
Feature-Aware Verification

Sven Apel 1, Hendrik Speidel 1, Philipp Wendler 1,
Alexander von Rhein 1, and Dirk Beyer 1,2

1 University of Passau, Germany
2 Simon Fraser University, B.C., Canada

Technical Report, Number MIP-1105
Department of Computer Science and Mathematics

University of Passau, Germany
September 2011

ar
X

iv
:1

11
0.

00
21

v1
 [

cs
.S

E
]

 3
0

Se
p

20
11

Feature-Aware Verification
Sven Apel 1, Hendrik Speidel 1, Philipp Wendler 1, Alexander von Rhein 1, and Dirk Beyer 1,2

1 University of Passau, Germany
2 Simon Fraser University, B.C., Canada

Abstract—A software product line is a set of software products
that are distinguished in terms of features (i.e., end-user–visible
units of behavior). Feature interactions —situations in which the
combination of features leads to emergent and possibly critical
behavior— are a major source of failures in software product
lines. We explore how feature-aware verification can improve the
automatic detection of feature interactions in software product
lines. Feature-aware verification uses product-line verification
techniques and supports the specification of feature properties
along with the features in separate and composable units. It
integrates the technique of variability encoding to verify a product
line without generating and checking a possibly exponential
number of feature combinations. We developed the tool suite
SPLVERIFIER for feature-aware verification, which is based on
standard model-checking technology. We applied it to an e-mail
system that incorporates domain knowledge of AT&T. We found
that feature interactions can be detected automatically based
on specifications that have only feature-local knowledge, and
that variability encoding significantly improves the verification
performance when proving the absence of interactions.

I. INTRODUCTION

A software product line is a family of software products that
share a common set of features and differ in others [12]. A
feature is an end-user–visible behavior of a software product
that is of interest for some stakeholder. A feature interaction is
a situation in which the composition of several features leads
to emergent behavior that does not occur when one of them is
absent. The feature-interaction problem (i.e., the problem of
predicting and detecting feature interactions) has been studied
and addressed before and is still a major challenge [8].

A feature-oriented product line is composed of feature
modules that encapsulate the code of each feature into a
separate and composable unit [1]. While this approach in-
creases variability and reusability [1], it makes the detection
of feature interactions difficult, because typically many feature
combinations are possible, and an interaction may occur only
in some of them.

Our aim is to explore how product-line–verification tech-
niques [10], [11], [18] (i.e., efficiently verifying that all
products of a product line satisfy their specification) can be
used to automatically detect feature interactions. Especially,
we concentrate on two challenges that arise in feature-oriented
software product lines: A first challenge, which was formu-
lated by Hall [14], is how to detect feature interactions based
on specifications that do not have global system knowledge.
The background is that the specification of a feature should
not need to be aware of all other features of the system. It
is desirable to specify and implement features in separate

An abbreviated version of this article appeared in Proc. ASE 2011 [6].

and composable units, while still being able to detect feature
interactions, which typically emerge when multiple features
are combined [5], [14].

A second challenge, which applies to product-line analysis
in general [2], [10], [11], [17], [18], [22], is to detect feature
interactions without the need of generating and checking all
individual products. Typically, many different feature com-
binations are possible, so detecting feature interactions by
generating all possible combinations may not be feasible.

We call the approach of verifying the absence (or detecting
the presence) of feature interactions in feature-oriented product
lines feature-aware verification. We base it on a number
of ingredients. First, we provide a specification language
to specify a feature’s temporal properties in a separate and
composable unit (along with its implementation). Second, we
use the technique of variability encoding (which is based on
configuration lifting [22]) to verify a complete product line in
a single run ensuring that all possible feature combinations
are free of critical feature interactions. Third, we use off-
the-shelf model-checking techniques, rather than relying on
modifications and extensions of existing model checkers. This
has the benefit that we can experiment with different model
checkers and profit from recent developments in this field.

We have developed the tool chain SPLVERIFIER for feature-
aware verification, and we use it in a case study —an e-mail
client that was developed as a product line— to investigate
the potential of feature-aware verification for detecting feature
interactions. We base our study on Hall’s e-mail system
specification, which is a test-bed for feature interactions and
incorporates domain knowledge of AT&T: it contains several
realistic and unintuitive feature interactions and it has been
used by other researchers in this area [20].

In summary, we contribute the following:1

• We present feature-aware verification, an approach to
detect feature interactions using composable feature im-
plementations and specifications. It uses product-line
verification techniques, variability encoding, and off-the-
shelf model checking technology.

• We formalize key aspects of feature-aware verification
including variability encoding, and we provide a proof of
its correctness, which has not been provided by previous
work [22].

• By means of a case study that incorporates the domain
knowledge of AT&T on e-mail systems, we explore how
feature-aware verification is able to automatically detect
feature interactions in feature-oriented product lines. We

1All data and results are available on the Web: http://fosd.net/FAV/.

http://fosd.net/FAV/

found that feature-aware verification is able to detect
all interactions in Hall’s e-mail client based on feature
specifications that have only local knowledge.

• Based on a number of experiments, we derive a model
that describes when variability encoding is beneficial. We
found that variability encoding improves the verification
performance if the task is to prove the absence of unsafe
feature interactions or if the product line contains only
few interactions that violate the specification.

In previous work, a modeling language and a model analyzer
were used to detect unsafe feature interactions in feature-
oriented design [5], however, without considering the chal-
lenges of product lines and without a formal model and mea-
surements. A short version of this report has been published
in the ASE’11 proceedings [6].

II. BACKGROUND AND PROBLEM STATEMENT

The goal of feature orientation is to make features explicit in
design and code, for example, in the form of composable fea-
ture modules [1]. Products are composed from feature modules
by superimposition [3], which is a language-independent form
of deep mixin composition [15]. Basically, superimposition
merges the code of all features recursively based on nominal
and structural similarity. Typically, there is a total order of
feature modules defined, because feature composition is not
generally commutative [4]. In our case study, we use the tool
FEATUREHOUSE [3] for composition.

In Figure 1, we depict excerpts of four feature modules
taken from our case study. Feature EmailClient implements a
basic e-mail client, feature Encrypt encrypts outgoing e-mails,
feature Decrypt decrypts incoming e-mails, and feature For-
ward forwards incoming e-mails to another host. Note that
encryption and decryption are asymmetric and rely on the
availability of proper keys — a circumstance that gives rise to
a feature interaction, as we will explain shortly.

EMailClient is the base feature in our example. It introduces
a structure email for representing e-mails and the two functions
outgoing and incoming for handling incoming and outgoing
e-mails. Composing it with feature Encrypt, the existing
structure email is extended by the two new fields isEncrypted
and encryptionKey, function encrypt is added, and the existing
function outgoing is overridden to intercept outgoing e-mails
and to encrypt them using function encrypt; the keyword
original is used to invoke the overridden function. Similarly,
feature Decrypt introduces a function decrypt and overrides the
existing function incoming to intercept and decrypt incoming
e-mails. Finally, feature Forward introduces a function forward
and overrides the existing function incoming to forward incom-
ing e-mails to another host.

As there are different feature-oriented languages and tools
available [4], we concentrate on a common set of functionality:
a feature module may add new fields, functions, and structures
as well as refine existing functions by overriding.

Typically, products can be composed from features in dif-
ferent combinations. The compositional flexibility gives rise
to feature interactions. A feature interaction is a situation
in which new behavior emerges from the composition of

Feature EMailClient
1 // representation of e−mail
2 struct email {
3 int id; char ∗from; char ∗to; char ∗subject; char ∗body;
4 };
5
6 // outgoing e−mails are processed by this function before they leave the system
7 void outgoing (struct client ∗client, struct email ∗msg) { ... }
8
9 // incoming e−mails reach the client at this point and are stored in a mailbox

10 void incoming (struct client ∗client, struct email ∗msg) { ... }

Feature Encrypt
11 // extending the e−mail structure by information on encryption
12 struct email {
13 int isEncrypted;
14 char ∗encryptionKey;
15 };
16
17 // encrypt a given e−mail, if the public key of the receiver is known
18 void encrypt (struct client ∗client, struct email ∗msg) { ... }
19
20 // override function outgoing to encrypt e−mails before they are sent
21 void outgoing (struct client ∗client, struct email ∗msg) {
22 encrypt (client, msg);
23 original (client, msg); // invoke the overridden function
24 }

Feature Decrypt
25 // decrypt a given e−mail
26 void decrypt (struct client ∗client, struct email ∗msg) { ... }
27
28 // override function incoming to decrypt encrypted incoming e−mails
29 void incoming (struct client ∗client, struct email ∗msg) {
30 decrypt (client, msg);
31 original (client, msg); // invoke the overridden function
32 }

Feature Forward
33 // forward an e−mail to another host
34 void forward (struct client ∗client, struct email ∗msg) { ... }
35
36 // override function incoming to forward e−mails automatically
37 void incoming (struct client ∗client, struct email ∗msg) {
38 forward (client, msg);
39 original (client, msg); // invoke the overridden function
40 }

Fig. 1. A feature-oriented implementation of an e-mail client in C (excerpt).

two or more features that cannot easily be deduced from
the behavior of the features involved. The emergent behavior
can be undesired and associated with unexpected program
states [8].

While the features Encrypt and Decrypt of the e-mail
example depend on each other (they share common data
structures and functions) and should only be selected together,
feature Forward has been developed independently of the two,
only based on feature EMailClient. The composition of all
four features leads to an undesired feature interaction.The
interaction occurs if one host sends an encrypted e-mail to
a second host that forwards the e-mail automatically to a
third host. If the second host does not have the public key
of the third host, it forwards the e-mail in plain text (Forward
does not know whether an e-mail is encrypted). This situation
violates the specification of feature Encrypt, which states that
e-mails that have been encrypted initially must never be sent

2

unencrypted over the network.2

Hall notes that the detection of feature interactions based on
feature-local specifications is an open problem [14]. That is,
the specification of a feature should not necessarily be aware of
all other features of the system, but only of the ones it uses and
extends directly. In our example, we need a specification of the
desired behavior of feature Encrypt that states that e-mails that
are received in encrypted form must not be sent in plain text
— without referring to other independently developed features
such as Forward.

Note that, even if there is a feature model that describes the
domain dependencies between features [13], it typically does
not cover implementation-level dependencies that may lead to
inadvertent feature interactions at runtime [23]. Furthermore,
in a scenario with distributed feature composition there is no
global feature model — features are developed in isolation
and composed in an ad-hoc manner [16]. Hence, we need a
mechanism that is able to detect feature interactions automat-
ically based on the specifications and implementations of the
features involved.

III. SPECIFYING FEATURES

To be able to reason about feature interactions, each feature
needs a formal specification of its behavior and the constraints
that have to be fulfilled if it is selected (i.e., if it is present
in the generated product). A key goal of feature-oriented pro-
gramming is to implement and specify features in separate and
composable units. Ideally, a feature’s specification refers only
to itself and a certain basis (i.e., the features that it extends and
uses directly). We would like to explore to what extent this is
possible. Beside missing global domain knowledge, scalability
is a motivation for feature-local specifications. A system in
which every feature has to be aware of every other feature
does not scale well with regard to program comprehension
when the number of features increases.

1 // automaton definitions
2 auto_decl : "automaton" auto_name "{" intro_decl? intercept_decl+ "}";
3
4 // introductions
5 intro_decl : "introduction" "{" shadow_decl∗ c_decl∗ "}";
6
7 // shadow declarations
8 shadow_decl : "shadow" c_struct_decl;
9

10 // function−execution interceptions
11 intercept_decl : ("before" event_decl) | ("after" (return_name "=")? event_decl);
12
13 // event declarations
14 event_decl : type event_name "(" param_list ")" c_func_body;

Fig. 2. Grammar of automata-based specifications of features (simplified).

We have developed a language to specify features in sepa-
rate and composable units. We define its syntax in Figure 2.
A feature is specified by one or more automata, declared
by keyword automaton. Keyword introduction can be used to
introduce auxiliary functions and structures (rule c_decl refers

2Of course, we could implement or specify the features differently to fix
the interaction, but we base the example on the work of Hall [14], which
captures the essence of real-world feature interactions in e-mail systems.

to C declarations), and keyword shadow adds members to
existing C structures (c_struct_decl refers to C structure decla-
rations) that are visible only to the automaton. Both constructs
are used to make the automata stateful. The keywords before
and after define events to intercept function executions. In the
body of the event declaration (c_func_body refers to C function
bodies), the developer can use the keyword fail (not shown in
Fig. 2) to indicate that the system reaches an error state, which
we use to indicate a feature interaction.

An automaton specifies a safety property of the behavior of
a feature. That is, it defines in which circumstances related
to the feature the execution of the overall system reaches
an error state (fail); all other behaviors are accepted and
thus considered safe.3 The automata language of Figure 2
represents the subset of linear temporal logic that is concerned
with safety properties.

Note that, for now, we do not allow a specification of one
feature to extend or modify the specification of another feature.
While we can imagine some examples for which this might
be useful, we stick with the conservative approach to avoid
unintended interactions at the level of specifications (there
is the danger to lift the feature-interaction problem from the
implementation level to the specification level).

Example: In Figure 3, we show the specification of
feature Encrypt. When the client receives an encrypted e-mail
(lines 6–8), the status (encrypted or not) of the e-mail is stored
(line 7) into a field that has been attached as a shadow to
structure email (line 3). When an e-mail that was encrypted
leaves the system (lines 10–12), it must still be encrypted;
if not, the e-mail client reaches an error state defined by
keyword fail (line 11). This specification is based on the work
of Hall [14]. It is local in the sense that it does not know
anything about the changes feature Forward makes to the e-
mail system. But still, it can be used to detect the interaction
between Encrypt and Forward.

1 automaton EncryptSpec {
2 introduction {
3 shadow struct email { int in_encrypted; };
4 }
5
6 before void incoming(_:struct client∗, msg:struct email∗) {
7 msg−>in_encrypted = isEncrypted(msg);
8 }
9

10 after void outgoing(_:struct client∗, msg:struct email∗) {
11 if(msg−>in_encrypted != 0 && !isEncrypted(msg)) { fail; }
12 }
13 }

Fig. 3. Automaton-based specification of feature Encrypt.

IV. DETECTING INTERACTIONS

Based on feature-local specifications, there are two options
of detecting feature interactions in a product line: (1) generate
all products and check them one at a time (Sec. IV-A), and (2)
generate one product simulator that can simulate the behavior

3To avoid situations in which an automaton modifies a program in an
undesired way or even interferes with other automata, we require automata
to be free of side effects.

3

of each product of the product line and check it in a single
verification pass using variability information (Sec. IV-B).

A product line consists of a finite set F of features and
a feature model FM ⊆ P(F), which defines the set of valid
feature combinations (i.e., products). Each feature f ∈ F has
an implementation impl(f) and a specification spec(f).

A. Detecting Interactions in Products

Once the features of a product p = {f1, . . . , fn} ∈ FM are
selected, the composer (e.g., FEATUREHOUSE) can generate
the corresponding code impl(p). The resulting implementation
of the product can be checked against the specifications of the
features selected for the product, that is, ∀f ∈ p : impl(p) |=
spec(f). We use a model checker that statically determines
whether the execution of the composed product can reach
an error state, as defined by the features involved. If that
happens, we know that the composition violates the constraints
of at least one participating feature and indicates a feature
interaction.

To verify that all products of a product line are free of
interactions, we have to generate and check all products
individually, which we call the brute-force approach:

∀p ∈ FM : ∀f ∈ p : impl(p) |= spec(f)

(FM ,F) OK

Example: In Figure 4, we show the output of a model
checker that has detected the unsafe interaction between the
features Encrypt and Forward in the instrumented code of the
product shown in Figure 1. The figure shows the control-
flow graph that describes how the composed e-mail system
reaches an error state and thus exhibits an unsafe feature
interaction. The states along the error path are numbered
and connected by solid arrows (dotted arrows do not belong
to the error path). Different parts of the state graph are
highlighted with different background colors to illustrate that
they belong to different features. The automaton of feature
Encrypt (denoted with ‘EncryptSpec’ in Figure 4) introduces
error states (using keyword fail) that reveal undesired behavior
triggered by feature interactions.

B. Detecting Interactions in Product Lines

An alternative to the brute-force approach is to create a
product simulator that contains all feature behaviors of a
product line, and to use information on their mutual relations
during verification. The goal is to verify every part of the
state space only once, even if the part is used in several
feature combinations. The background is that, typically, the
products of a product line share many similarities of which a
model checker can take advantage, rather than reasoning about
individual products in isolation:

∀f ∈ F : var_enc(FM ,F) |= spec(f)

(FM ,F) OK

Function var_enc implements variability encoding, and
P denotes the resulting product simulator. Variability encoding
makes information about valid feature combinations from the
feature-model level available at the implementation level. All

[msg−>in_encrypted != 0

[msg−>in_encrypted != 0]

encrypt(client, msg)

outgoing(client, msg)

[msg−>in_encrypted == 0]

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

...

encrypt(client, msg)

[public key available]

do_encrypt(client, msg)

 && !isEncrypted(msg)] || isEncrypted(msg)]
[msg−>in_enrypted == 0

incoming(client, msg)

forward(client, msg)

outgoing(client, msg)

decrypt(client, msg)

[public key available]

do_encrypt(client, msg)

[msg−>in_encrypted != 0
 && !isEncrypted(msg)] || isEncrypted(msg)]

[msg−>in_enrypted == 0

incoming(client, msg) fail

fail

...

[public key not available]

[public key not available]
Encrypt

Decrypt

Forward

Encrypt

EMailClient

EMailClient

EMailClient

EMailClient

EncryptSpec

EncryptSpec

Fig. 4. Error path of the unsafe interaction between Encrypt and Forward
of the product shown in Figure 1. ([...] denotes a condition.)

feature code and the feature model are encoded in the product
simulator P. The state space of P subsumes the state spaces of
all valid products of the product line, from which the model-
checking procedure can benefit during the verification process.
It allows the model checker to detect feature interactions more
efficiently, because not all individual feature combinations
have to be unfolded in the model checker’s state space.

Variability Encoding: The procedure of variability en-
coding is a modification of the regular composition process.
All feature modules are composed according to the total
composition order. The resulting product simulator P can
simulate the behavior of any product of the product line.

First, variability encoding defines for each feature a global
boolean variable that models the presence or absence of the
feature: 4

f ∈ F

ε −→ int f;

where ε is the empty program element. We model the addition
of an element to P as a transformation of the empty element
ε to the element that we want to add.

Second, variability encoding introduces for each function
refinement a dispatcher function that dispatches between the

4For simplicity, we assume that there are no name clashes when adding the
feature variables to P; otherwise fresh names are chosen.

4

refined and the refining function depending on whether the
feature that contains the refinement is selected:

∃m(P p′){ s′ } ` f ′ refines(m, f, f ′)

ε −→ m(P p){ if (f) mf (p); else mf ′(p); }
m(P p′){ s′ } ` f ′ −→ mf ′(P p′){ s′ }

m(P p){ s } ` f −→ mf (P p){ [original(q) 7→ mf ′(q)] s }

where m(P p){ s } is a function declaration with name m,
parameter list P p, and a function body with a list s of
statements. The syntax mdecl ` f denotes that the function
declaration mdecl is introduced (or refined) by feature f . The
predicate refines holds if f refines a function m of another
feature f ′. The result of variability encoding is the following:
The refining function is renamed to mf , the refined function is
renamed to mf ′ , and the keyword original is replaced by a call
to the refined function. The dispatcher function uses the value
of the boolean variable associated with the refining feature f
(i.e., whether it is selected or not) to mimic the control flow
of a product with and without feature f (i.e., calling mf or
mf ′).

Third, variability encoding represents dependencies between
features (i.e., the feature model) using a boolean formula
over the boolean feature variables and encodes corresponding
constraints:

formula =
∨

p∈FM

(
(
∧

f∈p f) ∧ (
∧

f∈F ,f 6∈p ¬f)
)

ε −→ int feature_model() { return formula }

Finally, we enclose the entire program execution in a con-
ditional block that is executed only if the constraints imposed
by the feature model are satisfied; this way, execution paths
that are associated with invalid feature combinations are not
considered by the model checker:

int main() { s } −→ int main() { if (feature_model()) { s } }

Model Checking: After variability encoding has gener-
ated the product simulator P, we check P against the specifica-
tion of all features of the product line. We initialize the boolean
variables of the features using a nondeterministic choice
such that the model checker must assume that all feature
combinations defined by the feature model may occur. This
way, the model checker checks all valid feature combinations
(i.e., combinations of feature code) without generating any
individual product.

Example: Figure 5 shows the product simulator for the
set {EMailClient, Forward} of features, as produced by the
variability encoding of our tool chain (see Sec. V-A). Function
incoming (lines 10–13) dispatches between its variants with
and without feature Forward. The feature model is encoded
(lines 2–7) and the execution is guarded (line 28).

In Figure 6, we show the effect of variability encoding on
the state graph. States that are associated with invalid feature
combinations are not considered by the model checker (left
subtree). All other states are checked. Hence, it can be verified
that none of the valid feature combinations exhibits an unsafe
feature interaction (right subtree). Also one can see how both
alternative execution paths —for products with and without
feature Forward— are encoded in the state graph.

1 // one boolean variable per feature
2 int EMailClient, Forward;
3
4 // encoding the feature model
5 int feature_model() {
6 return EMailClient; // EMailClient && (Forward || !Forward);
7 }
8
9 // dispatch between ’Forward’ and ’!Forward’

10 void incoming (struct client ∗client, struct email ∗msg) {
11 if(Forward) { incoming_Forward (client, msg); }
12 else { incoming_EMailClient (client, msg); }
13 }
14
15 // refinement of method ’incoming’ by feature ’Forward’
16 void incoming_Forward (struct client ∗client, struct email ∗msg) {
17 forward(client, msg);
18 incoming_EMailClient(client, msg);
19 }
20
21 // base implementation of method ’incoming’ by feature ’EMailClient’
22 void incoming_EMailClient(struct client ∗client, struct email ∗msg) { ... }
23
24 // base implementation of method ’forward’ by feature ’Forward’
25 void forward (struct client ∗client, struct email ∗msg) { ... }
26
27 int main(int argc, char ∗∗argv) {
28 if(feature_model()) { /∗ start the e−mail client ∗/ }
29 return 0;
30 }

Fig. 5. Variability encoding of the composition of EMailClient and Forward.

main(argc, argv)

...

[feature_model() != 0][feature_model() == 0]

[Forward != 0] [Forward == 0]

incoming_Forward(client, msg)

... ...

incoming(client, msg)

incoming_EMailClient(client, msg)

states associated with

program

valid feature combinations

termination

Fig. 6. State graph of product simulator P with encoded variability (excerpt).

Correctness of Variability Encoding: In order to use prod-
uct simulators in feature-aware verification, we need to show
that variability encoding constructs a system that contains
precisely all unsafe feature interactions that are present in
any single product (no more, no less). Therefore, correctness
means that a product simulator is able to correctly simulate
all valid products during model checking.

Theorem (Correctness of variability encoding): Given a set F
of features and a feature model FM , then the following holds
(P = var_enc(FM , F)):

∀p ∈ FM : ∀f ∈ p :
select(p,P) |= spec(f) ⇐⇒ impl(p) |= spec(f)

(1)

where select(p,P) configures P to behave like the composition
of features p by setting the boolean variables of all features
f ∈ p to true and the rest to false .

Proof. The correctness of variability encoding can only be
guaranteed for type-safe product lines (i.e., all products are
type correct [2]). Furthermore, we restrict ourselves to the

5

core operations of feature composition: features can add new
program elements such as functions, fields, and structures or
refine existing functions by overriding. If there are alternative
definitions of a function, field, or structure (due to mutually
exclusive features), the respective alternatives must have a
common supertype that can be used uniformly in the product
simulator — a property that is also required in certain product-
line type systems [17]. As said previously, our composition
approach assumes a total composition order, denoted with ≺,
over the features (cf. Sec. II).

We prove that the product simulator simulates all products
correctly with respect to the specifications of the features
involved, denoted by simulation relation ∼ . The simulation
relation is understood as behavioral equivalence after partial-
evaluation reduction over the feature variables. We construct
the proof by structural induction on the composition.

∀vk ⊆ Fk : select(vk,Pk) ∼
⊕

f∈vk
f (2)

with 1 ≤ k ≤ |F | and fi ∈ F and i < j ⇐⇒ fi ≺ fj ;
⊕ denotes regular composition (respecting the global feature
order; used inside impl); Fk is a subset of F that contains the
first k features with respect to the global feature order (i.e.,
Fk = {fi ∈ F | i ≤ k}); Pk denotes a product simulator
consisting of the first k features.

Induction base (k = 1): In the base case, the product simu-
lator consists only of a single feature and behaves therefore
similarly to the regular product, as no dispatcher functions are
introduced:

select({f1}, f1) ∼ f1

Induction hypothesis: For all possible configurations of the first
k features, the variability-encoded composition of the first k
features is equivalent to the corresponding regular composition
of the features:

∀vk ∈ P(Fk) : select(vk,Pk) ∼
⊕

f∈vk
f

Induction step: When considering all feature combinations
vk+1, we can distinguish feature combinations vk ∪{fk+1} in
which feature fk+1 is selected and combinations vk in which
feature fk+1 is not selected.

For combinations in which feature fk+1 is not selected,
the variability-encoded product contains fields, functions, and
structures of feature fk+1, but these do not affect the program
execution because they are not referenced by other features
(type-safety assumption). If feature fk+1 refines a function,
the generated dispatcher calls the refined (original) function
instead of the refining function, because the feature is not
selected:

∀vk ∈ P(Fk) : select(vk,Pk+1) ∼
⊕

f∈vk
f

For combinations in which feature fk+1 is selected, the
variability encoding as well as the regularly composed product
contain the fields, functions, and structures introduced by
feature fk+1. For each function refinement, a dispatcher calls
the refining function, which is similar to the function present
in the regularly composed product. Regardless of feature fk+1

being selected or not, the implementation may call the refined
function using original, whose behavioral equivalence follows
from the induction hypothesis. Therefore, a dispatched func-
tion exhibits an equivalent behavior to a regularly composed
function, thus:

∀vk ∈ P(Fk) : select(vk ∪ {fk+1},Pk+1) ∼
⊕

f∈vk∪{fk+1}
f

As we have investigated all possible combinations of the
first k + 1 features, we have proved Formula (2) for 1 ≤ k ≤
|F |. As F|F | = {fi ∈ F | i ≤ |F |} = F , we can state:

∀v ∈ P(F) : select(v,P|F |) ∼
⊕

f∈v f

which finishes the proof, as the simulation relation ∼ implies
that, if a specification is satisfied in a simulated product, it
is also satisfied in the regularly-composed product and vice
versa (i.e., that Equation (1) holds). �

C. Discussion

Separation of Concerns: Feature-aware verification is
based on the idea that features are implemented as separate and
composable units, and that a feature’s specification is local,
i.e., it is not aware of all other features of the system. With our
approach, we would like to explore whether and to what extent
feature-local specification is possible for detecting feature
interactions. Locality is imperative in scenarios without global
domain knowledge, such as in distributed feature composition,
and it aids program comprehension.

Brute Force vs. Variability Encoding: Both approaches of
feature-aware verification have their merits. The approach of
generating individual products and checking them in isolation
is feasible for a distributed feature composition scenario,
in which features are developed mostly in isolation and in
which global knowledge on valid feature combinations is not
available. It is useful to find unsafe feature interactions quickly
in individual products; but, for proving the absence of unsafe
feature interactions in a product line, all products have to be
generated and verified individually.

The technique of checking a product simulator can improve
the scalability of feature-aware verification if all features
are known in advance. The idea is to encode variability
information and dependencies between features into the code
base of the product simulator to make it available to the
model checker. This way, the model checker is able to check
a product line once and to guarantee that none of the possible
feature combinations contains an unsafe feature interaction
(according to the specifications). Without variability encoding,
we would have to generate and check up to 2n products for a
product line with n features, in the worst case. With variability
encoding, we have to generate and check only one product
simulator that consists of n features. In our case study, we
provide quantitative arguments on when the first or the second
approach is superior (see Sec. V).

Generality: Feature-aware verification does not depend
on a specific language or tool. It allows us to use off-
the-shelf model-checking technology, rather than expensive
and error-prone self-developments or ad-hoc modifications of
proprietary model-checking tools. In principle, any pair of

6

specification language and model checker can be used, and
alternative composition mechanisms such as aspect weaving
are possible. The automata language allows us to check safety
properties of a system, which was sufficient in our case study.
Fairness or liveness properties are currently not supported.

V. CASE STUDY

To explore the feasibility of feature-aware verification for
the detection of unsafe feature interactions, we have developed
the tool chain SPLVERIFIER and applied it to a case study.
SPLVERIFIER and the case study are available on the project’s
Web site.

A. Implementation

SPLVERIFIER is based on several existing tools and on
tools that we developed for the purpose of feature-aware
verification. For composition, we use FEATUREHOUSE (i.e.,
we compose features by superimposition). For model check-
ing, we use the tools CBMC [9] and CPAchecker [7]. Both
tools support the verification of safety properties of C code,
CBMC by means of bounded, symbolic model checking and
CPAchecker either by means of explicit or symbolic model
checking.

To implement feature-aware verification, we have developed
a translation framework for our automata-based specification
language. Technically, each specification is rewritten to an
ACC aspect.5 We use the ACC compiler to inject assertions
in source-code locations that have been specified by the
corresponding automaton and that are relevant to a safety
property (see Figures 4, 5, and 6 for examples). If the model
checker finds that an error label is reachable, an unsafe feature
interaction is reported. The automaton along with the error
path are passed to the user for debugging, much like in
Figure 4.

Variability encoding is implemented using
FEATUREHOUSE’s composition facilities. The boolean
variables for each feature and the function for encoding the
feature model are added via superimposition. The creation
of if guards is realized by modifying FEATUREHOUSE’s
composition rules (e.g., for the composition of function
bodies).

B. Case Study: AT&T E-Mail Client

A difficulty of finding an appropriate case study is that it has
to be complex enough, such that realistic feature interactions
occur, and not too large, such that we can still trace what
happens during the detection of interactions. We decided to
base our case study on the e-mail system of Hall [14], because
it consists of a sufficient number of features, it contains several
realistic and unintuitive feature interactions, and it has been
used before by other researchers in this area [20], as it incor-
porates AT&T’s domain knowledge on feature interactions in
e-mail systems.

5ACC is an aspect-oriented language extension of C:
http://research.msrg.utoronto.ca/ACC/

Feature Short description

EMailClient basic e-mail client
MailQueue queuing e-mails
Keys key management
Encrypt encrypt outgoing e-mails
Decrypt decrypt incoming e-mails
Sign sign outgoing e-mails
Verify verify e-mail signatures
AddressBook manage e-mail contacts
AutoRespond respond to e-mails
Forward forward incoming e-mails

Id Feature interaction

0 Decrypt, Forward
1 AddressBook, Encrypt
3 Sign, Verify
4 Sign, Forward
6 Encrypt, Decrypt
7 Encrypt, Verify
8 Encrypt, AutoRespond
9 Encrypt, Forward

11 Decrypt, AutoRespond
27 Verify, Forward

TABLE I
FEATURES AND FEATURE INTERACTIONS OF THE E-MAIL CLIENT. THE
INTERACTION IDS MATCH THE IDS OF HALL [14] (EXCEPT FOR ID 0).

The e-mail system consists of 10 features that give rise to
27 feature interactions. It is divided into a client and a server.
For our case study, we concentrate on the client because, for
now, we do not focus on interactions in distributed scenarios,
which is in line with previous work [20]. In Table I, we provide
information on all features and feature interactions of the e-
mail client. A comprehensive description of the features and
their interactions is available in Hall’s article [14].

We implemented the features of the e-mail client in C with
FEATUREHOUSE [3] following the specification of Hall (in-
cluding a base program and two helper features). Furthermore,
we included an entry function to trigger events in the client.
Based on the work of Hall, we developed for every relevant
feature a specification in the form of one or several automata.
As discussed previously, a key requirement was to specify
the features’ behavior and safety properties based on local
knowledge.

C. Experiments

We conducted a number of experiments with the e-mail
product line. First, we generated all of its 40 products and
checked them using both CBMC and CPAchecker. It turned
out that with feature-aware verification, we were able to detect
all feature interactions of Table I based on the feature-local
specifications of the input features. If the model checker does
not report a counterexample (i.e., none of the safety properties
has been violated), we can be certain that the composition does
not contain a feature interaction that violates the specification
of the features involved.6

Interestingly, we even found an unsafe interaction in our
implementation that has not been documented by Hall. It
occurs when both features Decrypt and Forward are selected
(id 0 in Table I): if a host forwards an e-mail automatically
to another host that cannot decrypt this e-mail. This finding
encourages us that our approach is useful to detect unknown
feature interactions. Finally, we checked the entire e-mail
client product line using variability encoding. Again, we were
able to detect all feature interactions, but without generating
all possible feature combinations.

6Although CBMC is a bounded model checker, we can use it for proving
the absence of interactions in the e-mail client, because it does not contain
loops with statically unknown upper bounds.

7

http://research.msrg.utoronto.ca/ACC/

Fig. 7. Times needed to prove that the individual interactions do not occur
(brute force in light gray and variability encoding in dark gray).

Fig. 8. Times needed to find the individual interactions (brute force as box
plots and variability encoding as crosses; y-axis in log scale).

D. Measurements

To further explore their pros and cons, we compare the
brute-force approach (i.e., checking all possible products) with
the variability-encoding approach in terms of verification time.
Our case study contains several unsafe feature interactions, so
we made the comparison on a per-interaction basis. Specif-
ically, we measured the runtime needed to find a feature
interaction or to report that no feature interaction has been
found. Because every specification is associated with a feature,
both approaches need to consider only feature combinations
that contain this feature; all other combinations trivially cannot
violate the specification.

First, we measured the runtime to prove that a certain inter-
action does not occur.7 In Figure 7, we compare the runtime
needed to prove the absence of each feature interaction for the
brute-force approach and the variability-encoding approach.

Second, we measured the runtime to discover each feature
interaction. For variability encoding, we measured the runtime
to find an unsafe feature interaction by checking the product

7We report only results using CBMC in this paper; the entire set of results
is available on the project’s Web site.

Fig. 9. Times needed to find the unsafe feature interaction between Encrypt
and Verify (brute force as bars and variability encoding as dashed line).

simulator against a specification that is violated. For the brute-
force approach, we need to generate and check all possible
products in a predefined order. After the first erroneous fea-
ture combination has been identified, no further checks are
necessary. The absolute runtime to find an interaction depends
on the order in which the products are checked. It may be
that, incidentally, we choose an order that exhibits an unsafe
interaction early (e.g., the product that we check first contains
the unsafe interaction), such that we obtain the result rather
quick. Or, it may be that only the very last product that we
check contains the unsafe interaction, such that the runtime to
detect the interaction is the sum of the runtimes for checking
all possible products of the product line. In order to remove
the bias of the ordering, we perform the following calculation:
Let π = 〈p1, ..., pi, ..., pn〉 be a sequence of n products being
checked such that product pi is the first product that violates
the specification. We first measure the runtime t(pj) to check
each possible product pj for the considered interaction. The
actual total runtime of sequence π is the sum c =

∑i
j=1 t(pj)

of runtimes. This way, we calculate the total runtime ck for
every possible permutation of sequence π (i.e., the checking
order), and obtain the values c1, ..., cq of total runtime until
finding the unsafe interaction (given that q is the number of
permutations).8

In Figure 8, we show for each unsafe interaction (x-axis)
a cross that denotes the runtime (y-axis) needed to detect the
considered unsafe interaction using the product simulator, and
a box plot that contains all possible total runtimes c1, . . . , cq
needed to detect the interaction with the brute-force approach.9

For illustration, Figure 9 shows a bar plot of the runtimes
c1, . . . , cq needed to find the interaction between Encrypt and
Verify and compare it to the runtime of five seconds that is
needed using the product simulator, displayed as a horizontal
dashed line.

8Since the number q of permutations is a huge number, we compute an
approximated result, by classifying the runtime values t(pj) into classes of
similar runtime. This dramatically reduces the number of permutations to
consider.

9The box contains 50 % of the values. the two thin lines are the maximal
and minimal values; the thick line is the median.

8

E. Interpretation

The first observation is that variability encoding outperforms
the brute-force approach by a factor of ten in proving the
absence of feature interactions (Fig. 7). In all experiments,
the measured time includes only the verification runtime, not
the runtime for generating the product or product simulator,
as it is negligible. The reason for the superiority of variability
encoding is that every reachable state has to be visited in order
to establish a correctness proof. A model checker has more
potential for optimization on the product simulator, because all
information is available in the system, compared to the brute-
force approach, where the verification process is restarted from
scratch for every single product. For example, if there are
similarities between individual products (which is a goal of
product-line engineering), a model checker does not need to
check the similar parts repeatedly.

A second observation is that for detecting an unsafe in-
teraction in a faulty product line, the brute-force approach
is substantially faster (factor of 10 to 100) compared to
checking the product simulator (Fig. 8). This result was not
to be expected, especially taking previous results of product-
line model checking into account (see Sec. VI). After a
careful analysis, we identified several factors that decide on
the appropriateness of variability encoding. First, the product
simulator contains the code of all features, the feature model,
and the alternative execution paths of all possible feature
combinations. Hence, it is more complex than any of the
products without variability encoding, which increases the
complexity (and thus the runtime) of model checking imme-
diately. However, in the brute-force approach, the challenge is
to determine a proper order of checks to minimize checking
runtime. Second, the ratio between the number b of products
that contain the interaction and the number n of all possible
products influences the benefit of variability encoding. For
bigger values of b/n (close to 1) it is more likely that we pick
an order that requires only a few checks to find the interaction.
For example, the interaction between the features Encrypt and
Decrypt (6) occurs in all 40 products. Hence, the probability p
that an interaction is found in the first product is 40/40 = 1: at
most one product needs to be checked to detect the interaction.
In such a situation, we cannot take advantage of variability
encoding, as illustrated in Figure 8. But for lower values of
b/n, it is less likely that we choose a product checking order
that exhibits the unsafe interaction. For example, with a ratio
of 8/40, the probability to find the unsafe interaction between
Encrypt and Verify with the first check is 1/5. In such a
situation, we can benefit from variability encoding.

F. Lessons Learned

The lessons we learned by applying feature-aware verifica-
tion to the e-mail client product line can be summarized as
follows.

We were able to detect all documented feature interactions
of the e-mail client based on C code and automata-based
specifications. We even found a previously undocumented
interaction, which encourages us that our approach is able to
detect unknown interactions in other applications.

Although feature interactions occur between two or more
features, we were able to detect them based on feature-local
specifications. That is, there is no global knowledge necessary
to detect them. Locality is not only imperative for scalability
or distributed feature composition, but it is a prerequisite to
detect undocumented feature interactions.

Due to the potentially large number of feature combina-
tions in product lines, interaction detection based on model
checking is more expensive than in monolithic systems. We
have demonstrated that variability encoding can reduce the
verification runtime by a factor of ten in proving the absence
of feature interactions in the e-mail client. The reason for
this reduction is the reuse of partial verification results when
checking the product simulator.

The ratio between the number of feature combinations that
contain an interaction and the number of all possible feature
combinations influences the benefit of variability encoding.
With lower values —which are to be expected in practice—
it is superior to the brute-force approach. A careful combina-
tion of the brute-force approach and the variability-encoding
approach seems to be favorable. The results suggest that
generating and checking some products is useful in early
verification stages to discover unsafe interactions quickly,
and that the importance of variability encoding increases in
later development stages when the number of interactions
decreases. Compared to previous work, this insight is a sig-
nificant step toward understanding and improving product-line
model checking.

G. Study Limitations

We conducted a case study to explore whether feature-
aware verification can be used for feature-interaction detection
in a non-trivial and controlled setting. Although a rigorous
empirical study is currently elusive, we still gained a number
of interesting insights (see Sec. V-F), which shall encourage
us and others to follow this line of research.

VI. RELATED WORK

The feature-interaction problem was explored for different
domains in the literature [8]. Our work addresses the problem
in the context of feature orientation and product lines. There
are two approaches in the literature that address the combina-
torial explosion of feature combinations in software product
lines: (1) check features as far as possible in isolation and (2)
check the entire product line in a single pass.

The first approach has been explored by Li et al. [19], [20]
and Liu et al. [21]. They propose to verify features modularly
based on formal transition systems and CTL. The idea is to
check as much as possible at the level of individual features
to save effort when checking their compositions. Verifying a
feature, it is determined which parts of a specification the
feature satisfies and which parts have to be satisfied by other
features. This information constitutes a semantic interface
of the feature, which is used during the verification of its
composition with other features. Li et al. and Liu et al. have
a slightly different verification scenario in mind: they check
to what extent a feature satisfies a specification that a product

9

has to fulfill. In our approach, each feature comes with its own
specification that states which properties have to hold when the
feature is selected.

The second approach (i.e., check an entire product line in
a single pass) has been explored by Lauenroth et al. [18]
and Classen et al. [10], [11]. Lauenroth et al. have developed
an extended model checking approach that takes product-line
variability into account [18]. Similarly to variability encoding,
their approach is able to verify that every valid product that
can be derived from the product line fulfills certain properties.
In contrast to variability encoding, they require to extend
the model-checking tool to incorporate variability information.
They evaluated their work by means of two examples based
on I/O automata and CTL, not on the basis of program code.

Classen et al. have developed a model-checking technique
for the verification of feature-extended transition systems
against temporal properties [11]. In principle, their approach
is similar to the approach of Lauenroth et al.; it is based
on an extension of the model-checking algorithm. They have
developed a model-checking tool in Haskell and applied it to
check a mine-pump controller consisting of nine features. They
report substantial performance gains over individual product
verification, but did not recognize the influence of the ratio
between products that contain an unsafe interaction and all
products of a product line. In a recent extension of their
approach, Classen et al. use a system modeling language with
explicit feature support and encode information on features
into the transition system [10]. However, they do not encode
the feature model, and they do not support the verification of
software written in a mainstream programming language.

Based on the work of Lauenroth et al. and Classen et al., we
explored whether and how product-line verification techniques
can be used for feature-interaction detection. We specially
considered the implementation and specification of features
in separate and composable units, which was not the focus
of Lauenroth et al. and Classen et al. Finally, we pursue an
approach that is based on off-the-shelf model checking, rather
than on self-developments and extension of existing model
checkers.

Post and Sinz proposed the notion of configuration lifting
to verify variable C code efficiently [22]. The background
is that it is usually too expensive to generate all possible
configurations of a C file that contains preprocessor direc-
tives such as #ifdef. The idea is to replace each conditional
preprocessor directive by a corresponding if statement thus
making it accessible to a software verification tool. Variability
encoding is based on their approach. Although we use it in a
different scenario (feature composition instead of conditional
compilation), the main aspects are similar. With regard to the
work of Post and Sinz, we contribute formal arguments and
a proof of the correctness of variability encoding, which is
especially important in a feature-composition scenario.

VII. CONCLUSION

Feature-aware verification is an approach to detect unsafe
feature interactions in feature-oriented product lines. We im-
plement and specify features in separate and composable

units, and detect unsafe interactions based on feature-local
specifications. Locality of feature specifications is important
for scalability and distributed feature composition. We used,
extended, and developed a tool chain that supports feature-
aware verification based on off-the-shelf model checking
technology, and we presented a formal model (along with
an argument for the correctness) of variability encoding. We
were able to automatically detect critical feature interactions
(including a previously undocumented interaction) in Hall’s
e-mail system [14].

Variability encoding aims at improving the verification
performance for software product lines. Rather than generating
and checking all possible feature combinations, we encode
variability and dependency information into the product sim-
ulator’s code base and check it in a single pass. In our e-
mail case study, variability encoding saved up to 90 % of the
checking time in proving the absence of interactions, but is
slower than the brute-force approach if many products contain
an unsafe interaction. An insight, compared to previous work,
is that variability encoding is superior if the task is to verify
the absence of unsafe feature interactions.

ACKNOWLEDGMENTS

We are grateful to J. Atlee, A. Classen, and M. Rosenthal
for their comments to earlier drafts of this paper. We thank
S. Boxleitner for his C implementation of the e-mail client.
This research was supported in part by the German DFG grants
AP 206/2 and AP 206/4, and by the Canadian NSERC grant
RGPIN 341819-07.

REFERENCES

[1] S. Apel and C. Kästner. An Overview of Feature-Oriented Software
Development. J. Object Technology, 8(5):49–84, 2009.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type Safety
for Feature-Oriented Product Lines. Automated Software Engineering,
17(3):251–300, 2010.

[3] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proc. ICSE, pages
221–231. IEEE, 2009.

[4] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebraic
Foundation for Automatic Feature-Based Program Synthesis. Science
of Computer Programming, 75(11):1022–1047, 2010.

[5] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting Dependences
and Interactions in Feature-Oriented Design. In Proc. ISSRE, pages 161–
170. IEEE, 2010.

[6] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection
of Feature Interactions using Feature-Aware Verification. In Proc. ASE.
IEEE, 2011.

[7] D. Beyer and M. Keremoglu. CPACHECKER: A Tool for Configurable
Software Verification. In Proc. CAV, LNCS 6806, pages 184–190.
Springer, 2011.

[8] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature
Interaction: A Critical Review and Considered Forecast. Computer
Networks, 41(1):115–141, 2003.

[9] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C
Programs. In Proc. TACAS, LNCS 2988, pages 168–176. Springer, 2004.

[10] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic
Model Checking of Software Product Lines. In Proc. ICSE, pages 321–
330. ACM, 2011.

[11] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines. In Proc. ICSE, pages 335–344.
ACM, 2010.

[12] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

10

[13] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[14] R. Hall. Fundamental Nonmodularity in Electronic Mail. Automated
Software Engineering, 12(1):41–79, 2005.

[15] D. Hutchins. Pure Subtype Systems: A Type Theory For Extensible
Software. PhD thesis, University of Edinburgh, 2009.

[16] M. Jackson and P. Zave. Distributed Feature Composition: A Virtual
Architecture for Telecommunications Services. IEEE TSE, 24(10):831–
847, 1998.

[17] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-
Based Product Lines. ACM TOSEM, 2011. To appear.

[18] K. Lauenroth, S. Toehning, and K. Pohl. Model Checking of Domain
Artifacts in Product Line Engineering. In Proc. ASE, pages 269–280.

IEEE, 2009.
[19] H. Li, S. Krishnamurthi, and K. Fisler. Verifying Cross-Cutting Features

as Open Systems. In Proc. FSE, pages 89–98. ACM, 2002.
[20] H. Li, S. Krishnamurthi, and K. Fisler. Modular Verification of Open

Features Using Three-Valued Model Checking. Automated Software
Engineering, 12(3):349–382, 2005.

[21] J. Liu, S. Basu, and R. Lutz. Compositional Model Checking of Software
Product Lines using Variation Point Obligations. Automated Software
Engineering, 18(1):39–76, 2011.

[22] H. Post and C. Sinz. Configuration Lifting: Verification meets Software
Configuration. In Proc. ASE, pages 347–350. IEEE, 2008.

[23] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In Proc. GPCE, pages 95–104. ACM, 2007.

11

