
CheckDep: A Tool for Tracking Software Dependencies

Dirk Beyer
Simon Fraser University, B.C., Canada

& University of Passau, Germany

Ashgan Fararooy
Simon Fraser University, B.C., Canada

Abstract

Many software developers use a syntactical ‘diff’ in or-
der to perform a quick review before committing changes
to the repository. Others are notified of the change by e-
mail (containing diffs or change logs), and they review the
received information to determine if their work is affected.
We lift this simple process from the code level to the more
abstract level of dependencies: a software developer can
use CheckDep to inspect introduced and removed depen-
dencies before committing new versions, and other devel-
opers receive summaries of the changed dependencies via
e-mail. We find the tool useful in our software-development
activities and now make the tool publicly available.

1. Overview

The objective of CHECKDEP is to provide feedback on the
consequences of code changes in terms of dependencies.
Our project was motivated by a concrete problem in an in-
dustrial project: controller software was continuously ex-
tended for new product versions, and the originally well-
designed software degenerated. The problem for mainte-
nance in this project is the amount of inter-dependencies be-
tween the various subsystems. A first measure to approach
the problem is to make sure that no new dependencies are
introduced, and therefore all new changes (commits) are in-
spected for dependency reduction. CHECKDEP provides a
list of changes in the dependency relations for any two ver-
sions of the project. A second measure is to continuously
refactor the system —whenever the product cycle allows—
in order to stepwise transform the system to a better subsys-
tem structure, and to evaluate every refactoring step wrt. the
amount of dependencies introduced and removed. CHECK-
DEP compares the workspace copy with the head revision
before check-in, and notifies the developer of introduced
dependencies. A change that reduces the number of inter-
subsystem dependencies is considered good under this mea-
sure, and a change that introduces more new dependencies
than it removes is considered suspicious and the developer

is alarmed. In addition to immediate textual feedback, we
provide a clustering visualization in order to locate and in-
vestigate the dependency changes.

CHECKDEP can be used as a command-line tool or as
Eclipse plug-in. Command-line invocations are necessary
in automatic processes, such as being called from a Sub-
version hook script automatically after each commit. The
plug-in works in two steps: First, the user has to specify the
dependency types to be extracted (combination of call, in-
heritance, and field access) and the two versions to compare
(either by paths of working directories, or by URLs of Sub-
version repositories). Second, the processing is done and
the textual and visual results are shown. The textual results
are a brief summary of the dependency changes and a list
of all added and removed dependencies in RSF format. The
visualization is based on a clustering layout (CCVISU) that
easily identifies the area of change in a (large) project graph.

CHECKDEP is free software, released under the Apache
2.0 license. The source code, example screen shots,
and more information on the tool are available at:
http://www.sosy-lab.org/∼dbeyer/CheckDep

Several existing tools have addressed similar problems
(CREOLE, DA4JAVA, DEPAN, DEPENDENCYFINDER).
The contribution of CHECKDEP is to provide a lightweight
tool for analyzing dependency changes in different versions
via a smooth integration with Subversion. A unique char-
acteristic of CHECKDEP is its special visualization feature.
The plug-in supports Java, C, and C++ as input, and we use
DOXYGEN and DEPENDENCYFINDER as fact extractors.

2. Features

Dependency Differences. The goal of CHECKDEP is to track
and visualize dependency changes between different ver-
sions of software. The result is returned as a dependency
graph where added and removed artifacts and dependencies
are highlighted in different colors.
Subversion Integration. CHECKDEP can be applied to dif-
ferent local workspace copies, but also to remote version
repositories (specified by URL and revision number via
choice list on the configuration screen).

18th IEEE International Conference on Program Comprehension

978-0-7695-4113-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPC.2010.51

42

project (types / members) rev co bld extr

CCVISU (236 / 1296)
28 26.4 6.2

4.8
34 117 1.4

CPACHECKER (680 / 4656)
569 35.5 12

12.3
574 33.1 3.0

CHIC4WEB (133 / 1198)
114 65.2 0.9

2.9
120 84.8 0.8

Table 1. Tool Performance (in seconds)

Visualization. For the visual presentation of the dependency
differences, we obtained the best results using a cluster-
ing layout. Artifacts (classes, members) are drawn as discs
which are placed close to each other if they are coupled
by many dependencies, and at distant positions if they are
loosely coupled [1]. An edge represents the dependency
between the two connected artifacts. New dependencies are
highlighted using red, removed dependencies using green
edges. This layout reflects the subsystem structure of the
software, and at the same time helps the user to find the
parts of the system that have changed and navigate through
the graph. CHECKDEP also provides a simple graph-query
mechanism to focus on graph changes only. E.g., CHECK-
DEP can be configured to show a subgraph that contains
only the added and removed edges in the most recent view.
Extraction of Dependency Graphs. CHECKDEP uses differ-
ent fact extractors to retrieve various kinds of dependencies
between classes and methods, from Java, C, and C++ pro-
grams. Dependencies can be method calls, inheritance rela-
tions, type-field usage relations, etc.
Performance. Table 1 shows for each project the total
number of distinct types (classes), the total number of dis-
tinct members, the revision number, the times in seconds
needed for check-out, build, and fact extraction. The in-
put repositories for the performance tests were CCVISU1,
CPACHECKER2 and CHIC4WEB3. The tests were run on a
dual core processor at 2.10 GHz with 4 GB of memory.

3. Application Examples

Development. The tool can be used to compare the devel-
oper’s working copy against the head revision of the repos-
itory wrt. dependencies, before committing new changes.
The differences in dependencies can be investigated graph-
ically (clustering layout with changed dependencies high-
lighted) or textually (RSF format). Filters and zoom-in can
be used to restrict the result to a certain part of the software.
A search feature can be used to locate specific software el-
ements in the graphical view.
Refactoring. The artifacts that participate in a refactoring
are related, and therefore, they are closely placed in the lay-

1http://ccvisu.sosy-lab.org
2http://cpachecker.sosy-lab.org
3http://www.sosy-lab.org/∼dbeyer/Chic4web

Figure 1. A ‘pull-up method’ refactoring re-
moves 6 dependencies (green) and adds 3
(red), which improves the software structure

out and easy to locate. The colored edges are highlight-
ing the dependency changes that a refactoring is responsi-
ble for. Short edges are not very important, because the
artifacts that are placed closely together are already related.
The longer an edge is, the more important and critical the
dependency: very long edges represent inter-subsystem de-
pendencies, and removal of such a dependency is a large
gain, but introducing such a dependency is degenerating the
overall structure of the system in most cases (according to
classic definitions, a structured system consists of cohesive
subsystems that are loosely coupled). In Fig. 1, CHECKDEP

illustrates a local refactoring.
Design-Change Identification. Recently, an approach was
introduced to automatically determine if a change in a pro-
gram impacts the design (i.e., UML class diagram) of the re-
lated system [2]. According to the paper, ‘design changes’
are identified in a series of steps: first by exploring the
addition or deletion of classes, then methods, and finally
changes in dependency relationships (e.g., generalization,
association). CHECKDEP can be a valuable complement:
most of the aforementioned changes are directly identifi-
able and highlighted within various dependency graphs pro-
vided by CHECKDEP. For example, added or deleted ‘gen-
eralizations’ and ‘associations’ are pointed out by added or
removed dependencies and nodes in the ‘inheritance’ and
the ‘type-field’ graphs, respectively.

References
[1] D. Beyer. CCVISU: Automatic visual software decomposi-

tion. In Proc. ICSE, pages 967–968. ACM, 2008.
[2] M. Hammad, M. L. Collard, and J. I. Maletic. Automatically

identifying changes that impact code-to-design traceability. In
ICPC, pages 20–29, 2009.

43

