
Explicit-Value Analysis
Based on CEGAR and Interpolation

Dirk Beyer and Stefan Löwe

University of Passau, Germany

Technical Report, Number MIP-1205
Department of Computer Science and Mathematics

University of Passau, Germany
December 2012

ar
X

iv
:1

21
2.

65
42

v1
 [

cs
.S

E
]

 2
8

D
ec

 2
01

2

Explicit-Value Analysis
Based on CEGAR and Interpolation

Dirk Beyer and Stefan Löwe

University of Passau, Germany

Abstract—Abstraction, counterexample-guided refinement,
and interpolation are techniques that are essential to the success
of predicate-based program analysis. These techniques have
not yet been applied together to explicit-value program anal-
ysis. We present an approach that integrates abstraction and
interpolation-based refinement into an explicit-value analysis, i.e.,
a program analysis that tracks explicit values for a specified
set of variables (the precision). The algorithm uses an abstract
reachability graph as central data structure and a path-sensitive
dynamic approach for precision adjustment. We evaluate our
algorithm on the benchmark set of the Competition on Software
Verification 2012 (SV-COMP’12) to show that our new approach
is highly competitive. In addition, we show that combining
our new approach with an auxiliary predicate analysis scores
significantly higher than the SV-COMP’12 winner.

I. Introduction
Abstraction is one of the most important techniques to suc-
cessfully verify industrial-scale program code, because the
abstract model omits details about the concrete semantics
of the program that are not necessary to prove or disprove
the program’s correctness. Counterexample-guided abstraction
refinement (CEGAR) [14] is a technique that iteratively refines
an abstract model using counterexamples. A counterexample
is a witness of a property violation. In software verification,
the counterexamples are error paths, i.e., paths through the
program that violate the property. CEGAR starts with the
most abstract model and checks if an error path can be
found. If the analysis of the abstract model does not find
an error path, then the analysis terminates, reporting that
no violation exists. If the analysis finds an error path, the
path is checked for feasibility, i.e., if the path is executable
according to the concrete program semantics. If the error path
is feasible, the analysis terminates, reporting the violation of
the property, together with the feasible error path as witness.
If the error path is infeasible, the violation is due to a too
coarse abstract model and the infeasible error path is used to
automatically refine the current abstraction. Then the analysis
proceeds. Several successful tool implementations for software
verification are based on abstraction and CEGAR (cf. [4],
[6], [10], [13], [16], [25]). Craig interpolation is a technique
from logics that yields for two contradicting formulas an
interpolant that contains less information than the first formula,
but still enough to contradict the second formula [17]. In
software verification, interpolation can be used to extract in-
formation from infeasible error paths [21], where the resulting
interpolants are used to refine the abstract model. Predicate
abstraction is a successful abstraction technique for software

model checking [18], because its symbolic state representation
blends well with strongest post-conditions, and abstractions
can be computed efficiently with solvers for satisfiability
modulo theories (SMT) [3]. CEGAR and lazy refinement [22]
together with interpolation [21] effectively refine abstract
models in the predicate domain. The recent competition on
software verification (SV-COMP’12 [5], Table 3) shows that
these advancements had a strong impact on the success of
participating tools (cf. [6], [10], [25], [26]).

Despite the success of abstraction, CEGAR, and interpola-
tion in the field of predicate analysis, these techniques have
not yet been combined and applied together to explicit-value
analysis. We integrate these three techniques into an explicit-
value analysis, a rather unsophisticated analysis that tracks for
each program variable its current value explicitly (like constant
propagation [1], but without join). First, we have to define the
notion of abstraction for the explicit-value domain, and the
precision of the analysis (i.e., the level of abstraction) by a set
of program variables that the analysis has to track. Second, in
order to automatically determine the necessary precision (i.e.,
a small set of program variables that need to be tracked) we use
CEGAR iterations to discover finer precisions from infeasible
error paths. Third, we define interpolation for the explicit-
value domain and use this idea to construct an algorithm
that efficiently extracts such a parsimonious precision that is
sufficient to eliminate infeasible error paths.

Example. Consider the simple example program in Fig. 1.
This program contains a while loop in which a system call
occurs. The loop exits if either the system call returns 0 or
a previously specified number of iterations x was performed.
Because the body of the function system call is unknown, the
value of result is unknown. Also, the assumption [ticks > x]
cannot be evaluated to true, because x is unknown. This
program is correct, i.e., the error location in line 10 is not
reachable. However, a simple explicit-value model checker that
always tracks every variable would unroll the loop, always
discovering new states, as the expression ticks = ticks + 1
repeatedly assigns new values to variable ticks. Thus, due
to extreme resource consumptions, the analysis would not
terminate within practical time and memory limits, and is
bound to give up on proving the safety property, eventually.

The new approach for explicit-value analysis that we pro-
pose can efficiently prove this program safe, because it tracks
only those variables that are necessary to refute the infeasible
error paths. In the first CEGAR iteration, the precision of
the analysis is empty, i.e., no variable is tracked. Thus, the

1 e x t er n i n t s y s t e m c a l l () ;
2 i n t main (i n t x) {
3 i n t f l a g , t i c k s , r e s u l t ;
4 f l a g = 0 ; t i c k s = 0 ;
5 whi le (1) {
6 t i c k s = t i c k s + 1 ;
7 r e s u l t = s y s t e m c a l l () ;
8 i f (r e s u l t == 0 | | t i c k s > x) { break ; }
9 }

10 i f (f l a g > 0) { ERROR: re turn 1 ; }
11 }

Fig. 1: Example program to illustrate the effectiveness of CEGAR-
based explicit-value analysis

error location will be reached. Now, using our interpolation-
inspired method to discover precisions from counterexample
paths, the algorithm identifies that the variable flag (more
precisely, the constraint flag = 0) has to be tracked. The
analysis is re-started after this refinement. Because ticks is not
in the precision (the variable is not tracked), the assignment
ticks = ticks + 1 will not add new abstract states. Since
no new successors are computed, the analysis stops unrolling
the loop. The assume operation [flag > 0] is evaluated to
false , and thus, the error label is not reachable. The analysis
terminates, proving the program correct.

In summary, the crucial effect of this approach is that
only relevant variables are tracked in the analysis, while
unimportant information is ignored. This greatly reduces the
number of abstract states to be visited.
Contributions. We make the following contributions:
• We integrate the concepts of abstraction, CEGAR, and

lazy abstraction refinement into explicit-value analysis.
• Inspired by Craig interpolation for predicate analysis, we

define a novel interpolation-like approach for discovering
relevant variables for the explicit-value domain. This
refinement algorithm is completely self-contained, i.e.,
independent from external libraries such as SMT solvers.

• To further improve the effectiveness and efficiency of
the analysis, we design a combination with a predicate
analysis based on dynamic precision adjustment [9].

• We provide an open-source implementation of all our
concepts and give evidence of the significant improve-
ments by evaluating several approaches on benchmark
verification tasks (C programs) from SV-COMP’12.

Related Work. The explicit-state model checker SPIN [23]
can verify models of programs written in a language called
Promela. For the verification of C programs, tools like
MODEX 1 can extract Promela models from C source code.
This process requires to give a specification of the abstraction
level (user-defined extraction rules), i.e., the information of
what should be included in the Promela model. SPIN does not
provide lazy-refinement-based CEGAR. JAVA PATHFINDER [20]
is an explicit-state model checker for Java programs. There has
been work [24] on integrating CEGAR into JAVA PATHFINDER,
using an approach different from interpolation.

Program analysis with dynamic precision adjustment [9]
is an approach to adjust the precision of combined analyses

1http://cm.bell-labs.com/cm/cs/what/modex/

on-the-fly, i.e., during the analysis run; the precision of one
analysis can be increased based on a current situation in
another analysis. For example, if an explicit-value analysis
stores too many different values for a variable, then the
dynamic precision adjustment can remove that variable from
the precision of the explicit-value analysis and add a predicate
about that variable to the precision of a predicate analysis.
This means that the tracking of the variable is “moved” from
the explicit domain to the symbolic domain. One configuration
that we present later in this paper uses this approach (cf. III-F).

The tool DAGGER [19] improves the verification of C pro-
grams by applying interpolation-based refinement to octagon
and polyhedra domains. To avoid imprecision due to widening
in the join-based data-flow analysis, DAGGER replaces the
standard widen operator by a so called interpolated-widen
operator, which increases the precision of the data-flow anal-
ysis and thus avoids false alarms. The algorithm VINTA [2]
applies interpolation-based refinement to interval-like abstract
domains. If the state exploration finds an error path, then
VINTA performs a feasibility check using bounded model
checking (BMC), and if the error path is infeasible, it computes
interpolants. The interpolants are used to refine the invariants
that the abstract domain operates on. VINTA requires an SMT
solver for feasibility checks and interpolation.

More tools are mentioned in our evaluation section, where
we compare (in terms of precision and efficiency) our tool
implementation with tools that participated in SV-COMP’12.

There is, to the best of our knowledge, no work that inte-
grates abstraction, CEGAR, lazy refinement, and interpolation
into explicit-state model checking. We make those techniques
available for the explicit-value domain.

II. Preliminaries
Our approach is based on several existing concepts, and in this
section we remind the reader of some basic definitions.

A. Programs, Control-Flow Automata, States

We restrict the presentation to a simple imperative program-
ming language, where all operations are either assignments
or assume operations, and all variables range over integers 2.
The following definitions are taken from previous work [11]:
A program is represented by a control-flow automaton CFA.
A CFA A = (L, G) consists of a set L of program locations,
which model the program counter, and a set G ⊆ L×Ops×L
of control-flow edges, which model the operations that are
executed when control flows from one program location to
another. The set of program variables that occur in oper-
ations from Ops is denoted by X . A verification prob-
lem P = (A, l0, le) consists of a CFA A, representing the
program, an initial program location l0 ∈ L, representing the
program entry, and a target program location le ∈ L, which
represents the error.

A concrete data state of a program is a variable assignment
cd : X → Z, which assigns to each program variable an

2Our implementation is based on CPACHECKER, which operates on
C programs; non-recursive function calls are supported.

2

http://cm.bell-labs.com/cm/cs/what/modex/

integer value. A concrete state of a program is a pair (l, cd),
where l ∈ L is a program location and cd is a concrete data
state. The set of all concrete states of a program is denoted
by C, a subset r ⊆ C is called region. Each edge g ∈ G defines
a labeled transition relation

g→ ⊆ C × {g} × C. The complete
transition relation → is the union over all control-flow edges:
→ =

⋃
g∈G

g→. We write c
g→c′ if (c, g, c′) ∈ →, and c→c′ if

there exists a g with c
g→c′.

An abstract data state represents a region of concrete
data states, formally defined as abstract variable assign-
ment. An abstract variable assignment is a partial func-
tion v : X −→◦ Z ∪ {>,⊥}, which maps variables in the def-
inition range of function v to integer values or > or ⊥.
The special value > is used to represent an unknown
value, e.g., resulting from an uninitialized variable or an
external function call, and the special value ⊥ is used
to represent no value, i.e., a contradicting variable assign-
ment. We denote the definition range for a partial func-
tion f as def(f) = {x | ∃y : (x, y) ∈ f}, and the restric-
tion of a partial function f to a new definition range Y
as f|Y = f ∩ (Y × (Z ∪ {>,⊥})). An abstract variable
assignment v represents the region [[v]] of all concrete
data states cd for which v is valid, formally: [[v]] =
{cd | ∀x ∈ def(v) : cd(x) = v(x) or v(x) = >}. An abstract
state of a program is a pair (l, v), representing the following
set of concrete states: {(l, cd) | cd ∈ [[v]]}.

B. Configurable Program Analysis with
Dynamic Precision Adjustment

We use the framework of configurable program analysis
(CPA) [8], extended by the concept of dynamic precision
adjustment [9]. Such a CPA supports adjusting the precision
of an analysis during the exploration of the program’s ab-
stract state space. A composite CPA can control the precision
of its component analyses during the verification process,
i.e., it can make a component analysis more abstract, and
thus more efficient, or it can make a component analy-
sis more precise, and thus more expensive. A CPA D =
(D,Π, ,merge, stop, prec) consists of (1) an abstract do-
main D, (2) a set Π of precisions, (3) a transfer relation ,
(4) a merge operator merge, (5) a termination check stop,
and (6) a precision adjustment function prec. Based on these
components and operators, we can formulate a flexible and
customizable reachability algorithm, which is adapted from
previous work [8], [12].

C. Explicit-Value Analysis as CPA

In the following, we define a component CPA that tracks
explicit integer values for program variables. In order to
obtain a complete analysis, we construct a composite CPA
that consists of the component CPA for explicit values and
another component CPA for tracking the program locations
(CPA for location analysis, as previously described [9]). For
the composite CPA, the general definitions of the abstract
domain, the transfer relation, and the other operators are given

in previous work [9]; the composition is done automatically
by the framework implementation CPACHECKER.

The CPA for explicit-value analysis, which tracks integer
values for the variables of a program explicitly, is defined as
C = (DC,ΠC, C,mergeC, stopC, precC) and consists of the
following components [9]:

1. The abstract domain DC = (C,V, [[·]]) contains the set
C of concrete data states, and uses the semi-lattice V =
(V,>,⊥,v,t), which consists of the set V = (X −→◦ Z)
of abstract variable assignments, where Z = Z ∪ {>Z ,⊥Z}
induces the flat lattice over the integer values (we write Z to
denote the set of integer values). The top element > ∈ V , with
>(x) = >Z for all x ∈ X , is the abstract variable assignment
that holds no specific value for any variable, and the bottom
element ⊥ ∈ V , with ⊥(x) = ⊥Z for all x ∈ X , is the
abstract variable assignment which models that there is no
value assignment possible, i.e., a state that cannot be reached
in an execution of the program. The partial order v ⊆ V ×V
is defined as v v v′ if for all x ∈ X , we have v(x) = v′(x)
or v(x) = ⊥Z or v′(x) = >Z . The join t : V × V → V
yields the least upper bound for two variable assignments. The
concretization function [[·]] : V → 2C assigns to each abstract
data state v its meaning, i.e., the set of concrete data states
that it represents.

2. The set of precisions ΠC = 2X is the set of subsets of
program variables. A precision π ∈ ΠC specifies a set of
variables to be tracked. For example, π = ∅ means that no
variable is tracked, and π = X means that every program
variable is tracked.

3. The transfer relation C has the transfer v
g
 (v′, π) if

(1) g = (·, assume(p), ·) and for all x ∈ X :

v′(x) =

⊥Z if (y,⊥Z) ∈ v for some y ∈ X

or the formula p/v is unsatisfiable
c if c is the only satisfying assignment of

the formula p/v for variable x
>Z otherwise

where p/v denotes the interpretation of a predicate p over
variables from X for an abstract variable assignment v, that
is, p/v =
p ∧

∧
x∈def(v),v(x)∈Z

x = v(x) ∧ ¬∃x ∈ def(v) : v(x) = ⊥Z

or
(2) g = (·, w := exp, ·) and for all x ∈ X :

v′(x) =

 exp/v if x = w

v(x) if x ∈ def(v)
>Z otherwise

where exp/v denotes the interpretation of an expression exp
over variables from X for an abstract value assignment v:

exp/v =

⊥Z if (y,⊥Z) ∈ v for some y ∈ X
>Z if (y,>Z) ∈ v or y 6∈ def(v)

for some y ∈ X that occurs in exp
c otherwise, where expression exp

evaluates to c after replacing each
occurrence of variable x with x ∈ def(v)
by v(x) in exp

4. The merge operator does not combine elements when
control flow meets: mergeC(v, v′, π) = v′.

3

5. The termination check considers abstract states individually:
stopC(v,R, π) = (∃v′ ∈ R : v v v′).

6. The precision adjustment function computes a new abstract
state with precision based on the abstract state v and the
precision π by restricting the variable assignment v to those
variables that appear in π, formally: prec(v, π,R) = (v|π, π).
(In this analysis instance, prec only adjusts the abstract state
according to the current precision π, and leaves the precision
itself unchanged.)

The precision of the analysis controls which program vari-
ables are tracked in an abstract state. In other approaches,
this information is hard-wired in either the abstract-domain
elements or the algorithm itself. The concept of CPA supports
different precisions for different abstract states. A simple
analysis can start with an initial precision and propagate it
to new abstract states, such that the overall analysis uses a
globally uniform precision. It is also possible to specify a
precision individually per program location, instead of using
one global precision. Our refinement approach in the next
section will be based on location-specific precisions.

D. Predicate Analysis as CPA

The abstract domain of predicates [18] was successfully used
in several tools for software model checking (e.g., [4], [6],
[10], [13], [16], [25]). In a predicate analysis, the precision is
defined as a set of predicates, and the abstract states track the
strongest set of predicates that are fulfilled (cartesian predicate
abstraction) or the strongest boolean combination of predicates
that are fulfilled (boolean predicate abstraction). This means,
the abstraction level of the abstract model is determined by
predicates that are tracked in the analysis. Predicate analysis
is also implemented as a CPA in the framework CPACHECKER,
and a detailed description is available [11]. The precision
is freely adjustable also in the predicate analysis, and we
use this feature later in this article to compose a combined
analysis. This analysis uses the predicate analysis to track
variables that have many distinct values — a scenario in which
the explicit-value analysis alone would be inefficient. The
combined analysis adjusts the overall precision by removing
variables with many distinct values from the precision of
the explicit-value analysis and adds predicates about these
variables to the precision of the predicate analysis [9] to allow
the combined analysis to run efficiently.

E. Lazy Abstraction

The concept of lazy abstraction [22] consists of two ideas:
First, the abstract reachability graph (ARG) —the unfolding of
the control-flow graph, representing our central data structure
to store abstract states— is constructed on-the-fly, i.e., only
when needed and only for parts of the state space that are
reachable. We implement this using the standard reachability
algorithm for CPAs as described in the next subsection.
Second, the abstract states in the ARG are refined only where
necessary along infeasible error paths in order to eliminate
those paths. This is implemented by using CPAs with dynamic

Algorithm 1 CPA(D, R0,W0), adapted from [9]

Input: a CPA D = (D,Π, ,merge, stop, prec),
a set R0 ⊆ (E ×Π) of abstract states with precision,
a subset W0 ⊆ R0 of frontier abstract states with precision,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable abstract states with precision,
a subset of frontier abstract states with precision

Variables: two sets reached and waitlist of elements of E ×Π
reached := R0; waitlist := W0;
while waitlist 6= ∅ do

choose (e, π) from waitlist; remove (e, π) from waitlist;
for each e′ with e (e′, π) do

// Precision adjustment.
(ê, π̂) := prec(e′, π, reached);
if isTargetState(ê) then

return
(
reached ∪ (ê, π̂),waitlist

)
;

for each (e′′, π′′) ∈ reached do
// Combine with existing abstract state.
enew := merge(ê, e′′, π̂);
if enew 6= e′′ then

waitlist :=
(
waitlist ∪ {(enew, π̂)}

)
\ {(e′′, π′′)};

reached :=
(
reached ∪ {(enew, π̂)}

)
\ {(e′′, π′′)};

// Add new abstract state?
if ¬ stop

(
ê,
{
e | (e, ·) ∈ reached

}
, π̂

)
then

waitlist := waitlist ∪ {(ê, π̂)};
reached := reached ∪ {(ê, π̂)}

return (reached, ∅);

precision adjustment, where the refinement procedure oper-
ates on location-specific precisions and where the precision-
adjustment operator always removes unnecessary information
from abstract states, as outlined above.

F. Reachability Algorithm for CPA

Algorithm 1 keeps updating two sets of abstract states with
precision: the set reached to store all abstract states with pre-
cision that are found to be reachable, and a set waitlist to store
all abstract states with precision that are not yet processed, i.e.,
the frontier. The state exploration starts with choosing and
removing an abstract state with precision from the waitlist,
and the algorithm considers each abstract successor according
to the transfer relation. Next, for the successor, the algorithm
adjusts the precision of the successor using the precision
adjustment function prec. If the successor is a target state
(i.e., a violation of the property is found), then the algorithm
terminates, returning the current sets reached and waitlist
— possibly as input for a subsequent precision refinement,
as shown below (cf. Alg. 2). Otherwise, using the given
operator merge, the abstract successor state is combined with
each existing abstract state from reached. If the operator merge
has added information to the new abstract state, such that the
old abstract state is subsumed, then the old abstract state with
precision is replaced by the new abstract state with precision
in the sets reached and waitlist. If after the merge step the
resulting new abstract state with precision is covered by the
set reached, then further exploration of this abstract state is
stopped. Otherwise, the abstract state with its precision is
added to the set reached and to the set waitlist. Finally, once
the set waitlist is empty, the set reached is returned.

4

G. Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) [14]
is a technique for automatic stepwise refinement of an abstract
model. CEGAR is based on three concepts: (1) a precision,
which determines the current level of abstraction, (2) a fea-
sibility check, deciding if an abstract error path is feasible,
i.e., if there exists a corresponding concrete error path, and
(3) a refinement procedure, which takes as input an infeasible
error path and extracts a precision that suffices to instruct
the exploration algorithm to not explore the same path again
later. Algorithm 2 shows an outline of a generic and simple
CEGAR algorithm. The algorithm starts checking a program
using a coarse initial precision π0. It uses the reachability
algorithm Alg. 1 for computing the reachable abstract state
space, returning the sets reached and waitlist. If the analysis
has exhaustively checked all program states and did not reach
the error, indicated by an empty set waitlist, then the algorithm
terminates and reports that the program is safe. If the algorithm
finds an error in the abstract state space, i.e., a counterexample
for the given specification, then the exploration algorithm
stops and returns the unfinished, incomplete sets reached and
waitlist. Now the according abstract error path is extracted
from the set reached using procedure extractErrorPath and
analyzed for feasibility using the procedure isFeasible for
feasibility check. If the abstract error path is feasible, meaning
there exists a corresponding concrete error path, then this
error path represents a violation of the specification and the
algorithm terminates, reporting a bug. If the error path is
infeasible, i.e., not corresponding to a concrete program path,
then the precision was too coarse and needs to be refined.
The algorithm extracts certain information from the error path
in order to refine the precision based on that information
using the procedure Refine for refinement, which returns a
precision π that makes the analysis strong enough to refute
the infeasible error path in further state-space explorations.
The current precision is extended using the precision returned
by the refinement procedure and the analysis is restarted with
this refined precision. Instead of restarting from the initial sets
for reached and waitlist, we can also prune those parts of the
ARG that need to be rediscovered with new precisions, and
replace the precision of the leaf nodes in the ARG with the
refined precision, and then restart the exploration on the pruned
sets. Our contribution in the next section is to introduce new
implementations for the feasibility check as well as for the
refinement procedure.

H. Interpolation

For a pair of formulas ϕ− and ϕ+ such that ϕ− ∧ ϕ+ is
unsatisfiable, a Craig interpolant ψ is a formula that fulfills
the following requirements [17]:

1) the implication ϕ− ⇒ ψ holds,
2) the conjunction ψ ∧ ϕ+ is unsatisfiable, and
3) ψ only contains symbols that occur in both ϕ− and ϕ+.

Such a Craig interpolant is guaranteed to exist for many useful
theories, for example, the theory of linear arithmetic with

Algorithm 2 CEGAR(D, e0, π0)

Input: a configurable program analysis with dynamic precision
adjustment D = (D,Π, ,merge, stop, prec),
an initial abstract state e0 ∈ E with precision π0 ∈ Π,
where E denotes the set of elements of the semi-lattice of D

Output: verification result safe or unsafe
Variables: a set reached of elements of E ×Π,

a set waitlist of elements of E ×Π,
an error path σ = 〈(op1, l1), ..., (opn, ln)〉

reached := {(e0, π0)}; waitlist := {(e0, π0)}; π := π0;
while true do

(reached,waitlist) := CPA(D, reached,waitlist);
if waitlist = ∅ then

return safe
else
σ := extractErrorPath(reached);
if isFeasible(σ) then // error path is feasible: report bug

return unsafe
else // error path is not feasible: refine and restart
π := π ∪ Refine(σ);
reached := (e0, π); waitlist := (e0, π);

uninterpreted functions, as implemented in some SMT solvers
(e.g., MATHSAT3, SMTINTERPOL4).

CEGAR based on Craig interpolation has been proven
successful in the predicate domain. Therefore, we investigate if
this technique is also beneficial for explicit-value model check-
ing. Interpolants from the predicate domain, which consist of
path formulas, are not useful for the explicit domain. Hence,
we need to develop a procedure to compute interpolants for the
explicit domain, which we introduce in the following section.

III. Refinement-Based Explicit-Value Analysis
The level of abstraction in our explicit-value analysis is deter-
mined by the precisions for abstract variable assignments over
program variables. The CEGAR-based iterative refinement
needs an extraction method to obtain the necessary precision
from infeasible error paths. We use our novel notion of
interpolation for the explicit domain to achieve this goal.

A. Explicit-Value Abstraction

We now introduce some necessary operations on abstract vari-
able assignments, the semantics of operations and paths, and
the precision for abstract variable assignments and programs,
in order to be able to concisely discuss interpolation for
abstract variable assignments and constraint sequences.

The operations implication and conjunction for abstract
variable assignments are defined as follows: implication for
v and v′: v ⇒ v′ if def(v′) ⊆ def(v) and for each variable
x ∈ def(v) ∩ def(v′) we have v(x) = v′(x) or v(x) = ⊥
or v′(x) = >; conjunction for v and v′: for each variable
x ∈ def(v) ∪ def(v′) we have

(v∧v′)(x) =

v(x) if x ∈ def(v) and x 6∈ def(v′)
v′(x) if x 6∈ def(v) and x ∈ def(v′)
v(x) if v(x) = v′(x)
⊥ if > 6= v(x) 6= v′(x) 6= >
> otherwise (v(x) = > or v′(x) = >)

3http://mathsat4.disi.unitn.it
4http://ultimate.informatik.uni-freiburg.de/smtinterpol

5

http://mathsat4.disi.unitn.it
http://ultimate.informatik.uni-freiburg.de/smtinterpol

Furthermore we define contradiction for an abstract variable
assignment v: v is contradicting if there is a variable x ∈
def(v) such that v(x) = ⊥ (which implies [[v]] = ∅); and
renaming for v: the abstract variable assignment vx7→y , with
y 6∈ def(v), results from v by renaming variable x to y:
vx7→y = (v \ {(x, v(x))}) ∪ {(y, v(x))}.

The semantics of an operation op ∈ Ops is defined
by the strongest post-operator SPop(·) for abstract variable
assignments: given an abstract variable assignment v, SPop(v)
represents the set of data states that are reachable from
any of the states in the region represented by v after the
execution of op. Formally, given an abstract variable assign-
ment v and an assignment operation s := exp, we have
SPs:=exp(v) = v|X\{s}∧vs:=exp with vs:=exp = {(s, exp/v)},
where exp/v denotes the interpretation of expression exp for
the abstract variable assignment v (cf. definition of exp/v in
Subsection II-C). That is, the value of variable s is the result
of the arithmetic evaluation of expression exp, or > if not
all values in the expression are known, or ⊥ if no value is
possible (an abstract data state in which a variable is assigned
to ⊥ does not represent any concrete data state). Given an
abstract variable assignment v and an assume operation [p],
we have SP[p](v) = v′ and for all x ∈ X we have v′(x) = ⊥
if (y,⊥) ∈ v for some variable x ∈ X or the formula p/v is
unsatisfiable, or v′(x) = c if c is the only satisfying assignment
of the formula p/v for variable x, or v′(x) = > in all other
cases; the formula p/v is defined as in Subsection II-C.

A path σ is a sequence 〈(op1, l1), ..., (opn, ln)〉 of pairs
of an operation and a location. The path σ is called pro-
gram path if for every i with 1 ≤ i ≤ n there exists
a CFA edge g = (li−1, opi, li) and l0 is the initial pro-
gram location, i.e., σ represents a syntactic walk through
the CFA. Every path σ = 〈(op1, l1), ..., (opn, ln)〉 defines a
constraint sequence γσ = 〈op1, ..., opn〉. The semantics of
a program path σ = 〈(op1, l1), ..., (opn, ln)〉 is defined as
the successive application of the strongest post-operator to
each operation of the corresponding constraint sequence γσ:
SPγσ (v) = SPopn(...SPopi(..SPop1

(v)..)...). The set of con-
crete program states that result from running σ is represented
by the pair (ln,SPγσ (v0)), where v0 = {} is the initial abstract
variable assignment that does not map any variable to a value.
A program path σ is feasible if SPγσ (v0) is not contradicting,
i.e., SPγσ (v0)(x) 6= ⊥ for all variables x in def(SPγσ (v0)). A
concrete state (ln, cdn) is reachable from a region r, denoted
by (ln, cdn) ∈ Reach(r), if there exists a feasible program
path σ = 〈(op1, l1), ..., (opn, ln)〉 with (l0, v0) ∈ r and
cdn ∈ [[SPγσ (v0)]]. A location l is reachable if there exists
a concrete state c such that (l, c) is reachable. A program is
SAFE if le is not reachable.

The precision for an abstract variable assignment is a set π
of variables. The explicit-value abstraction for an abstract
variable assignment is an abstract variable assignment that
is defined only on variables that are in the precision π.
For example, the explicit-value abstraction for the variable
assignment v = {x 7→ 2, y 7→ 5} and the precision π = {x}
is the abstract variable assignment vπ = {x 7→ 2}.

The precision for a program is a function Π : L → 2X ,
which assigns to each program location a precision for an

abstract variable assignment, i.e., a set of variables for which
the analysis is instructed to track values. A lazy explicit-value
abstraction of a program uses different precisions for different
abstract states on different program paths in the abstract
reachability graph (ARG). The explicit-value abstraction for
a variable assignment at location l is computed using the
precision Π(l).

B. CEGAR for Explicit-Value Model Checking

We now instantiate the three components of the CEGAR
technique, i.e., precision, feasibility check, and refinement, for
our explicit-value analysis. The precisions that our CEGAR
instance uses are the above introduced precisions for a program
(which assign to each program location a set of variables), and
we start the CEGAR iteration with the empty precision, i.e.,
Πinit(l) = ∅ for each l ∈ L, such that no variable will be
tracked.

The feasibility check for a path σ is performed by exe-
cuting an explicit-value analysis of the path σ using the full
precision Π(l) = X for all locations l, i.e., all variables
will be tracked. This is equivalent to computing SPγσ (v0)
and check if the result is contradicting, i.e., if there is a
variable for which the resulting abstract variable assignment
is ⊥. This feasibility check is extremely efficient, because the
path is finite and the strongest post-operations for abstract
variable assignments are simple arithmetic evaluations. If the
feasibility check reaches the error location le, then this error
can be reported. If the check cannot reach the error location,
because of a contradicting abstract variable assignment, then a
refinement is necessary because at least one constraint depends
on a variable that was not yet tracked.

We define the last component of the CEGAR technique, the
refinement, after we introduced the notion of interpolation for
variable assignments and constraint sequences.

C. Interpolation for Variable Assignments

For each infeasible error path in the above mentioned re-
finement operation, we need to determine a precision that
assigns to each program location on that path the set of
program variables that the explicit-value analysis needs to
track in order to eliminate that infeasible error path in future
explorations. Therefore, we define an interpolant for abstract
variable assignments.

An interpolant for a pair of abstract variable assignments
v− and v+, such that v− ∧ v+ is contradicting, is an abstract
variable assignment V that fulfills the following requirements:

1) the implication v− ⇒ V holds,
2) the conjunction V ∧ v+ is contradicting, and
3) V only contains variables in its definition range which

are in the definition ranges of both v− and v+ (def(V) ⊆
def(v−) ∩ def(v+)).

Lemma. For a given pair (v−, v+) of abstract variable
assignments, such that v−∧v+ is contradicting, an interpolant
exists. Such an interpolant can be computed in time O(m+n),
where m and n are the sizes of v− and v+, respectively.

6

Algorithm 3 Interpolate(γ−, γ+)

Input: two constraint sequences γ− and γ+,
with γ− ∧ γ+ is contradicting

Output: a constraint sequence Γ,
which is an interpolant for γ− and γ+

Variables: an abstract variable assignment v
v := SPγ−(∅)
for each x ∈ def(v) do

if SPγ+(v|def(v)\{x}) is contradicting then
// x is not relevant and should not occur in the interpolant
v := v|def(v)\{x}

// construct the interpolating constraint sequence
Γ := 〈〉
for each x ∈ def(v) do

// construct an assume constraint for x
Γ := Γ ∧ 〈[x = v(x)]〉

return Γ

Proof. The variable assignment v−|def(v+) is an interpolant for
the pair (v−, v+).

Note. The above-mentioned interpolant that simply results
from restricting v− to the definition range of v+ (common
definition range) is of course not a ‘good’ interpolant. In
practice, we strive for interpolants with minimal definition
range, and use slightly more expensive algorithms to compute
them. Interpolation for abstract variable assignments is a
first idea to approach the problem, but since we need to
extract interpolants for paths, we next define interpolation for
constraint sequences.

D. Interpolation for Constraint Sequences

A more expressive interpolation can be achieved by
considering constraint sequences. The conjunction γ ∧ γ′
of two constraint sequences γ = 〈op1, ..., opn〉 and
γ′ = 〈op′1, ..., op′m〉 is defined as their concatenation,
i.e., γ ∧ γ′ = 〈op1, ..., opn, op

′
1, ..., op

′
m〉, the implication of

γ and γ′ (denoted by γ ⇒ γ′) as SPγ(v0) ⇒ SPγ′(v0), and
γ is contradicting if [[SPγ(v0)]] = ∅, with v0 = {}.

An interpolant for a pair of constraint sequences γ− and γ+,
such that γ− ∧ γ+ is contradicting, is a constraint sequence
Γ that fulfills the following requirements:

1) the implication γ− ⇒ Γ holds,
2) the conjunction Γ ∧ γ+ is contradicting, and
3) Γ contains in its constraints only variables that occur in

the constraints of both γ− and γ+.

Lemma. For a given pair (γ−, γ+) of constraint sequences,
such that γ−∧γ+ is contradicting, an interpolant exists. Such
an interpolant is computable in time O(m · n), where m and
n are the sizes of γ− and γ+, respectively.

Proof. Algorithm Interpolate (Alg. 3) returns an interpolant
for two constraint sequences γ− and γ+. The algorithm
starts with computing the strongest post-condition for γ−

and assigns the result to the abstract variable assignment v,
which then may contain up to m variables. Per definition, the
strongest post-condition for γ+ of variable assignment v is
contradicting. Next we try to eliminate each variable from v,
by testing if removing it from v makes the strongest post-
condition for γ+ of v contradicting (each such test takes

Algorithm 4 Refine(σ)

Input: infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output: precision Π
Variables: interpolating constraint sequence Γ

Γ := 〈〉;
Π(l) := ∅, for all program locations l ;
for i := 1 to n− 1 do
γ+ := 〈opi+1, ..., opn〉
// inductive interpolation
Γ := Interpolate(Γ ∧ opi, γ

+)
// extract variables from variable assignment that results from Γ
Π(li) :=

{
x
∣∣(x, z) ∈ SPΓ(∅) and ⊥ 6= z 6= >

}
return Π

n SP steps). If it is contradicting, the variable can be removed.
If not, the variable is necessary to prove the contradiction
of the two constraint sequences, and thus, should occur in
the interpolant. Note that this keeps only variables in v that
occur in γ+ as well. The rest of the algorithm constructs a
constraint sequence from the variable assignment, in order to
return an interpolating constraint sequence, which fulfills the
three requirements of an interpolant. A naive implementation
can compute such an interpolant in O((m+ n)3).

E. Refinement Based on Explicit-Interpolation

The goal of our interpolation-based refinement for explicit-
value analysis is to determine a localized precision that is
strong enough to eliminate an infeasible error path in future
explorations. This criterion is fulfilled by the property of
interpolants. A second goal is to have a precision that is as
weak as possible, by creating interpolants that have a definition
range as small as possible, in order to be parsimonious in
tracking variables and creating abstract states.

We apply the idea of interpolation for constraint sequences
to assemble a precision-extraction algorithm: Algorithm Refine
(Alg. 4) takes as input an infeasible program path, and returns
a precision for a program. A further requirement is that
the procedure computes inductive interpolants [6], i.e., each
interpolant along the path contains just enough information
to prove the remaining path infeasible. This is needed in
order to ensure that the interpolants at the different locations
achieve the goal of providing a precision that eliminates
the infeasible error path from further explorations. For every
program location li along an infeasible error path σ, starting
at l0, we split the constraint sequence of the path into a
constraint prefix γ−, which consists of the constraints from
the start location l0 to li, and a constraint suffix γ+, which
consists of the path from the location li to le. For computing
inductive interpolants, we replace the constraint prefix by the
conjunction of the last interpolant and the current constraint.
The precision is extracted by computing the abstract vari-
able assignment for the interpolating constraint sequence and
assigning the relevant variables as precision for the current
location li, i.e., the set of all variables that are necessary to
be tracked in order to eliminate the error path from future
exploration of the state space. This algorithm for precision
extraction yields a parsimonious precision, i.e., a precision
containing just enough information to exclude the infeasible
error path, and can be directly plugged-in as refinement routine

7

N0

N1

N2

N3

N4

N5 N6

N7

N9: ERROR:N8

∅

∅

∅

∅

∅

∅

∅

N9: ERROR:

∅

∅

∅

∅

∅

∅ N6

{a→1}

N9: ERROR:∅

CFA abstract states

int a, b, c;

a = 0;

b = a;

c = a;

[a == -1][a != -1] [a == -1]

a = 1; <noop>

int a, b, c;

a = 0;

b = a;

c = a;

[a == 0] [a != 0]

[a != -1] [a == -1]

a = 1; <noop>

int a, b, c;

a = 0;

b = a;

c = a;

[a == 0] [a != 0]

υ = ∅

υ = ∅

υ = ∅

υ = ∅

υ = ∅

υ = ∅

υ = {a→1}

N9: ERROR:

interpolants

int a, b, c;

a = 0;

b = a;

c = a;

[a == -1]

∅

∅

∅

∅

∅

∅

{a}

N9: ERROR:

precision

int a, b, c;

a = 0;

b = a;

c = a;

[a == -1]

error path refuted

a = 1;

[a == 0]

a = 1;

[a == 0]

a = 1;

[a == 0]

Fig. 2: Illustration of one refinement iteration; from left to right: a simple example CFA, an infeasible error path with the abstract states
annotated in the nodes (precision was empty, nothing is tracked), the interpolated variable assignments annotated in the nodes, the precisions
extracted from the interpolants annotated in the nodes, and finally the CFA with the abstract states annotated in the nodes according to the
new precision (unreached nodes —including error— shown in gray)

of the CEGAR algorithm (cf. Alg. 2). Note that the repetitive
interpolations are not an efficiency bottleneck. The path is
always finite, without any loops or branching, and thus, even
a full-precision check can be decided efficiently. Figure 2
illustrates the interpolation process on a simple example.

F. Optimizations

In our implementation, we added several optimizations to
improve the performance of our approach.
ARG Pruning instead of Restart. Our refinement rou-
tine Refine (cf. Alg. 4) returns a set of variables (precision)
that are important for deciding the reachability of the error
location. One of the ideas of lazy abstraction refinement [22]
is that the precision is only refined where necessary, i.e., only
at the locations along the path that was considered in the
refinement; the other parts of the state space are not refined.
As mentioned in the discussion of the CEGAR algorithm (cf.
Alg. 2), it is not necessary to restart the exploration of the
state space from scratch after a refinement. Instead, we identify
the descendant closest to the root of the abstract reachability
graph (ARG) in which the precision was refined, and the re-
exploration of the state space continues from there. In total,
this significantly reduces the number of tracked variables per
abstract state, which in turn leads to a more efficient analysis,
because it drastically increases the chance that a new abstract
state is covered by an existing abstract state.
Scoped Precision Refinement. The precision for a program
assigns to each program location the set of variables that
need to be tracked at that location, and the interpolation-
based refinement adds new variables precisely at the locations
for which they were discovered during refinement. In our
experience, the number of refinements is reduced significantly
if we add a variable to the precision not only at the particular
location for which it was discovered, but at all locations in

the local scope of the variable. This helps to avoid adding a
variable twice that can occur on two different branches. By
adding the variable to the precision “in advance” in the local
scope, we abbreviate some refinement iterations. For example,
consider Fig. 2 again. After the illustrated refinement, another
refinement step would be necessary, in order to discover that
variable a needs to be tracked at location N4 as well (to prevent
the analysis from going through location N6). By adding
variable a to the precision of all locations in the scope of
variable a immediately after the first refinement, the program
can be proved safe without further refinement. This effect
was also observed, and used, in the software model checker
BLAST [6].
Precise Counterexample Check. In order to further increase
the precision of our analysis, we double-check all feasible er-
ror paths using bit-precise bounded model checking (BMC) 5,
by generating a path program [7] for the error path and let the
BMC confirm the bug. Since the generated path program does
not contain any loop or branching, it can be verified efficiently.
If both our analysis and the bit-precise BMC report unsafe ,
then we report a bug. If the BMC cannot confirm the bug,
our analysis continues trying to find another error path. This
additional feature is available as a command-line option in our
implementation.
Auxiliary Predicate Analysis. As an additional option for
further improvement of the analysis, we implemented the
combination with a predicate analysis, as outlined in existing
work [9]. In this combination, if the explicit-value analysis
finds an error path, this path is first checked for satisfiability in
the predicate domain. If the satisfiability check is positive, the
result unsafe can be reported and the error path is returned;
if negative, then the explicit-value domain is not expressive
enough to analyze that program path (e.g., due to inequalities).

5In our implementation, we use CBMC [15] as bounded model checker.

8

In this case, we ask the predicate analysis to refine its
abstraction along that path, which yields a refined predicate
precision that eliminates the error path but considering the
facts along that path in the (more precise, and more expensive)
predicate domain. We need to parsimoniously use this feature
because the post-operations of the predicate analysis are much
more expensive than the post-operations of the explicit-value
analysis. In general, after a refinement step, either the explicit-
value precision is refined (preferred) or the predicate precision
is refined (only if explicit does not succeed).

Using the concept of dynamic precision adjustment [9], we
also switch off the tracking of variables in the explicit-value
domain if the number of different values on a path exceeds a
certain threshold. After this, the predicate analysis will get
switched on (by the above-mentioned mechanism) and the
facts on that path are further tracked using predicates. This is
important if the explicit-value analysis tries to unwind loops;
the symbolic, predicate-based analysis can often store a large
number of values more efficiently.

Note that this refinement-based, parallel composition with
precision adjustment of the explicit-value analysis and the
predicate analysis is more powerful than a mere parallel
product of the two analyses, because after each refinement, the
explicit part of the analysis tracks exactly what it is capable of
tracking, while the auxiliary predicate analysis takes care of
only those facts that are beyond the capabilities of the explicit
domain, resulting in a lightweight analysis on both ends. Such
a combination is easy to achieve in our implementation, be-
cause we use the framework of configurable program analysis
(CPA), which lets the user freely configure such combinations.

IV. Experiments
In order to demonstrate that our approach yields a significant
practical improvement of verification efficiency and effec-
tiveness, we implemented our algorithms and compared our
new techniques to existing tools for software verification. In
the following, we show that the application of abstraction,
CEGAR, and interpolation to the explicit-value domain con-
siderably improves the number of solved instances and the run
time. Combinations of the new explicit-value analysis with
a predicate-based analysis can further increase the number
of solved instances. All our experiments were performed on
hardware identical to that of the SV-COMP’12 [5], such that
our results are comparable to all the results obtained there.
Compared Verification Approaches. For presentation, we re-
strict the comparison of our new approach to the SV-COMP’12
participants BLAST, SATABS, and the competition winner CPA-
MEMO, all of which are based on predicate abstraction and
CEGAR. Furthermore, to investigate performance differences
in the same tool environment, we also compare with different
configurations of CPACHECKER. The model checker BLAST is
based on predicate abstraction, and uses a CEGAR loop for
abstraction refinement. The predicates for the precision are
learned from counterexample paths using interpolation. The
central data structure of the algorithm is an ARG, which
is lazily constructed and refined. BLAST won the category
“DeviceDrivers64” in the SV-COMP’12, and got bronze in

another category. The model checker SATABS is also based on
predicate abstraction and CEGAR, but in contrast to BLAST, it
constructs and checks in every iteration of the CEGAR loop a
new boolean program based on the current precision of the
predicate abstraction, and does not use lazy abstraction or
interpolation. SATABS got silver in the categories “SystemC”
and “Concurrency”, and bronze in another category. The
model checker CPA-MEMO is based on predicate abstraction,
CEGAR, and interpolation, but extends it with the concepts of
adjustable-block encoding [11] and block-abstraction memo-
ization [26]. CPA-MEMO won the category “Overall”, got silver
in two more categories, and bronze in another category.

We implemented our concepts as extensions of
CPACHECKER [10], a software-verification framework
based on configurable program analysis (CPA). We compare
with the existing explicit-value analysis (without abstraction,
CEGAR, and interpolation) and with the existing predicate
analysis that is based on boolean predicate abstraction,
CEGAR, interpolation, and adjustable-block encoding [11].
We used the trunk version of CPACHECKER6 in revision 6615.
Verification Tasks. For the evaluation of our approach,
we use all SV-COMP’12 7 verification tasks that do
not involve concurrency properties (all categories ex-
cept category “Concurrency”). All obtained experimental
data as well as the tool implementation are available at
http://www.sosy-lab.org/∼dbeyer/cpa-explicit.
Quality Measures. We compare the verification results of
all verification approaches based on three measures for ver-
ification quality: First, we take the run time, in seconds, of
the verification runs to measure the efficiency of an approach.
Obviously, the lower the run time, the better the tool. Second,
we use the number of correctly solved instances of verification
tasks to measure the effectiveness of an approach. The more
instances a tool can solve, the more powerful the analysis is.
Third, and most importantly, we use the scoring schema of the
SV-COMP’12 as indicator for the quality of an approach. The
scoring schema implements a community-agreed weighting
schema, namely, that it is more difficult to prove a program
correct compared to finding a bug and that a wrong answer
should be penalized with double the scores that a correct
answer would have achieved. For a full discussion of the
official rules and benchmarks of the SV-COMP’12, we refer to
the competition report [5]. Besides the data tables, we use plots
of quantile functions [5] for visualizing the number of solved
instances and the verification time. The quantile function for
one approach contains all pairs (x, y) such that the maximum
run time of the x fastest results is y. We use a logarithmic
scale for the time range from 1 s to 1000 s and a linear scale
for the time range between 0 s and 1 s. In addition, we decorate
the graphs with symbols at every fifth data point in order to
make the graphs distinguishable on gray-scale prints.
Improvements of Explicit-Value Analysis. In the first evalu-
ation, we compare two different configurations of the explicit-
value analysis: CPA-EXPL refers to the existing implementation
of a standard explicit-value analysis without abstraction and

6http://cpachecker.sosy-lab.org
7http://sv-comp.sosy-lab.org/2012

9

http://www.sosy-lab.org/~dbeyer/cpa-explicit/
http://cpachecker.sosy-lab.org/
http://sv-comp.sosy-lab.org/2012/

Category CPA-EXPL CPA-EXPLitp

points solved time points solved time
ControlFlowInt 124 81 8400 123 79 780
DeviceDrivers 53 37 63 53 37 69
DeviceDrivers64 5 5 660 33 19 200
HeapManipul 1 3 5.5 1 3 5.8
SystemC 34 26 1600 34 26 1500

Overall 217 152 11000 244 164 2500
TABLE I: Comparison with purely explicit, non-CEGAR approach

1

10

100

1000

CPA-EXPL
CPA-EXPLitp

0 50 100 150 200

n-th fastest result

Ti
m
e
in

s

Fig. 3: Quantile plot: purely explicit analyses

refinement, and CPA-EXPLitp refers to the new approach, which
implements abstraction, CEGAR, and interpolation. Table I
and Fig. 3 show that the new approach uses less time, solves
more instances, and obtains more points in the SV-COMP’12
scoring schema.
Improvements of Combination with Predicate Analysis.
In the second evaluation, we compare the refinement-based
explicit analysis against a standard predicate analysis, as well
as to the predicate analysis combined with CPA-EXPL and CPA-
EXPLitp, respectively: CPA-PRED refers to a standard predicate
analysis that CPACHECKER offers (ABE-lf, [11]), CPA-EXPLitp

refers again to the explicit-value analysis, which implements
abstraction, CEGAR, and interpolation, CPA-EXPL-PRED refers
to the combination of predicate analysis and explicit-value
analysis without refinement, and CPA-EXPLitp-PRED refers to the
combination of predicate analysis and explicit-value analysis
with refinement.

Table II and Fig. 4 show that the new combination approach
outperforms the existing approaches CPA-PRED and CPA-EXPLitp

in terms of solved instances and score. The comparison with
column CPA-EXPL-PRED is interesting because it shows that the
combination of two analyses is an improvement even without
refinement in the explicit-value analysis, but switching on
the refinement in both domains makes the new combination
significantly more effective.
Comparison with State-of-the-Art Verifiers. In the third
evaluation, we compare our new combination approach with
three established tools: BLAST refers to the standard BLAST

configuration that participated in the SV-COMP’12, SATABS

also refers to the respective standard configuration, CPA-MEMO

refers to a special predicate abstraction that is based on block-
abstraction memoization, and CPA-EXPLitp-PRED refers to our
novel approach, which combines a predicate analysis (CPA-
PRED) with the new explicit-value analysis that is based on

1

10

100

1000

Ti
m
e
in

s

CPA-PRED
CPA-EXPLitp

CPA-EXPL-PRED
CPA-EXPLitp-PRED

0 50 100 150 200

n-th fastest result

Fig. 4: Quantile plot: comparison with predicate-based configurations

1

10

100

1000
Ti
m
e
in

s

BLAST
SATABS

CPA-Memo
CPA-EXPLitp-PRED

0 50 100 150 200

n-th fastest result

Fig. 5: Quantile plot: comparison with three existing tools

abstraction, CEGAR, and interpolation (CPA-EXPLitp). Table III
and Fig. 5 show that the new approach outperforms BLAST

and SATABS by consuming considerably less verification time,
more solved instances, and a better score. Even compared
to the SV-COMP’12 winner, CPA-MEMO, our new approach
scores higher. It is interesting to observe that the difference in
scores is much higher than the difference in solved instances:
this means CPA-MEMO had many incorrect verification results,
which in turn shows that our new combination is significantly
more precise.

V. Conclusion
The surprising insight of this work is that it is possible
to achieve —without using sophisticated SMT-solvers during
the abstraction refinement— a performance and precision
that can compete with the world’s leading symbolic model
checkers, which are based on SMT-based predicate abstraction.
We achieved this by incorporating the ideas of abstraction,

10

Category CPA-PRED CPA-EXPLitp CPA-EXPL-PRED CPA-EXPLitp-PRED
score solved time score solved time score solved time score solved time

ControlFlowInt 103 70 2500 123 79 780 131 85 2600 141 91 830
DeviceDrivers 71 46 80 53 37 69 71 46 82 71 46 87
DeviceDrivers64 33 24 2700 33 19 200 10 11 1100 37 24 980
HeapManipul 8 6 12 1 3 5.8 6 5 11 8 6 12
SystemC 22 17 1900 34 26 1500 62 45 1500 61 44 3700

Overall 237 163 7100 244 164 2500 280 192 5300 318 211 5600

TABLE II: Comparison with predicate-based configurations

Category BLAST SATABS CPA-MEMO CPA-EXPLitp-PRED
score solved time score solved time score solved time score solved time

ControlFlowInt 71 51 9900 75 47 5400 140 91 3200 141 91 830
DeviceDrivers 72 51 30 71 43 140 51 46 93 71 46 87
DeviceDrivers64 55 33 1400 32 17 3200 49 33 500 37 24 980
HeapManipul – – – – – – 4 9 16 8 6 12
SystemC 33 23 4000 57 40 5000 36 30 450 61 44 3700

Overall 231 158 15000 235 147 14000 280 209 4300 318 211 5600

TABLE III: Comparison with three existing tools

counterexample-guided abstraction refinement, lazy abstrac-
tion refinement, and interpolation into a standard, simple
explicit-value analysis.

We further improved the performance and precision by
combining our refinement-based explicit-value analysis with
a predicate analysis, in order to benefit from the comple-
mentary advantages of the methods. The combination analysis
dynamically adjusts the precision [9] for an optimal trade-
off between the precision of the explicit analysis and the
precision of the auxiliary predicate analysis. This combination
out-performs state-of-the-art model checkers, witnessed by a
thorough comparison on a standardized set of benchmarks.

Despite the overall success of our new approach, individual
instances of benchmarks show different performance with
different configurations — i.e., either with or without CEGAR.
Therefore, a general heuristic for finding a suitable strategy for
a single verification task would be beneficial. Also, we envi-
sion better support for pointers and data structures, because
our interpolation approach can be efficiently applied even
with high precision. Moreover, we so far only combined our
interpolation approach with an auxiliary predicate analysis in
the ABE-lf configuration, and we have not yet tried to combine
this with the superior block-abstraction memoization (ABM)
[26] technique. Finally, we plan to extend our interpolation
approach to other abstract domains like intervals.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpretation.

In Proc. SAS, pages 300–316, 2012.
[3] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstrac-

tions for model checking C programs. In Proc. TACAS, LNCS 2031,
pages 268–283. Springer, 2001.

[4] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

[5] D. Beyer. Competition on Software Verification (SV-COMP). In Proc.
TACAS, LNCS 7214, pages 504–524. Springer, 2012.

[6] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–
525, 2007.

[7] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
programs. In Proc. PLDI, pages 300–309. ACM, 2007.

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and pro-
gram analysis. In Proc. CAV, LNCS 4590, pages 504–518. Springer,
2007.

[9] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with
dynamic precision adjustment. In Proc. ASE, pages 29–38. IEEE, 2008.

[10] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190.
Springer, 2011.

[11] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD,
2010.

[12] D. Beyer and P. Wendler. Algorithms for software model checking:
Predicate abstraction vs. IMPACT. In Proc. FMCAD, pages 106–113.
FMCAD, 2012.

[13] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. IEEE Trans. Softw. Eng.,
30(6):388–402, 2004.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[15] E. M. Clarke, D. Kröning, and F. Lerda. A tool for checking ANSI-
C programs. In Proc. TACAS, LNCS 2988, pages 168–176. Springer,
2004.

[16] E. M. Clarke, D. Kröning, N. Sharygina, and K. Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In Proc. TACAS, LNCS 3440,
pages 570–574. Springer, 2005.

[17] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen
theorem. J. Symb. Log., 22(3):250–268, 1957.

[18] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In Proc. CAV, LNCS 1254, pages 72–83. Springer, 1997.

[19] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Auto-
matically refining abstract interpretations. In Proc. TACAS, LNCS 4963,
pages 443–458. Springer, 2008.

[20] K. Havelund and T. Pressburger. Model checking Java programs using
JAVA PATHFINDER. Int. J. Softw. Tools Technol. Transfer, 2(4):366–381,
2000.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In Proc. POPL, pages 232–244. ACM, 2004.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Proc. POPL, pages 58–70. ACM, 2002.

[23] G. J. Holzmann. The SPIN model checker. IEEE Trans. Softw. Eng.,
23(5):279–295, 1997.

[24] C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible counter-
examples when model checking abstracted Java programs. In Proc.
TACAS, LNCS 2031, pages 284–298. Springer, 2001.

[25] A. Podelski and A. Rybalchenko. ARMC: The logical choice for
software model checking with abstraction refinement. In Proc. PADL,
LNCS 4354, pages 245–259. Springer, 2007.

[26] D. Wonisch. Block abstraction memoization for CPACHECKER. In Proc.
TACAS, LNCS 7214, pages 531–533. Springer, 2012.

11

