
CPAchecker:

A Tool for Configurable Software Verification�,��

Dirk Beyer1,2 and M. Erkan Keremoglu2

1 University of Passau, Germany
2 Simon Fraser University, B.C., Canada

Abstract. Configurable software verification is a recent concept for ex-
pressing different program analysis and model checking approaches in
one single formalism. This paper presents CPAchecker, a tool and
framework that aims at easy integration of new verification components.
Every abstract domain, together with the corresponding operations, im-
plements the interface of configurable program analysis (CPA). The main
algorithm is configurable to perform a reachability analysis on arbitrary
combinations of existing CPAs. In software verification, it takes a con-
siderable amount of effort to convert a verification idea into actual ex-
perimental results — we aim at accelerating this process. We hope that
researchers find it convenient and productive to implement new verifica-
tion ideas and algorithms using this flexible and easy-to-extend platform,
and that it advances the field by making it easier to perform practical
experiments. The tool is implemented in Java and runs as command-line
tool or as Eclipse plug-in. CPAchecker implements CPAs for several
abstract domains. We evaluate the efficiency of the current version of our
tool on software-verification benchmarks from the literature, and com-
pare it with other state-of-the-art model checkers. CPAchecker is an
open-source toolkit and publicly available.

1 Overview

The field of software verification is a fast growing area, and researchers contribute
new ideas and approaches with enormous pace. The more new approaches are
discovered, the more difficult it is to understand the essential insight or the fun-
damental difference that makes a new approach good and better. Experimental
evaluation is often a deciding factor for whether or not a new approach is con-
sidered an advancement of the field. But it requires a considerable engineering
effort to actually build the software infrastructure for evaluating verification al-
gorithms. Adapting a suitable parser front-end and transforming the abstract
syntax tree into a format that is convenient for verification algorithms is one
example. The interaction with a theorem prover is yet another issue that needs
to be considered. There are successful approaches in program analysis as well as
in model checking, but these techniques are rarely combined; the reason is that

� This research was supported by the Canadian NSERC grant RGPIN 341819-07.
�� A preliminary version of this paper appeared as Technical Report SFU-CS-2009-02 in 2009.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 184–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Tool for Configurable Software Verification 185

it is indeed extremely difficult to combine them. Most published approaches are
not even comparable, because the choice of the parser front-end, the choice of
the theorem prover, and the choice of the pointer-alias analysis algorithm in the
corresponding tool implementation, considerably influence the performance and
precision of the new verification algorithm. When evaluating a performance com-
parison of two approaches, it is often difficult to identify what the new approach
contributes and what is due to the different environment. In practice, it was so
far extremely difficult to perform an experimental performance evaluation of one
component while keeping all other components constant.

Configurable program analysis (CPA) provides a conceptual basis for express-
ing different verification approaches in the same formal setting. The CPA formal-
ism provides an interface for the definition of program analyses, which includes
the abstract domain, the post operator, the merge operator, and the stop op-
erator [4]. Consequently, the corresponding tool implementation CPAchecker

provides an implementation framework that allows the seamless integration of
program analyses that are expressed in the CPA framework. The comparison
of different approaches in the same experimental setting becomes easy and the
experimental results will be more meaningful.

Availability. The source code and all benchmark programs for CPAchecker are
available online at http://cpachecker.sosy-lab.org. The tool is free software,
released under the Apache 2.0 license.

Related Tools. In many respects, CPAchecker is similar to Blast [3]. Our
predicate analysis is also based on lazy abstraction and interpolation-based re-
finement. The novelty of CPAchecker is that it is easy to configure. For ex-
ample, the tool can run a predicate analysis using single-block encoding (SBE),
like Blast [3] and Slam [1], but also using large-block encoding (LBE) [2] or
even adjustable-block encoding (ABE) [5]. The advantage of the new tool over
tools that implement a separated abstract-check-refine loop, like Slam [1] and
SATabs [8], is that the on-the-fly approach allows the design of more flexible, and
more efficient, algorithms (like ABE [5]). We have integrated the bounded model
checker CBMC [7] into CPAchecker for a bit-precise path-feasibility check.

2 Architecture and Implementation

Figure 1 shows an overview of the CPAchecker architecture. The central data
structure is a set of control-flow automata (CFA), which consist of control-flow
locations and control-flow edges. A location represents a program-counter value,
and an edge represents a program operation, which is either an assume operation,
an assignment block, a function call, or a function return (we do not consider
more complex operations due to a well-known reduction called C intermediate
language 1). Before a program analysis starts, the input program is transformed
into a syntax tree, and further into CFAs. The current version of CPAchecker

uses the parser from the CDT, a fully functional C and C++ plug-in for the

1 Available at http://www.cs.berkeley.edu/∼necula/cil

http://cpachecker.sosy-lab.org/
http://www.cs.berkeley.edu/~necula/cil/


186 D. Beyer and M.E. Keremoglu

Fig. 1. CPAchecker — Architecture overview

Eclipse platform. Our framework provides interfaces to SMT solvers and inter-
polation procedures, such that the CPA operators can be written in a concise and
convenient way. Currently we use MathSAT as an SMT solver, and CSIsat and
MathSAT as interpolation procedures. We use CBMC as a bit-precise checker
for the feasibility of error paths, JavaBDD as a BDD package, and provide an
interface to an Octagon representation as well.2

The CPA algorithm is the core of CPAchecker: it performs the reachability
analysis, and operates on an object of the abstract data type CPA, i.e., the
algorithm applies operations from the CPA interface without knowing which
concrete CPA it is analyzing [4]. For most configurations, the concrete CPA will
be a composite CPA, which implements the combination of different CPAs. In or-
der to extend CPAchecker by integrating an additional CPA for a new abstract
domain, only two steps are necessary. First, an entry in the global properties
file is necessary in order to announce the new CPA for composition. Second,
the new CPA needs to implement the interface CPA, and implementations of all
CPA operation interfaces need to be provided. Figure 2 shows the interaction:
The CPA algorithm (shown at the top in the figure) takes as input a set of
control-flow automata (CFA) representing the program, and a CPA, which is in
most cases a Composite CPA. The interfaces correspond one-to-one to the formal
framework [4]. The elements in the gray box (top right) in Fig. 2 represent the
abstract interfaces of the CPA and the CPA operations. The two gray boxes at
the bottom of the figure show two implementations of the interface CPA, one is a
CompositeCPA that can combine several other CPAs, and the other is a LeafCPA
(cf. the Composite design pattern). For example, suppose we want to implement
a CPA for shape analysis. We would provide an implementation for CPA, possi-
bly called ShapeCPA, and implementations for the operation interfaces that are
presented in the top-right box. If we want to experiment with several different
merge operators, we would provide several different implementations of Merge

2 Tools available at http://mathsat4.disi.unitn.it, http://www.sosy-lab.org/∼dbeyer/CSIsat,
http://www.cprover.org/cbmc, http://javabdd.sourceforge.net, http://www.di.ens.fr/∼mine/oct

http://mathsat4.disi.unitn.it/
http://www.sosy-lab.org/~dbeyer/CSIsat/
http://www.cprover.org/cbmc/
http://javabdd.sourceforge.net/
http://www.di.ens.fr/~mine/oct/


A Tool for Configurable Software Verification 187

CPA

Abstract Element Interface

Abstract Domain Interface

Transfer Relation Interface

Merge Operator Intarface

Stop Operator Intarface

Leaf CPA

Shared Libraries

Abstract Element

Abstract Domain

Transfer Relation

Merge Operator

Stop Operator

CPA Algorithm

CFA

Composite
CPA

Composite Abstract Domain

1

Composite Abstract Element

Composite Transfer Relation

Composite Merge Operator

Composite Stop Operator

0 .. *

Fig. 2. CPAchecker — Design for extension

Operator Interface that can be freely configured for use in various experiments.
Note that a user-defined CPA can be either a CompositeCPA (composing other
CPAs) or a LeafCPA (used stand alone or as part of a CompositeCPA).

3 Experimental Evaluation

In this section, we compare CPAchecker with several existing tools. Our goal is
to show that our CPA-based tool not only contributes a great flexibility by its
configuration possibilities, but also that it can significantly improve the perfor-
mance due to the possibility of constructing interesting analysis configurations.

Benchmarks. We experimented with three sets of benchmark verification prob-
lems. The first set consists of simplified, partial Windows device drivers; the
second set consists of simplified versions of the state machine that handles the
communication in the SSH suite. Different numbers in a program name indicate
different simplifications that were applied to the source code. Both sets of bench-
marks were taken from the Blast repository 3. The third set consists of SystemC
programs from the supplementary web page of SyCMC [6] 4. The string BUG in
the program name indicates that the program contains a defect. All benchmarks
and tools are available online at http://www.sosy-lab.org/∼dbeyer/cpa-tool.

Reporting. Table 1 shows the verification results for four tools. All experiments
were performed on a machine with a 3.2GHz Quad Core CPU and 16GB of
RAM. The operating system was Ubuntu 10.10 (64 bit), using Linux 2.6.35 as
kernel and OpenJDK 1.6 as Java virtual machine. The first column reports the

3 http://www.sosy-lab.org/∼dbeyer/Blast
4 https://es.fbk.eu/people/roveri/tests/fmcad2010

http://www.sosy-lab.org/~dbeyer/cpa-tool/
http://www.sosy-lab.org/~dbeyer/Blast/
https://es.fbk.eu/people/roveri/tests/fmcad2010/


188 D. Beyer and M.E. Keremoglu

Table 1. Performance experiments

Program Result CBMC SATabs Blast CPAchecker
(expected) Predicate Explicit

cdaudio_simpl1 Safe 2.5 ✓ − to 120 ✓ 25 ✓ 5.0 ✓
diskperf_simpl1 Safe − er − to 78 ✓ 21 ✓ − to
floppy_simpl3 Safe .27 ✓ 720 ✓ 68 ✓ 12 ✓ 4.0 ✓
floppy_simpl4 Safe .56 ✓ − to 95 ✓ 19 ✓ 4.2 ✓
kbfiltr_simpl1 Safe .09 ✓ 20 ✓ 8.3 ✓ 4.8 ✓ 2.8 ✓
kbfiltr_simpl2 Safe .18 ✓ 46 ✓ 12 ✓ 7.3 ✓ 3.4 ✓
cdaudio_simpl1_BUG Bug 2.3 ✓ − to 57 ✓ 16 ✓ 3.7 ✓
floppy_simpl3_BUG Bug .28 ✓ 210 ✓ 3.2 ✓ 8.9 ✓ 3.1 ✓
floppy_simpl4_BUG Bug .63 ✓ 650 ✓ 3.2 ✓ 15 ✓ 3.3 ✓
kbfiltr_simpl2_BUG Bug .20 ✓ 100 ✓ 6.4 ✓ 5.4 ✓ 2.9 ✓

s3_clnt_1 Safe − er 49 ✓ 180 ✓ 6.9 ✓ 21 ✓
s3_clnt_2 Safe − er 610 ✓ 240 ✓ 9.0 ✓ 19 ✓
s3_clnt_3 Safe − er 630 ✓ − er 11 ✓ 19 ✓
s3_clnt_4 Safe − er 330 ✓ 150 ✓ 11 ✓ 21 ✓
s3_srvr_1 Safe − er 130 ✓ − er 28 ✓ − to
s3_srvr_2 Safe − er 170 ✓ − er 15 ✓ − to
s3_srvr_3 Safe − er 120 ✓ − er 14 ✓ − to
s3_srvr_4 Safe − er 210 ✓ − er 13 ✓ − to
s3_srvr_6 Safe − er − to 200 ✓ 77 ✓ − to
s3_srvr_7 Safe − er − to − er 25 ✓ − to
s3_srvr_8 Safe − er − to 85 ✓ 310 ✓ − to
s3_clnt_1_BUG Bug 7.4 ✓ 15 ✓ 9.3 ✓ 4.9 ✓ 3.2 ✓
s3_clnt_2_BUG Bug 7.7 ✓ 18 ✓ 10 ✓ 5.0 ✓ 2.6 ✓
s3_clnt_3_BUG Bug 8.9 ✓ 20 ✓ 10 ✓ 4.7 ✓ 2.7 ✓
s3_clnt_4_BUG Bug 7.9 ✓ 18 ✓ 9.1 ✓ 4.7 ✓ 2.7 ✓
s3_srvr_1_BUG Bug 12 ✓ 15 ✓ − er 4.4 ✓ 12 ✓
s3_srvr_2_BUG Bug 10 ✓ 13 ✓ 130 ✓ 4.2 ✓ 12 ✓

bist_cell Safe − er 21 ✓ 430 ✓ 280 ✓ − er
kundu Safe − er 51 ✓ − to 800 ✓ − mo
mem_slave_tlm.1 Safe − to 46 ✓ − er 650 ✓ − er
mem_slave_tlm.2 Safe − to 110 ✓ − er − to − er
mem_slave_tlm.3 Safe − to 230 ✓ − er − to − er
mem_slave_tlm.4 Safe − to 480 ✓ − er − to − er
mem_slave_tlm.5 Safe − to − to − er − to − er
pc_sfifo_1 Safe − er 3.0 ✓ 14 ✓ 7.7 ✓ − to
pc_sfifo_2 Safe − er 2.9 ✓ 55 ✓ 14 ✓ − to
token_ring.1 Safe − er 4.2 ✓ 36 ✓ 14 ✓ − er
token_ring.2 Safe − er 18 ✓ − er 420 ✓ − er
token_ring.3 Safe − er 34 ✓ − er − to − er
token_ring.4 Safe − to 76 ✓ − to − to − er
token_ring.5 Safe − to 200 ✓ − to − to − er
token_ring.6 Safe − to 420 ✓ − to − to − er
token_ring.7 Safe − to − to − to − to − er
token_ring.8 Safe − to − to − to − to − er
toy Safe − er 10 ✓ − to − to − er
kundu1_BUG Bug 70 ✓ 20 ✓ 88 ✓ 11 ✓ 2.6 ✓
kundu2_BUG Bug 350 ✓ 49 ✓ 230 ✓ 57 ✓ 3.0 ✓
toy1_BUG Bug 380 ✓ 12 ✓ − to 560 ✓ 3.0 ✓
toy2_BUG Bug 330 ✓ 8.9 ✓ − to 270 ✓ 2.9 ✓
transmitter_BUG.1 Bug 14 ✓ 3.2 ✓ 11 ✓ 3.7 ✓ 2.4 ✓
transmitter_BUG.2 Bug 55 ✓ 11 ✓ 86 ✓ 8.4 ✓ 2.6 ✓
transmitter_BUG.3 Bug 190 ✓ 20 ✓ 330 ✓ 40 ✓ 2.8 ✓
transmitter_BUG.4 Bug 510 ✓ 62 ✓ 670 ✓ − to 2.9 ✓
transmitter_BUG.5 Bug − to 140 ✓ − to − to 3.3 ✓
transmitter_BUG.6 Bug − to 340 ✓ − to − to 3.3 ✓
transmitter_BUG.7 Bug − to − to − to − to 3.4 ✓
transmitter_BUG.8 Bug − to − to − to − to 3.6 ✓
transmitter_BUG.9 Bug − to − to − to − to 3.8 ✓
transmitter_BUG.10 Bug − to − to − to − to 4.1 ✓
transmitter_BUG.11 Bug − to − to − to − to 4.4 ✓
transmitter_BUG.12 Bug − to − to − to − to 4.5 ✓
transmitter_BUG.13 Bug − to − to − to − to 5.1 ✓



A Tool for Configurable Software Verification 189

program name and the second column indicates the expected verification result.
The entries in the table use the following conventions: run times are given in
seconds of CPU time; to and mo indicate that the run was terminated after
900 s of run time or 12GB of memory were consumed, respectively; ✓ indicates
that the expected verification result was correctly computed; er indicates that
the checker failed to return a verification result, i.e., it gave up for some reason,
or it crashed.

Tools. Column CBMC reports the results obtained using the bounded model
checker CBMC 3.9. The bound was set to 10 loop iterations (--32 --error-label

"ERROR" --unwind 10), which detects many of the bugs and proves safety for five
drivers (by computing the loop bound); in general, nothing can be said
about safe programs. If CBMC reports a violated loop assertion, we add
--no-unwinding-assertions to the options and re-run the analysis, trying to identify
more bugs. Column SATabs is based on SATabs 2.6 with the standard configu-
ration (--32 --error-label "ERROR"); an explicit CEGAR loop is performed. Column
Blast reports the results using Blast 2.5 (with MathSAT2 as solver [2]), config-
ured to employ lazy, interpolation-based refinement, the DFS algorithm for the
state-space exploration, and the recommended predicate-search heuristic (-craig
2 -dfs -predH 7 -nosimplemem -alias ""). Column CPAchecker was obtained using Re-
vision 3330 of CPAchecker, with two configuration options: on the left, we used
predicate analysis where the adjustable-block encoding was configured for large
blocks (-config symbpredabsCPA-lbe.properties) [5]; on the right, we used an explicit-
value analysis that tracks explicit values for each variable, where CBMC is used
to certify that an error path corresponds to a true bug by encoding the error
path into a C program that is given to CBMC (-config explicitAnalysis.properties).

Summary. The general outcome of the evaluation is that CPAchecker’s pred-
icate analysis outperforms Blast in all but four cases. CPAchecker (predicate)
outperforms SATabs on all driver and ssh programs; for the SystemC programs,
SATabs is better than CPAchecker (predicate). However, for the programs with
a bug, CPAchecker can be started with an explicit-value analysis and compute
the result within seconds (this is especially impressive for the SystemC programs
with a bug). CBMC was most successful on the driver programs. There was no
false-alarm, and no tool reported a violating program as safe.

Acknowledgments. We thank G. Endler, A. Griggio, T. Henzinger, A. Holzer,
S. Löwe, A. v. Rhein, M. Tautschnig, G. Théoduloz, P. Wendler, and the Blast

developers for their direct and indirect contributions to the CPAchecker project.

References

1. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static
analysis. In: POPL 2002, pp. 1–3. ACM, New York (2002)

2. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model
checking via large-block encoding. In: FMCAD 2009, pp. 25–32. IEEE Computer
Society Press, Los Alamitos (2009)



190 D. Beyer and M.E. Keremoglu

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

4. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: FMCAD 2010, pp. 189–197 (2010)

6. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A software
model checking approach. In: FMCAD 2010, pp. 51–59 (2010)

7. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Hei-
delberg (2004)

8. Clarke, E., Kröning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)


	CPAchecker: A Tool for Configurable Software Verification
	Overview
	Architecture and Implementation
	Experimental Evaluation
	References


