 22 88
s3 srvr.blast.02.i.cil.c | 254667(*) 745(*) 79(*) 19(*) 78(% 109 7 75 18 75
s3 srvr.blast.03.i.cil.c - - - - - 91 6 85 21 85
s3 srvr.blast.04.i.cil.c - - - - - 103 7 82 20 82
s3 srvr.blast.06.i.cil.c | 295698(*) 576(*) 63(*) 14(*) 63(*) 94 6 84 21 84
s3 srvr.blast.07.i.cil.c - - - - - 92 5 85 21 85
s3 srvrblast.08.i.cil.c | 279991(*) 549(*) 57(*) 15(*) 57(%) 89 5 83 22 88
s3 srvr.blast.09.i.cil.c | 189541(*) 720(*) 72(*) 16(*) 71(% 193 4 72 18 72
s3 srvr.blast.10.i.cil.c | 307671(*) 597(*) 55(*) 16(*) 55(*) 91 5 79 19 79
s3 srvr.blast.11.i.cil.c - - - - - 48 6 69 17 69
s3 srvrblast.12.i.cil.c | 258546(*) 563(*) 57(*) 15(*) 57(%) 99 6 94 23 94
s3 srvr.blast.13.i.cil.c | 167333(*) 682(*) 70(*) 18(*) 69(*) 90 5 81 20 81
s3 srvrblast.14.i.cil.c | 318982(*) 643(*) 65(*) 13(*) 64(*) 92 6 83 20 83
s3 srvr.blast.15.i.cil.c | 279319(*) 579(*) 58(*) 15(*) 58(%) 71 4 71 17 71
s3 srvrblast.16.i.cil.c | 346185(*) 596(*) 59(*) 12(*) 58(*) 98 6 8 21 86

This would enable a dynamic adjustment of the size of thes)
large blocks, and thus we could fine-tune the amount of work

that is delegated to the SMT solver. Also, we plan to exploré7

other techniques for computing abstract successors wheh a
more precise than Cartesian abstraction but less expehsine [g]
Boolean abstraction.

Acknowledgments.We thank Roman Manevich for interest- [g]
ing discussions aboutlBsT’s performance bottlenecks.

References

[20]

11
[1] D. Babic and A. J. Hu. @LysTO: Scalable and precise extended statié]
checking. InProc. ICSE pages 211-220. ACM, 2008.

[2] T.Ball, A. Podelski, and S. K. Rajamani. Boolean and esign abstrac-

tions for model checking C programs. Rroc. TACASLNCS 2031,
pages 268-283. Springer, 2001.

[3] T. Ball and S. K. Rajamani.

The L3M project: Debugging system

software via static analysis. IRroc. POPL pages 1-3. ACM, 2002.
[4] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. Théveare
model checker BAST: Applications to software engineeringint. J.

Softw. Tools Technol. Transfed(5-6):505-525, 2007.

[5] D. Beyer and M. E. Keremoglu. CRAJECKER A tool for configurable

software verification. Technical Report SFU-CS-2009-0&yd Fraser

University, January 2009.

[12]

[13]
[14]

[15]

D. Beyer, D. Zufferey, and R. Majumdar. C$AT: Interpolation for
LA+EUF. In Proc. CAV LNCS 5123, pages 304-308. Springer, 2008.

1 R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, aRd Sebastiani.

The MATHSAT 4 SMT solver. InProc. CAV LNCS 5123. Springer,
2008.

R. Cavada, A. Cimatti, A. Franzén, K. KalyanasundardnRoveri, and
R. K. Shyamasundar. Computing predicate abstractions tegriating
BDDs and SMT solvers. IiProc. FMCAD pages 69-76. IEEE, 2007.

A. Cimatti, A. Griggio, and R. Sebastiani. Efficient inp@lant gener-
ation in satisfiability modulo theories. IRroc. TACASLNCS 4963,
pages 397-412. Springer, 2008.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for syrobatiodel
checking.J. ACM 50(5):752—794, 2003.

E. M. Clarke, D. Kroening, and F. Lerda. A tool for cheaffi ANSI-

C programs. InProc. TACASLNCS 2988, pages 168-176. Springer,
2004.

E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorawt®Bs: SAT-
based predicate abstraction for ANSI-C. Rmoc. TACASLNCS 3440,
pages 570-574. Springer, 2005.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMilaAbstrac-
tions from proofs. InProc. POPL, pages 232-244. ACM, 2004.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.ylLalastraction.
In Proc. POPL, pages 58-70. ACM, 2002.

S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT tedures for
fast predicate abstraction. roc. CAV LNCS 4144, pages 424-437.
Springer, 2006.

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAREMODEL CHECKING VIA LARGE-BLOCK ENCODING 9

[16] K. L. McMillan. Lazy abstraction with interpolants. IRroc. CAV, If I; € L', by the inductive hypothesis there exists a path
LNCS 4144, pages 123-136. Springer, 2006. o! in A such thatSP SP Uf (liop.l; G
[17] G.C.Necula, S. McPeak, S. P. Rahul, and W. Weimer.: Gitermediate ,, * a(®) F 01(¢) (i,om.lj) € G,

language and tools for analysis and transformation of Crarog. In th€n we can takeo’ = ay, (Ii,op,1j). Otherwise, (li,op,1j)

Proc. CG LNCS 2304, pages 213-228. Springer, 2002. ~ must have been removed by an application of Rulg and
(18] Séo?ggr?ﬁig;lingag dsggrs;'sa'gg’pﬁr‘f‘%‘é‘é'; theoriesl. Satisfiability, s0 G c/ontalns an edgéi,op | -,1j). Therefore, we can take
0= Ul,(li,Oﬂ H 7|J)
. If I; L', then by hypothesis = 02, (Ix,op. li), (li,oR, ;).
Appendix Moreover); has been removed by an application of Rule 1. By
A. Proof of Theorem[3.1 the definition of Rule 1(lx,opy,li) is the only incoming edge

for |; in G. Therefore G’ contains an edgéy,opy; op,!;) and
In order to prove Theorein 3.1, we introduce some auxiliagfearly Iy € L’. Thus, by the inductive hypothesis there exists

lemmas. a pathoj in A’ such thatSPg,(¢) |= SPg(¢), and so we can
! . .
Lemma A.l:Let (I,op,l’) be a CFA edge, and¢;i}i a take 0" = G, (I, 0R; OB 1)- = .
collection of formulas. Then Lemma A.3:Let A= (L,G) be a CFA, and letN' = (L', G)
_ be a summarization oh. Let ¢’ be a path in&'. Then for all
op(Vi 91) = Vi SPop(#1) ¢, there exists a sé of paths inA, with the same initial and
Proof: If opis an assignment operatian= e, then final locations ass’, such thatSP4/(¢) = \/5es SPo(9).
SPs—e(Vi¢i) = IS((Vidi)s-gN(S=6€s.5)) Proof: CFA A’ is obtained fromA by a sequence of
= 35(Vi(Pisg N (5=€s-9))) rule applications. Ih =0 we haveA’ = A, If the lemma holds
_ a0, _ for one rule application, we can show by induction that the
= V(3s A(s=e
ViEs(@ [s-9 (5-3))) lemma holds for any finite sequence of rule applications.
= ViSPs—e(4i) We now show that the lemma holds for one rule application.

Let o’ =0y, (li,op,lj) be a path inA’. The proof is by

If opis an assume operati@ssumeép), then . . .
P P) induction on the length ob’. (The base case is wheoy,

SPassumep) (Vi 9i) = (Vidi)Ap is empty.)
= Vi(¢iAp) First, we observe that all locations @1 occur also inG.
= V,SP (9) By the inductive hypothesis, there exists a Bgtof paths
=T assumep) ¥ in A, with the same initial and final locations &g, such that
The remaining two cases can be proven by induction. SPG{)(q)) = \/Upeszng(dJ).
If op=op;; op,, then It (li,op,lj) € G, then we can take ¥ =
N _ oy, (li,0p,li) | op € Zp} (by LemmaAd).
SPopys0p, (Vi 1) = SPop, (SPop, (Vi 1)) { Cp)t(herV\F/%iseJ,)(IL,o%,Ij)pivas generated by an application of
= SPop, (Vi SPop, (¢1)) one of the Rules. If it was generated by Rule 1, terontains
= ViSPop,(SPop, (¢i)) two edges(li,of,lx) and (lx,0p, ;) such thatop = of; op,.
= /i SPop,:op, (i) Then we can tak& = {ay, (li,of, k), (Ik,0pe1j) | op € Zp}
(by LemmalAld). If (lj,op,lj) was generated by Rule 2,
If op=op, || op,, then then G contains two edgegl;,of,l;) and (I;,of,l;) such
SPoleopz(Vi ¢i) = SPopl(Vi ¢i)VSP0p2(Vi i) that op = Od | Od’. Let le{ap,(li,op{,lj) | Gpezp}
- _ _ and X = {op,(li,off’,lj) | op € Zp}. Then we can take
= (ViSPop, (¢i)) V (Vi SPop, (i) S =5,U3; (by LemmdAd).
= \/i(SPOpl(d’i)VSPopz(d’i)) O |
= ViSPop,|jop, (91) Proof: Now we prove Theorern 3.1.
O m () The only Rule that removes locations is Rule 1. Since
lo has no incoming edges (by definition) amg has
Lemma A.2:Let A= (L,G) be a CFA, and lef = (L',G) no outgoing edges (because of Rule 0), they cannot be
be a summarization oA. Let o be a path inA such that its removed by Rule 1.
initial and final locations occur also id. Then for allg, there (ii) “—" Follows from LemmdA.2 and (i).
exists a patho’ in A, with the same initial and final locations “—" Follows from LemmdAB and (i).
asa, such thatSP4(¢) =SP4 (¢). O]

Proof: CFA A’ is obtained fromA by a sequence of) _))
rule applications. Ifi=0 we haved’ = A. If the lemma holds B- Comparison among different BLAST configurations
for one rule application, we can show by induction that the
lemma holds for any finite sequence of rule applications.

We now show that the lemma holds for one rule application.

Leto =0y, (li,OQ,lj). T_he proof.is by induction on the Iength 41t could not have been removed by Rule 1, because when Ruledves
of g. (The base case is when is empty.) the edgeq-,-,1) and(l,-,-), it removes also the locatioh

10

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI:

TABLE IV

SOFTWRE MODEL CHECKING VIA LARGE-BLOCK ENCODING

COMPARISON AMONG DIFFERENT CONFIGURATIONS OBLAST. (NP INDICATES'NO NEW PREDICATES FOUND DURING REFINEMEN'T)

BLAST 1 BLAST 2 BLAST 3 BLAST 4 BLAST B
Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)
test locks 5.c 8.36 8.40 4.50 4.96 4.50
test locks 6.c 17.63 17.29 7.81 8.81 7.81
test locks 7.c 39.90 37.83 13.91 15.15 13.91
test locks 8.c 86.98 86.69 25.00 26.49 25.00
test locks 9.c 173.63 189.96 46.84 49.29 46.84
test locks 10.c 500.30 483.07 94.57 97.85 94.57
test locks 11.c 1645.90 1534.20 204.55 208.78 204.55
test locks 12.c >1800.00 >1800.00 529.16 533.97 529.16
test locks 13.c >1800.00 >1800.00 1229.27 1232.87 1229.27
test locks 14.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00
test locks 15.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00
cdaudio.i.cil.c 380.83 475.67 175.76 264.12 175.76
diskperf.i.cil.c - >1800.00 NP >1800.00 >1800.00
floppy.i.cil.c 218.26 >1800.00 NP >1800.00 218.26
kbfiltr.i.cil.c 23.55 69.07 NP 32.80 23.55
parport.i.cil.c 738.82 >1800.00 NP 915.79 738.82
s3 cint.blast.01.i.cil.c 72.55 526.77 33.01 1000.41 33.01
s3 clnt.blast.02.i.cil.c 80.57 268.67 62.65 312.77 62.65
s3 cint.blast.03.i.cil.c 124.99 440.25 60.62 314.74 60.62
s3 clnt.blast.04.i.cil.c 140.60 138.75 63.96 197.65 63.96
s3 srvr.blast.01.i.cil.c 1030.27 MO 811.27 1036.89 811.27
s3 srvr.blast.02.i.cil.c >1800.00 811.77 1088.43 360.47 360.47
s3 srvr.blast.03.i.cil.c 1166.38 424.53 961.72 276.19 276.19
s3 srvr.blast.04.i.cil.c 208.89 175.64 1393.08 301.85 175.64
s3 srvr.blast.06.i.cil.c >1800.00 >1800.00 653.62 304.63 304.63
s3 srvr.blast.07.i.cil.c >1800.00 >1800.00 478.05 666.53 478.05
s3 srvr.blast.08.i.cil.c >1800.00 411.92 647.87 115.76 115.76
s3 srvr.blast.09.i.cil.c >1800.00 1296.56 445.21 1037.09 445.21
s3 srvr.blast.10.i.cil.c >1800.00 >1800.00 645.23 115.10 115.10
s3 srvr.blast.11.i.cil.c 1692.77 1011.15 367.98 844.28 367.98
s3 srvr.blast.12.i.cil.c >1800.00 1188.43 658.16 304.05 304.05
s3 srvr.blast.13.i.cil.c >1800.00 MO 580.33 878.54 580.33
s3 srvr.blast.14.i.cil.c >1800.00 463.95 653.85 303.21 303.21
s3 srvr.blast.15.i.cil.c >1800.00 604.01 645.35 115.88 115.88
s3 srvr.blast.16.i.cil.c >1800.00 653.87 651.30 305.11 305.11
TOTAL (solved/time) 19/8351.18 23/11318.45 29/13233.06 1/32182.03 32/8591.12

BEYER, CIMATTI, GRIGGIO, KEREMOGLU, SEBASTIANI: SOFTWAREMODEL CHECKING VIA LARGE-BLOCK ENCODING

TABLE V
COMPARISON AMONG DIFFERENT CONFIGURATIONS OBLAST, PROGRAMS WITH ARTIFICIAL BUGS. (NP INDICATES'NO NEW PREDICATES FOUND
DURING REFINEMENT.)

BLAST 1 BLAST 2 BLAST 3 BLAST 4 BLAST B

Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

cdaudio.BUG.i.cil.c 108.85 99.82 26.83 18.79 18.79
diskperf.BUG.i.cil.c 889.79 >1800.00 926.70 >1800.00 889.79
floppy.BUG.i.cil.c 119.60 >1800.00 127.68 >1800.00 119.60
kbfiltr.BUG.i.cil.c 70.83 144.25 NP 46.80 46.80
parport.BUG.i.cil.c 5.70 10.95 1.67 2.24 1.67
s3 cint.blast.01.BUG.i.cil.c 1003.92 28.30 304.63 8.84 8.84
s3 cInt.blast.02.BUG.i.cil.c 118.48 9.02 131.42 12.26 9.02
s3 cint.blast.03.BUG.i.cil.c 167.73 6.64 133.97 12.20 6.64
s3 cInt.blast.04.BUG.i.cil.c 187.18 9.78 139.04 11.70 9.78
s3 srvr.blast.01.BUG.i.cil.c 103.06 7.59 >1800.00 162.90 7.59
s3 srvr.blast.02.BUG.i.cil.c 123.00 7.16 >1800.00 183.34 7.16
s3 srvr.blast.03.BUG.i.cil.c 55.21 7.42 1434.01 49.74 7.42
s3 srvr.blast.04.BUG.i.cil.c 79.16 7.33 >1800.00 53.22 7.33
s3 srvr.blast.06.BUG.i.cil.c 1623.73 56.11 558.18 39.81 39.81
s3 srvr.blast.07.BUG.i.cil.c 1582.86 310.84 1327.50 MO 310.84
s3 srvr.blast.08.BUG.i.cil.c >1800.00 73.59 530.10 40.51 40.51
s3 srvr.blast.09.BUG.i.cil.c >1800.00 265.48 1284.77 MO 265.48
s3 srvr.blast.10.BUG.i.cil.c >1800.00 66.88 528.29 40.24 40.24
s3 srvr.blast.11.BUG.i.cil.c 722.64 49.05 1515.26 207.09 49.05
s3 srvr.blast.12.BUG.i.cil.c 620.03 38.66 555.60 39.28 38.66
s3 srvr.blast.13.BUG.i.cil.c 831.45 251.56 1600.65 626.93 251.56
s3 srvr.blast.14.BUG.i.cil.c 773.26 53.93 557.13 39.94 39.94
s3 srvr.blast.15.BUG.i.cil.c >1800.00 77.51 530.85 40.19 40.19
s3 srvr.blast.16.BUG.i.cil.c 973.44 55.97 558.44 39.54 39.54

TOTAL (solved/time) 20/10159.92 22/1637.84 20/12772.72 0/2675.56 2412296.25

	Introduction
	Background
	Programs and Control-Flow Automata
	Predicate Abstraction
	ART-based Software Model Checking with SBE

	Large-Block Encoding
	Summarization of Control-Flow Automata
	LBE versus SBE for Software Model Checking

	Performance Evaluation
	Conclusion and Future Work
	References
	Appendix
	Proof of Theorem ??
	Comparison among different Blast configurations

