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Abstract. It is known that model checkers can generate test inputs as witnesses
for reachability specifications (or, equivalently, as counterexamples for safety
properties). While this use of model checkers for testing yields a theoretically
sound test-generation procedure, it scales poorly for computing complex test
suites for large sets of test goals, because each test goal requires an expensive
run of the model checker. We represent test goals as automata and exploit re-
lations between automata in order to reuse existing reachability information for
the analysis of subsequent test goals. Exploiting the sharing of sub-automata in
a series of reachability queries, we achieve considerable performance improve-
ments over the standard approach. We show the practical use of our multi-goal
reachability analysis in a predicate-abstraction-based test-input generator for the
test-specification language FQL.

1 Introduction

Consider the problem of performing many reachability queries on a program that is
given as source code. This problem is common in white-box test generation [3, 12, 13],
where the goal is to obtain inputs for different paths in a given program. If, for instance,
we want to achieve basic-block coverage, we will for each basic block b generate a test-
goal that asks if there is a program execution that reaches b and, ultimately, the program
exit. In previous work, we designed the coverage-specification language FQL [20, 22],
which provides a concise specification of complex coverage criteria. Such a coverage
criterion is then translated into a (possibly huge) set of test goals (cf. Table 2). Each such
test goal is represented as a finite automaton, called test-goal automaton, and specifies a
reachability query. Test-goal automata often have overlapping parts, i.e., identical parts
of the automata, which let us reuse analysis results across several queries. In this paper,
we present an approach that exploits the automaton structure of reachability queries
to efficiently reuse information when solving multiple queries. In order to define the
potentially shared behavior of two automataA and A′, we introduce the notion of simi-
larity of A and A′ modulo a set X of transitions, where X is a subset of the transitions
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of A′. If A simulates A′ modulo X , then we also have trace containment modulo X .
That is, each sequence of transitions starting in an initial state ofA′ and not including a
transition fromX is also a sequence of transitions inA. This enables us to reason about
reachability of program executions in A′ based on the reachability results for A as long
as we are investigating transition sequences shared by both automata. Using this notion
of similarity, we face two challenges: (i) how can we maximize the overlapping parts of
automata (for two automata we can always achieve similarity moduloX by choosing a
sufficiently large X , but the bigger X is, the less information we can reuse), and (ii) in
which order shall we process the automata to achieve a minimal number of reachability
analysis runs?

The alphabet of a test-goal automaton is a finite set of observations of a program exe-
cution. An observation can be, for example, a specific code location that is visited during
the execution or a predicate over program states. Each (partial) program execution can
be mapped to a word over these observations and for each test-goal automaton we want
to determine whether it describes a (partial) execution in the given program. Figure 2
shows a symbolic representation of the state space of program P given in Figure 1.
Each node consists of a program location and a description of the heap and the stack
when entering that program location. The edges correspond to the execution of program
statements and each target node represents the strongest postcondition of the respective
statement when applied to the source node. For the moment, we restrict ourselves to

1 if (x > 10)
2 f1 = false ;
3 else
4 f1 = true ;
5 if (x == 100)
6 f2 = false ;
7 if (f1)
8 s = f2 ;
9 else

10 s = f1 ;

Fig. 1. Example
program P

observe only code locations (for simplicity, represented by line
numbers). Then, the observable sequences of P are 〈1, 2, 5, 7, 10〉,
〈1, 2, 5, 6, 7, 10〉, and 〈1, 4, 5, 7, 8〉. P satisfies test-goal automatonA1

(cf. Figure 3) but not test-goal automata A2 and A3 (cf. Figure 4).
Due to recursion and loops it is generally undecidable whether a

test goal is satisfiable on an arbitrary program. We use reachability
analyses, e.g., CEGAR-based predicate abstraction [7, 17], to approx-
imate the set of executions of a program until we either (i) have found
a partial program execution that is described by a word in the lan-
guage of the test-goal or (ii) we have shown that there is no such
execution. The test-goal automaton guides the reachability analysis,
i.e., the analysis tracks program and automaton states simultaneously

4 x ≤ 10

5 x ≤ 10 ∧ f1

7 x ≤ 10 ∧ f1

8 x ≤ 10 ∧ f1

11 x ≤ 10 ∧ f1

2 x > 10

5 x > 10 ∧ ¬f1

7 x > 10 ∧ x �= 100 ∧ ¬f1

10 x > 10 ∧ x �= 100 ∧ ¬f1

11 x > 10∧x �= 100∧¬f1∧¬s

6 x = 100 ∧ ¬f1

7 x = 100 ∧ ¬f1 ∧ ¬f2

10 x = 100 ∧ ¬f1 ∧ ¬f2

11 x = 100∧¬f1∧¬f2∧¬s

1 true

Fig. 2. Reachable state space of P (cf. Figure 1)
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q0 q1A1
6

1, 2, 4, 5 1 true

q0
4 x ≤ 10 q0

5 x ≤ 10 ∧ f1 q0

2 x > 10q0

5 x > 10 ∧ ¬f1q0

6 x = 100 ∧ ¬f1q1

Fig. 3. State space of P restricted by A1

4 x ≤ 10 q1

5 x ≤ 10 ∧ f1 q1

7 x ≤ 10 ∧ f1 q1

8 x ≤ 10 ∧ f1 q1

2 x > 10q0

5 x > 10 ∧ ¬f1q0

7 x > 10 ∧ x �= 100∧ ¬f1q0

10 x > 10 ∧ x �= 100∧ ¬f1q0

6 x = 100 ∧ ¬f1 q0

7 x = 100 ∧ ¬f1 ∧ ¬f2 q0

10 x = 100 ∧ ¬f1 ∧ ¬f2 q0

1 true

q0

p0 p1 p2 p3A3
4 6 7

1, 2, 5, 6,
7, 8, 10

1, 2, 4, 5,
7, 8, 10 8, 10 8, 10

q1q0 q2A2
4 6

1, 2, 5, 6,
7, 8, 10

1, 2, 4, 5,
7, 8, 10 8, 10

7

Fig. 4. State space of P restricted by automaton A2

and stops exploring the state space if there is no possible transition in the program state
space or no possible next automaton transition (cf. the reduced state space in Fig. 3).

First, let us consider the case where the set X of excluded automaton transitions is
empty, i.e., X = ∅. Then simulation modulo X amounts to the standard definition of
simulation [25]. Let H ⊆ Q′ × Q be a relation between the set of states Q′ of an au-
tomaton A′ and the set of states Q of an automaton A such that for each (p, q) ∈ H
there is for each outgoing transition (p, a, p′) an outgoing transition (q, a, q′) such that
(p′, q′) ∈ H . We call H a simulation relation. We say that q simulates p if (p, q) ∈ H
and we say that A simulates A′ if for each initial state p of A′, there is an initial state q
of A such that q simulates p. For example, in Fig. 4, automaton A2 simulates automa-
ton A3. The simulation relation H = {(p0, q0), (p1, q1), (p2, q2), (p2, q3)} witnesses
this fact. The fact that A2 simulates A3 implies that each finite sequence of transitions
starting in an initial state of A3 corresponds to an equivalent sequence of transitions
starting in an initial state ofA2. From the state space given in Fig. 4, we know that state
q2 is not reachable in A2 and since H relates p3 only to q2, we can conclude that p3 is
not reachable as well and that therefore no accepting trace in A3 exists.

In general, test-goal automata do not simulate each other. For example, consider the
situation where a reachability analysis involving A3 is performed. Then, each node in
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Fig. 4 labeled with q0 would be labeled with p0 and each node labeled with q1 would
be labeled with p1. The automaton A3 does not simulate A2 (e.g., A2 accepts a word
〈4, 6, 7, 7〉 which is not accepted by A3). Nevertheless, we can still reuse the reachabil-
ity information obtained for A3 when solving A2: Let A′

2 be the automaton A2 where
the transition (q2, 7, q2) is removed. Then, A3 simulates A′

2, witnessed by the relation
H ′ = {(q0, p0), (q1, p1), (q2, p2)}, and we say that A3 simulatesA2 modulo the transi-
tion set {(q2, 7, q2)}. From the fact that state p2 is not reachable we can conclude that
q2 is not reachable and that therefore A2 is unsatisfiable. Based on the set of excluded
transitions one skips parts of the already analyzed state space (those parts which involve
these transitions) or continues state-space exploration at points that have been skipped
during the previous state space exploration.

In Sect. 4, we combine automaton-based reasoning techniques as introduced above
into an approach for multi-goal reachability analysis. Before that, we will formally in-
troduce the automata that we use for representing reachability queries (cf. Sect. 2) and
discuss our automaton-based reasoning techniques individually (cf. Sect. 3). We imple-
mented the test-input generator CPA/TIGER, which is based on predicate-abstraction.
We show in our experiments (cf. Sect. 5) that we significantly improve over a naive ap-
proach to multi-goal reachability analysis by applying our information reuse techniques.
Furthermore, we compare our implementation with existing test generation tools. In
Sect. 6 we discuss related work and show how our approach can be integrated into
other test generation methods. Finally, we conclude and discuss future work in Sect. 7.

2 Test-Goal Automata

1

2 4

5

6

7

8 10

11

x > 10 x ≤ 10

f1 := false f1 := true

x �= 100

x = 100

f2 := false

f1 ¬f1

s := f2 s := f1

Fig. 5. CFA P0 for code in Fig. 1

We first introduce our program representation, then de-
fine test-goal automata, and finally discuss how we rep-
resent information gathered by a reachability analysis.

Programs. We represent a program as a control-flow
automaton (CFA) [5]. A CFA (L,E) is a directed, la-
beled graph, that consists of a finite set L of nodes and
a finite set E ⊆ L × Ops × L of edges. A node � ∈ L
models a program location (program counter valuation)
and an edge (�, op, �′) ∈ E models a program transfer
(control flows from location � to �′, while performing
program operation op). A program operation op ∈ Ops
is either an assignment or an assume operation 1. Pro-
gram operations can read from, and write to, a finite set
of integer and Boolean variables. Figure 5 shows the
CFA representing the source code shown in Fig. 1.

A program state c is a mapping from program
counter and program variables to values. We denote the

1 Our implementation performs an interprocedural analysis (i.e., handles function call and func-
tion return), but for simplicity of presentation we limit the formalization to flat programs over
integer and Boolean variables.
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set of all program states by C. A set of program states is represented by a state predi-
cate ϕ over the program counter and program variables. We denote the set of state predi-
cates byΦ. We write c |= ϕ (and say, c satisfies state predicateϕ) if program state c ∈ C
is in the state set represented by ϕ ∈ Φ, and we write [[ϕ]] = {c ∈ C | c |= ϕ} for the
set of concrete states represented by ϕ. The concrete semantics of a program opera-
tion op ∈ Ops is given by the strongest postcondition SPop, i.e., for a set of states
represented by ϕ, the set of successor states is represented by ϕ′ = SPop([[ϕ]]). A pro-
gram execution is a sequence c0

e0→ c1 . . . ci
ei→ ci+1 . . . of program states ci, for i ≥ 0,

and consecutive CFA edges ei = (�i, opi, �i+1), for i ≥ 0, such that ci+1 ∈ SPopi(ci)

holds for each ci
ei→ ci+1. We call a program execution complete if either the pro-

gram location of the last state of the execution coincides with the program exit or the
execution is infinite. Otherwise, we call the program execution partial.

Test-Goal Automata. A test goal describes a set of program traces. Test goals refer
to the syntactic structure and semantics of a program. We characterize program traces
syntactically by referring to CFA edges, and semantically by using state predicates. For
example, a test goal can require to find a program execution (identified by an input
assignment) to a particular program location (specified by a CFA edge), or to evaluate
a certain expression to a specific value (specified by a CFA edge and a state predicate).
We represent a test goal by a test-goal automaton:

A test-goal automaton (TGA) A = (Q,Σ,Δ, I, F ) is a nondeterministic finite au-
tomaton, with a finite set Q of states, an alphabetΣ ⊆ E×Φ consisting of pairs of CFA
edges and state predicates, a transition relation Δ ⊆ Q×Σ ×Q, a set I ⊆ Q of initial
states, and a set F ⊆ Q of accepting states. We write q

a−→ q′ in case (q, a, q′) ∈ Δ.

We say that A accepts a program execution c0
e0−→ c1 · · · en−1−→ cn if there is a sequence

q0
(e0,ψ0)−→ q1 · · · (en−1,ψn−1)−→ qn of TGA transitions starting in an initial state q0 ∈ I and

ending in a final state qn ∈ F such that ci+1 |= ψi holds for each qi
(ei,ψi)−→ qi+1. The

last condition ci+1 |= ψi means that if there is a program transition from state ci to state
ci+1, then the state predicate ψi is evaluated on the successor state ci+1. By adding an
additional initial CFA edge, one can also restrict the initial program state.

Example. Figure 6 shows a TGA with initial state q and final state p. The automaton
requires that Line 11 (represented by CFA edge (8, s:=f2, 11)) is visited during a pro-
gram execution and that flag s is true after executing the statement s := f2. Due to the
self-loops at q and p there are no restrictions to a program execution other than the one
stated above. An execution satisfying this test goal has to make both variables f1 and f2
true and therefore x can’t have the value 100 in that execution. Figure 7 shows the set of
TGAs representing basic-block coverage on program P0 given in Fig. 5. For simplicity,

q p

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

((8, s:=f2, 11), s)
((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

Fig. 6. Example test-goal automaton A10
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q p

((1, 2), true)
. . .

((10, 11), true)

((2, 5), true)

((1, 2), true)
. . .

((10, 11), true)

q p

((1, 2), true)
. . .

((10, 11), true)

((4, 5), true)

((1, 2), true)
. . .

((10, 11), true)

q p

((1, 2), true)
. . .

((10, 11), true)

((6, 7), true)

((1, 2), true)
. . .

((10, 11), true)

q p

((1, 2), true)
. . .

((10, 11), true)

((8, 11), true)

((1, 2), true)
. . .

((10, 11), true)

q

p

((1, 2), true)
. . .

((10, 11), true)

((10, 11), true)

((1, 2), true)
. . .

((10, 11), true)

Fig. 7. Example test-goal automata for basic-block coverage

we omitted the operations labeling the CFA edges. For each entry of a basic block, i.e.,
CFA edges (2, 5), (4, 5), (6, 7), (8, 11), and (10, 11), there is a respective automaton.

Representing Reachability Information. For our approach we consider reachability
analyses that represent the reachable state space of a program by an abstract reach-
ability graph (ARG) as it is done for example in predicate-abstraction-based model
checkers [5, 6]. Let P = (L,E) be a CFA and let A = (Q,Σ, δ, q0, F ) be a test-
goal automaton. An abstract reachability graph GP,A = (S, T, s0) consists of a finite
set S ⊆ ID × L × Q × D of abstract states, where ID is a set of identifiers and D
is an abstract data domain whose elements describe the heap and stack, finitely many
transitions T ⊆ S × (E × Φ)× S between these abstract states, and an initial abstract
state s0. The identifier is required to distinguish abstract states with otherwise equal
values, which may be produced, e.g., by the ARG transformations of Sect. 3. To sim-
plify the presentation, however, we omit the identifier in the remainder of this paper. An
abstract state s ∈ S induces a state predicate ϕs over the same program location and a
heap and stack described by the valuation in the abstract domain. Via ϕs we obtain a
set [[s]] of concrete program states. Given an abstract state s, all concrete states in [[s]]
share the same program location, denoted by �(s), and test-goal automaton state, de-
noted by q(s). For the initial state it holds that q(s0) = q0. Let t ∈ T be the transition
(s, (e, ϕ), s′), then t has a corresponding CFA edge, i.e., (�(s), e, �(s′)) ∈ E, and t has
a corresponding TGA transition (q(s), (e, ϕ), q(s′)) ∈ δ. We denote (�(s), e, �(s′)) by
tP and denote (q(s), (e, ϕ), q(s′)) by tA. Then, each sequence t1t2 . . . tn of transitions
in G corresponds to a sequence 〈tP 1, tP 2, . . . , tP n〉 of CFA edges and to a sequence
〈tA1, tA2, . . . , tAn〉 of TGA transitions. Note, the reverse direction does not necessar-
ily hold since a reachability analysis might terminate its state space exploration without
explicitly enumerating all sequences of CFA edges or TGA transitions.

Figure 8 shows an example of an ARG G obtained by a reachability analysis for the
CFA depicted in Figure 5 and the TGA depicted in Figure 6. An ARG is a finite unwind-
ing of the reachable state space. The unwinding stops in case no new behavior can be ob-
served. In order to obtain a finite unwinding, abstraction might be applied. Paths through
the ARG might be merged at points with the same program location and automaton
state (cf. [6] for a detailed elaboration and formalization of merge and stop operators).
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1 q true

2 q x > 10 4 q x ≤ 10

5 q true

6 q x = 100

7 q true

8 q true 10 q true

11 q true11 p s

Witness of
Reachability

Fig. 8. Example ARG GP0,A10 for CFA P0 (see
Figure 5) and TGA A10 (see Figure 6)

In the given example, the ARG G con-
tains the accepting state (11, p, s) (with
s abstracting from f1 and f2 of a
concrete execution of the program). We
denote the directed acyclic graph reach-
ing this state as the witness of reacha-
bility of (11, p, s). A witness is feasible
if there exists a real program execution
encoded in the witness and infeasible
otherwise. The witness given in Figure 8
(enclosed in a dotted line) is feasible,
e.g., the input x = 10, f2 = true causes
an execution following the program path
〈1, 4, 5, 7, 8, 11〉which is accepted by the
TGA given in Figure 6.

In Section 3, we discuss how to turn
an ARG GP,A1 obtained for a TGA A1

into an ARG GP,A2 for a TGA A2.

3 Reasoning on Test Goals

As input to a multi-goal reachability analysis we are given a CFA (L,E) and a set
{A1, A2, . . . , An} of test-goal automata Ai. One way to tackle this problem is to in-
voke a reachability analysis for each test-goal automaton Ai individually. This ap-
proach would have to rediscover lots of information again and again when analysing
the program with respect to different test-goal automata. Therefore, we will now dis-
cuss a notion of simulation that enables us to identify information that is reusable across
reachability analyses for different test-goal automata.

Relating Test-Goal Automata. We relate test-goal automata by adapting the notion of
similarity [25] to identify the transitions that violate the similarity of two automata:

Definition 1 (Similarity modulo X). Given two TGA A1 = (Q1, Σ, δ1, q0, F1) and
A2 = (Q2, Σ, δ2, p0, F2) and a set X ⊆ δ2 of automaton transitions in A2, we call
a relation H ⊆ Q2 × Q1 a simulation relation modulo X from A1 to A2 if H is
a simulation relation from A1 to Ā2 = (Q2, Σ, δ2 \ X, p0, F2). This means that for
each (p, q) ∈ H and for each transition (p, a, p′) ∈ (δ2 \ X) there is a transition
(q, a, q′) ∈ δ1 s.t. (p′, q′) ∈ H .

Example. Figure 9 shows two test goal automata A1 and A2. There, the relation H =
{(p0, q0), (p1, q1), (p2, q2)} is a simulation relation moduloX = {(p1, c, p2)} fromA1

to A2. Each sequence of transitions contained in the automaton Ā2, as defined above,
is also reflected by a corresponding sequence in A1. Note, sets other then the chosenX
could be used to establish similarity from A1 to A2, e.g., by adding more transitions of
A2 to X . However, in order to increase the reuse of gathered reachability information
small X are preferable.
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q0 q1 q2A1: p0 p1 p2A2:

b, c

a

a

b

a, b, c b, c

a

a

c

a, b, c

Fig. 9. {(p0, q0), (p1, q1), (p2, q2)} is a simulation relation modulo {(p1, c, p2)} from A1 to A2

Algorithm 3.1. transform — Transform an ARG into another ARG
Input: TGA A1 = (Q1, Σ, δ1, q0, F1) and A2 = (Q2, Σ, δ2, p0, F2), initial abstract state s̄0,

automaton transition (p0, ((�, op, �
′), ϕ), p′) ∈ δ2 (where q(s̄0) = p0 and �(s̄0) = �),

simulation relation H modulo set of transitions X , ARG GP,A1 , worklist WA1 .
Output: Transformed ARG and worklist for further state-space exploration.
1: S′ ← ⋃

s∈S H(s)
2: T ′ ← ⋃

t∈T H(t)
3: if there is an abstract state s′0 ∈ S′ such that q(s′) = p0 and [[s′0]] ⊇ [[s̄0]] then
4: choose such an s′0
5: S′ ← {s′ ∈ S′ | s′ is reachable from s′0 via T ′}
6: T ′ ← {t ∈ T ′ | t is reachable from s′0 via T ′}
7: W ← {〈s′, d〉 | (�, q, ψ)

︸ ︷︷ ︸
=s′

∈ S′, (q, ((�,op, �′), ϕ), q′)
︸ ︷︷ ︸

=d

∈ X}

8: W ← W ∪⋃
〈ŝ,d̂〉∈WA1

(
(H(ŝ) ∩ S′)×H(d̂)

)

9: return 〈(S′, T ′, s′0),W 〉
10: else
11: return 〈({s̄0}, ∅, s̄0), {(p0, ((�, op, �′), ϕ), p′)}〉

Reusing Reachability Information. Using simulation relations, we can transform a
given ARG GP,A1 for a TGA A1 into an ARG GP,A2 for a TGA A2. We first describe
the general principle of this transformation and then point out how to efficiently apply
it when analysing multiple automata in a row.

Algorithm 3.1 takes an ARG GP,A1 = (S, T, s0) and transforms it into an
ARG GP,A2 based on a simulation relation H from a TGA A1 to TGA A2 modulo
a set of transitions X . To compute the transformation we furthermore need the two
TGA A1 = (Q1, Σ, δ1, q0, F1) and A2 = (Q2, Σ, δ2, p0, F2), the abstract state s̄0
(with q(s̄0) = p0 and �(s̄0) = �), where we will start with the information reuse,
and a TGA transition (p0, ((�, op, �

′), ϕ), p′) ∈ δ2 whose role we will discuss later in
the context of Algorithm 4.3. For the moment, omitting it does not affect the over-
all understanding of the transformation process. Given these inputs, we will obtain an
ARG GP,A2 = (S′, T ′, s′0). Before we discuss the algorithm, we will first define the
sets H(s) and H(t), for s ∈ S and t ∈ T , by

H(s) = {s′ | (p, q(s)) ∈ H and s′ coincides with s except that q(s′) = p}
and, for t = (s1, (e, ϕ), s

′
1),

H(t) = {(s2, (e, ϕ), s′2) | s2 ∈ H(s1), s
′
2 ∈ H(s′1), (q(s2), (e, ϕ), q(s

′
2)) ∈ δ2 \X}.

The set X controls how many transitions from T can be reused, i.e., the largerX is, the
less reachability information can be reused. In Lines 1 and 2 of the algorithm we define
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u v w

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

((5, x �= 100, 7),¬f2)

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

((8, s:=f2, 11), s)

((1, [x > 10], 2), true),
((1, [x ≤ 10], 4), true),

. . .
((10, s:=f1, 11), true)

1 u true

2 u x > 10 4 u x ≤ 10

5 u true

6 u x = 100

7 u true

8 u true 10 u true

11 u true

1 v true

2 v x > 10 4 v x ≤ 10

5 v true

6 v
x =
100

7 v true

8 v true 10 v true

11 v true11 w s

(u, ((5, x �= 100, 7),¬f2), v)

Fig. 10. ARG GP0,A11 obtained from GP0,A10 (cf. Figure 8) using the simulation relation H =
{(u, q), (v, q), (w, p)} modulo X = {(u, ((5, x 
= 100, 7),¬f2), v)}

the set of transformed abstract states S′ =
⋃
s∈S H(s) and the set of transformed ARG

transitions T ′ =
⋃
t∈T H(t) by simply translating all abstract states and all transitions

ofGP,A1 . This might lead to many subparts of the resulting ARG not being connected to
the initial abstract state. In Lines 5 and 6 we will restrict these two sets to the reachable
part only (in the implementation the transformation is only done for the reachable part
of the new ARG). But, in order to determine the reachable part of the newly generated
ARG, we first have to determine what the initial abstract state will be. We do this based
on the given abstract state s̄0. We describe our algorithms from the point of view of
an overapproximating reachability analysis, which leads to the condition that an initial
abstract state s′0 has to contain all concrete states of s̄0, i.e., [[s′0]] ⊇ [[s̄0]]. The concepts
behind the algorithms given in this paper also work for an underapproximating analy-
sis, but one has to use a dual reasoning, e.g., we would need the condition [[s′0]] ⊆ [[s̄0]]
instead. In case there is no such abstract state s′0, then we can’t reuse any information
and we return the ARG ({s̄0}, ∅, s̄0). The role of the transition (p0, ((�, op, �

′), ϕ), p′)
is explained in the discussion of Algorithm 4.3 and we therefore skip it for the moment.
Assume there is a suitable abstract state s′0, then we restrict S′ and T ′, as discussed
above, to the part reachable from s′0. Lines 7 and 8 create a worklist W which contains
abstract states and TGA transitions which have to be further explored. The transforma-
tion of these worklists will be explained in the discussion of Algorithm 4.3.

Figure 10 shows the ARG GP0,A11 obtained from ARG GP0,A10 by using the
simulation relation {(u, q), (v, q), (w, p)} modulo {(u, ((5, x 
= 100, 7),¬f2), v)}.
The resulting worklist is {〈(5, u, true), (u, ((5, x 
= 100, 7),¬f2), v)〉}. First, the left
part of ARG GP0,A11 is computed, and then, a reachability analysis determines the
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Algorithm 3.2. Compute H , X
Input: A = (Q,Σ,Δ, q0, F ), A′ = (Q′, Σ,Δ′, p0, F ′).
Output: H and X such that A simulates A′ modulo X .
1: H ← {(p0, q0)}, H ′ ← ∅
2: X ← ∅, X ′ ← ∅
3: while H 
= H ′ or X 
= X ′ do
4: H ′ ← H
5: X ′ ← X
6: if there is a (p, q) ∈ H s.t. there is a (p, a, p′) ∈ Δ′ \X but no (q, a, q′) ∈ Δ then
7: X ← X ∪ {(p, a, p′)}
8: if there is a (p, q) ∈ H s.t. there is a (p, a, p′) ∈ Δ′ \ X but (p′, q′) 
∈ H for all

(q, a, q′) ∈ Δ then
9: choose a subset U ⊆ {q′ | (q, a, q′) ∈ Δ}

10: if U 
= ∅ then
11: H ← H ∪ {(p′, q′) | q′ ∈ U}
12: else
13: X ← X ∪ {(p, a, p′)}
14: return (H,X)

abstract state (7, v, true) as successor of (5, u, true) along TGA transition (u, ((5, x 
=
100, 7),¬f2), v). Then we again use reachability information from ARG GP0,A10 this
time starting in abstract state (7, v, true). The DAG enclosed in the dotted line describes
the witness after these three steps ‘information reuse’ — ‘reachability analysis’ — ‘in-
formation reuse’. In Section 4 we describe how to combine these steps in an algorithm
for multi-goal reachability analysis.

Computing Simulation-Modulo-X Relations. The amount of possible information
reuse is determined by (i) the set X of transitions and (ii) the relation H . The biggerX
is, the bigger H can be chosen, but at the same time the number of reusable transitions
in an ARG decreases. Since the transitions encode the actual reachability information
we have to find a balance between the size of X and the size of H .

Algorithm 3.2 computes, given two TGA A andA′, a set X of transitions of A′ such
that A simulates A′ modulo X . Furthermore, it computes a corresponding relation H .
The algorithm starts in the initial states p0 and q0 ofA′ andA, respectively. Initially, the
relationH only contains the tuple (p0, q0). Then, for each transition (p0, a, p

′) outgoing
from p0 we check whether we can find a transition (q0, a, q

′) outgoing from q0 labeled
with a as well. If there is no such transition, then A can’t simulate A′ wrt. to this
transition and we have to add (p0, a, p

′) to X . Algorithm 3.2 is parametric wrt. its
behavior if there are such transitions: If (p′, q′) is not contained in H yet, the algorithm
can decide whether it wants to add it to H at all. A bigger relationH might blow up the
resulting translated state space. If the algorithm decides not to add any possible (p′, q′)
to H , then the transition (p, a, p′) has to be excluded, i.e., it has to be added to X .
Otherwise, at least one of the (p′, q′) are added to H . Depending on which (p′, q′) are
added to H the final H and X can vary. In our implementation (cf. Section 5) we have
implemented a breadth-first search which adds all possible (p′, q′) to H . The automata
we consider in our experiments have a tree-like structure and the different (p′, q′) do



482 D. Beyer et al.

Algorithm 4.1. Multi-Goal Reachability Analysis
Input: Program P, a sequence of TGAA1,A2, . . . ,Ai, . . . ,An (see Section 4), an initial program

location �0, and an initial data state d0.
Output: Determines for each 1 ≤ i ≤ n whether P satisfies Ai and, if so, computes inputs.
1: for i = 1→ n do
2: s0 ← (�0, q0, d0) where q0 is the initial state of Ai

3: if Ai is covered by an existing test input contained in the test suite then
4: continue
5: determine-feasibility(P , Ai, s0) // Algorithm 4.2

not interfere with each other in the later exploration. The algorithm then continues with
the elements added newly to H .

Note that the symbols in Σ are actually interdependent, because they are tuples of
CFA edges and state predicates. In case there is a transition (p, a, p′) and a transition
(q, b, q′) for (p, q) ∈ H and a 
= b we might still have a simulation in case the CFA
edges of a and b are the same and the state predicate of b is weaker than the state
predicate of a. For simplicity of presentation, we omitted this case. In case of using
an underapproximating reachability analysis one would dually require that the state
predicate of b is stronger than the state predicate of a.

4 Multi-goal Reachability Analysis

In Section 3, we discussed how we can identify shared behavior of two TGA by sim-
ulation relations and how we can translate reachability information of one TGA into
reachability information for another one. Now, we will use simulation relations as foun-
dation for a reasoning engine that reuses already obtained reachability information. The
input to our multi-goal reachability analysis is a sequence of TGA A1, A2, . . . , An. At
the end of this section, we will discuss how to exploit concise specifications of sets of
TGA and how to obtain an order on these sets.

Algorithm 4.1 shows the main loop of our multi-goal reachability analysis. Its input
is a program P , a sequence of TGA A1, . . . , An, the initial program location �0, and
an initial abstract data state d0 describing the heap and stack at program entry. For
each test-goal automaton Ai, we first check whether we already have inputs inducing a
program execution that satisfies Ai and, if so, we skip Ai from further analysis and we
continue with Ai+1. We do this check by simply executing the program simultaneously
with the TGA Ai with given inputs. If the execution reaches an accepting state of Ai,
then, the inputs cover Ai. If Ai is not covered, we will perform a feasibility check.

Feasibility Check. Algorithm 4.2 realizes the feasiblity check of a TGA. For storing
already gathered reachability information we assume a database that stores quadruples
〈A,GP,A,WA, isFeasible〉 where A is a TGA, GP,A is the ARG obtained for A, and
WA is a worklist containing the abstract states of GP,A where state-space exploration
has to continue in order to exhaustively investigate the state space, and isFeasible is
either FEASIBLE or INFEASIBLE, depending on whether P satisfies A or not. If WA 
=
∅ then the state space didn’t have to be exhaustively explored to determine the value of
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Algorithm 4.2. determine-feasibility — Determine Feasibility of TGA
Input: CFA P , TGA A = (Q,Σ,Δ, q(s0), F ), initial abstract state s0
Output: Computes whether A is feasible on P and, if so, determines inputs.
1: W ← {〈s0, (q(s0), ((�(s0), op, �′), ϕ), q′)〉 | (q(s0), ((�(s0), op, �′), ϕ), q′) ∈ Δ}
2: GP,A ← ({s0}, ∅, s0)
3: while W 
= ∅ do
4: pick 〈s, (q, ((�, op, �′), ϕ), q′)〉 ∈ W and remove it from W
5: 〈G′

P,A,W
′〉 ← reuse(s, (q, ((�, op, �′), ϕ), q′), A) // Algorithm 4.3

6: insert G′
P,A into GP,A at s

7: 〈GP,A,W
′〉 ← reach(W ′, A,GP,A)

8: W ← W ∪W ′

9: if there is an s′ ∈ GP,A such that q(s′) ∈ F then
10: wit← witness(s′, GP,A)
11: if wit is feasible then
12: derive inputs from wit and store them in test suite
13: store 〈A,GP,A,W, FEASIBLE〉 in reachability database
14: return FEASIBLE

15: else
16: 〈GP,A,W 〉 ← refine(GP,A, wit,W )
17: store 〈A,GP,A, ∅, INFEASIBLE〉 in reachability database
18: return INFEASIBLE

isFeasible . A worklist is a set of tuples of abstract states and TGA transitions. A tuple
〈s, (q, ((�, op, �′), ϕ), q′)〉 requires a state-space exploration starting in abstract state s,
where q(s) = q and �(s) = � holds, and performed along CFA edge (�, op, �′) (the
postcondition ϕ has to be considered by the reachability analysis as well).

The algorithm maintains a worklist W and an ARG GP,A. Worklist W is initialized
with all transitions potentially leaving the initial abstract state. At the beginning, GP,A
only consists of the initial abstract state s0. As long as W is not empty, the algorithm
picks an element from the worklist and performs a state-space exploration. Before ap-
plying a reachability analysis the algorithm tries to reuse already computed reachability
information. We call Algorithm 4.3 with the chosen abstract state and transition as well
as the current TGA. The algorithm returns an ARG G′

P,A and a worklist W ′. G′
P,A

represents the reachability information reusable at abstract state s and W ′ contains the
exploration points where reachability information is missing. In case no reuse is pos-
sible, the ARG containing only state s is returned and the worklist contains the tuple
which was initially picked at Line 4. After calling Algorithm 4.3, the returned sub-ARG
is inserted into GP,A at abstract state s. As already mentioned, W ′ contains the tuples
where state-space exploration has to continue, therefore a reachability analysis is called
with the task of exploring all points in W ′. The reachability analysis might decide to
return before having explored all tuples (or none at all) in W ′. It returns an updated
ARG and an updated worklist. The worklist W ′ might be non-empty if the reachability
analysis found a witness for the feasibility of A or if we first want to check whether we
can reuse some reachability information for the tuples in W ′. We therefore add W ′ to
W for later processing.
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Algorithm 4.3. reuse — Reuse Stored Reachability Information
Input: Abs. state s, TGA A = (Q,Σ,Δ, q, F ), transition (q, ((�, op, �′), ϕ), q′) ∈ Δ.
Output: ARG and worklist
1: let q̂ be a new state, i.e., q̂ 
∈ Q
2: if q ∈ F then
3: F ′ ← F � {q̂}
4: else
5: F ′ ← F
6: A′ ← (Q � {q̂}, Σ,Δ � {(q̂, ((�, op, �′), ϕ), q′)}, q̂, F ′)
7: choose a tuple 〈Ā,GP,Ā,W, f〉 from the database
8: if 〈Ā,GP,Ā,W, f〉 exists then
9: compute H , X such that Ā simulates A′ modulo X // Algorithm 3.2

10: if (q, ((�, op, �′), ϕ), q′) 
∈ X then
11: 〈GP,A′ ,W 〉 ← transform(Ā, A′, s, (q̂, ((�, op, �′), ϕ), q′),H,X,GP,Ā,W )

// Algorithm 3.1
12: replace each occurrence of q̂ in GP,A′ and W by q
13: return 〈GP,A′ ,W 〉
14: return 〈({s}, ∅, s), {〈s, (q, ((�, op, �′), ϕ), q′)〉}〉

Lines 10 to 16 deal with the case where an abstract state with an accepting automaton
state is found. Then, a witness is extracted and its feasibility is checked (the ARG
encodes all information necessary to exactly represent the program paths in the witness
as a formula ψ). If the witness is feasible we derive inputs from the model of ψ and
store these inputs in the test suite. Furthermore, we extend our reachability information
database by the tuple 〈A,GP,A,W, FEASIBLE〉. Then, we return to the main multi-goal
reachability analysis algorithm. If the witness is infeasible it means the reachability
analysis was not precise enough during state-space exploration and we therefore refine
the precision of the analysis based on the infeasible witness. This may result in a change
in the ARG as well as in the worklist. In our implementation we use a reachability
analysis based on predicate abstraction and CEGAR [7, 17].

After all elements inW are finally processed, we know that P does not satisfyA and
store the according information in the database (cf. Line 17).

Reusing Stored Reachability Information. In order to determine reusable stored
information, we first transform the given TGA A into a TGAA′ which is the same asA
except that a new state q̂ and a transition (q̂, ((�, op, �′), ϕ), q′) is added. By doing this,
we ensure that the resulting reused ARG starts with the automaton transition passed
to Algorithm 4.3. In case q is an accepting state we also make q̂ an accepting state.
In Line 7, a quadruple 〈Ā, GP,Ā,W, f〉 is chosen from the reachability information
database. The choice is parametric, i.e., one can use different strategies to select a
quadruple, e.g., one can actually compute the maximal possible reuse for each stored
quadruple and select the optimal one, or one can apply computationally cheaper
heuristics based on the structure of the TGA stored in the quadruples. In case a strategy
would decide not to reuse any information, it can just select some entry in the database
and choose X such that no information reuse will happen. If the database is empty, the
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algorithm returns the ARG containing only the passed abstract state s and adds the tuple
〈s, (q, ((�, op, �′), ϕ), q′)〉 to the worklist again.

Enumerating Test-Goal Automata. Algorithm 4.1 assumes a fixed order on the se-
quence of TGA. This is not a requirement for our approach. Actually, one of the central
features of our multi-goal reachability analysis approach is not having all TGA avail-
able in advance in contrast to our previous test input generator FSHELL, where initially
all TGA are encoded into the program. Depending on the nature of the TGA, this can
drastically reduce the scalability of FSHELL, e.g., TGA encoding specific subpaths of
the program decrease the performance considerably (cf. Table 1 in Section 5). FSHELL

and CPA/TIGER derive their TGA from concise coverage specifications given in FQL.
Concise means, the size of the specification might be logarithmic in the number of re-
sulting TGA. But, the more concise the specification is, the more sharing the TGA have.
This enables us to skip whole sets of TGA where we can infer infeasibility from other
TGA (because the reason of infeasibility is in the shared part of these TGA).

In general, we could compare all TGA with each other and order the queries cor-
responding to the size of the resulting sets X . One can use computationally cheaper
heuristics based on structural properties of the TGA and the program, e.g., an analysis
of program dominators can exploit hidden connections between TGA. In Algorithm 4.2,
the call to Algorithm 4.3 is interleaved with a reachability analysis. The degree of infor-
mation reuse greatly varies based on the precision the analysis provides and the strate-
gies that are used for computing simulation relations. Therefore, the order of TGA
might be dynamically changed based on the results of the reachability analysis. In our
implementation, we used a fixed order based on similarity of TGA and the structure of
the CFA (see discussion of Table 5 in Sect. 5). We leave a systematic investigation of
dynamic orders as future work.

5 Experiments

We implemented the tool CPA/TIGER to evaluate the performance of our approach.
We use the Java-based verification framework CPACHECKER in order to reuse stan-
dard model-checking technology, and integrate our concepts as configurable program
analyses. To demonstrate the capabilities of the new implementation, we compare it to
the existing FQL backends FSHELL 1 [19] and FSHELL 2 [21]. Both versions are based
on the C bounded model checker CBMC [9] and were implemented in C++. FSHELL

takes as input a C program and an FQL query. FSHELL 1 instruments a C program with
automata derived from an FQL query, whereas FSHELL 2 encodes these automata di-
rectly into the SAT-formula representing the C program under scrutiny. Since FSHELL 1
and 2 are based on bounded model checking (BMC), they require an explicit specifica-
tion of loop bounds for programs with unbounded loops. For a fair comparison one has
to consider that FSHELL 2 is written in C++ whereas CPA/TIGER is written in Java
and additionally proves infeasibility of test goals.

Path Coverage in Programs with Unbounded Loops. To compare the scalability of
the three tools in the context of different path lengths, we studied a small (26 lines
of code) locking/unlocking example. The lock/unlock happens inside a loop that is
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Table 1. n-bounded path coverage on locks 1

n Nr. of test goals Loop bound FSHELL 1 t[s] FSHELL 2 t[s] CPA/TIGER t[s]

1 7 2 .6 .8 2.8
2 31 3 11. .3 2.1
3 127 4 390. .6 3.3
4 511 5 - 1.4 5.1
5 2047 6 - 15. 9.6
6 8191 7 - 230. 24.
7 32767 8 - 4600. 94.

only bounded by an input parameter, hence unwinding limits had to be specified for
FSHELL 1 and 2, as stated in the loop-bound column in Table 1. We use FQL queries
cover PATHS(ID, n), where n ranges from 1 to 8, to specify n-bounded path cov-
erage, i.e., these queries require test suites that cover each path in the program that
repeats a CFA edge at most n times. The test-goal automata that are generated from
these queries are mostly deterministic. Consequently, the guidance by test-goal au-
tomata yields very efficient analyses, which makes CPA/TIGER scale much better
than FSHELL 2, which cannot exploit the fact of a highly deterministic guidance.
FSHELL 1 cannot complete the experiments for n > 3 within a time limit of 15 minutes.
CPA/TIGER scales sublinearly with the number of test goals, whereas the BMC-based
approaches of FSHELL 1 and 2 are not well-suited for such programs and queries.

(Basic Block)2 Coverage in Programs with Unbounded Loops. (Basic block)2 cov-
erage requires every pair of basic blocks to be covered by some test case and thereby is
a better approximation of (unbounded) path coverage than simple basic-block coverage.
Table 2 compares FSHELL 2 and CPA/TIGER with respect to (basic block)2 coverage
and (basic block)3 coverage. In both cases, for loop bounds of 20, CPA/TIGER outper-
forms FSHELL 2. The FQL query cover @BASICBLOCKENTRY->@BASICBLOCKENTRY

expresses this coverage criterion.

NT-Drivers. Table 3 summarizes the comparison of FSHELL 2 and CPA/TIGER with
respect to simplified NT-drivers and basic block, (basic block)2, and nodes-(basic
block)2 coverage. Nodes-(basic block)2 coverage is similar to (basic block)2 cover-

Table 2. (Basic block)2 and (basic block)3 coverage

Source LOC Nr. of test goals FSHELL 2 (LB 20) t[s] CPA/TIGER t[s]

BB2 BB3 BB2 BB3 BB2 BB3

locks 5 70 961 29791 22. 720. 7.2 120.
locks 6 81 1296 46656 31. 2100. 8.6 280.
locks 7 92 1681 68921 38. 3300. 12. 540.
locks 8 103 2116 97336 57. 3800. 14. 1200.
locks 9 114 2601 132651 64. 6700. 20. 1300.
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Table 3. Basic block, (basic block)2, and nodes-(basic block)2 coverage on NT-Drivers

Source LOC Nr. of Test Goals FSHELL 2 (LB 3) t[s] CPA/TIGER t[s]

BB BB2 NBB2 BB BB2 NBB2 BB BB2 NBB2

kbfilter1 771 118 13924 33124 2.9 7.3 1500. 7.9 36. 200.
kbfilter2 1352 203 41209 100489 5.2 24. 2700. 14. 97. 770.
kbfilter3 1349 202 40804 99856 5.1 19. 2500. 18. 95. 770.

floppy1 1510 209 43681 123904 3.5 21. 8600. 25. 140. 1100.
floppy2 1529 209 43681 124609 3.8 20. 11000. 23. 130. 1200.
floppy3 2198 291 84681 237169 12. 58. 10000. 46. 310. 3300.
floppy4 2198 291 84681 238144 13. 59. 11000. 41. 270. 3300.

cdaudio1 2997 420 176400 499849 48. 100. 11000. 95. 740. 11000.
cdaudio2 2992 417 173889 495616 26. 110. 9600. 100. 770. 12000.

diskperf 1477 202 40804 114244 4.7 27. 15000. 45. 280. 2000.

Table 4. Achieved line coverage

Source CPA/TIGER FSHELL 2
Line Coverage [%] Test Cases Line Coverage [%] Test Cases

kbfilter1 88.46 26 88.85 25
kbfilter2 90.83 48 90.83 49
kbfilter3 90.36 48 90.36 48

floppy1 91.37 26 91.37 21
floppy2 89.40 28 89.81 22
floppy3 93.52 61 93.94 51
floppy4 93.67 60 93.67 51

cdaudio1 86.65 77 87.28 69
cdaudio2 86.42 75 87.04 69

diskperf 86.49 27 83.66 21

age but only requires one CFA node of each basic block. For basic block and (basic
block)2 coverage FSHELL 2 performs better, but, for nodes-(basic block)2 coverage
CPA/TIGER performs better. CPA/TIGER does not implement some optimizations for
coverage criteria involving nodes which are already implemented for coverage criteria
involving CFA edges. Preliminary experiments showed that we can expect a speed-up
factor between 2 and 3 for NBB2 coverage.

Achieved Coverage. Table 4 compares the coverage achieved by the test generators
CPA/TIGER and FSHELL 2. Due to overapproximation by predicate abstraction (no
bit-precision) there are cases in which CPA/TIGER misses a test case and does not
achieve the same coverage as FSHELL 2. On the other hand there is also the last case
in Table 4 where CPA/TIGER achieves a higher coverage than FSHELL 2 because of
insufficient loop unwindings.

Effects of Information Reuse. In Table 5 we show the effects of the information
reuse approach described in this paper. Column A gives the runtime of CPA/TIGER
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Table 5. Effects of CPA/TIGER Optimizations exemplified on BB2 Coverage

Source A t[s] B t[s] C t[s] D t[s] E t[s] F t[s]

kbfilter1 36. 34. 60. 72. 800. 48.
kbfilter2 97. 110. 230. 300. 3700. 170.
kbfilter3 95. 110. 230. 350. 3800. 160.

floppy1 140. 160. 300. 290. 14000. 390.
floppy2 130. 140. 310. 300. 13000. 360.
floppy3 310. 380. 920. 1200. >15000. 670.
floppy4 270. 350. 920. 1100. >15000. 610.

cdaudio1 740. 1100. 2400. 3000. >15000. 2300.
cdaudio2 770. 1100. 2400. 2900. >15000. 2300.

diskperf 280. 260. 470. 550. >15000. 1700.

A: all optimizations enabled, B: without automaton optimization, C: without infeasibility
propagation, D: inverted order of test goals, E: without ARG reuse, F: without predicate reuse

with all optimizations enabled. Besides the described reachability information reuse,
CPA/TIGER also performs several other optimizations. Column B shows the runtime
without a TGA minimization step, in column C, the runtime for a fast infeasibility
propagation technique is given. By infeasibility propagation we mean that we can infer
from the infeasibility of a TGA the infeasibility of other TGA in case we can show that
the feasibility of these automata would imply the feasibility of the infeasible automaton
(e.g., by exploiting domination information). Column D shows the effect of different
enumeration orders for test-goal automata. The default enumeration strategy for test-
goal automata is based on a breadth-first search of the underlying CFA – column D
shows the runtime when inverting the order. We also did experiments using a depth-first
enumeration of test goals but this strategy was not beneficial. The reuse of parts of the
ARG causes the biggest impact in the performance of CPA/TIGER (column E). The
last column (F) shows the runtime when not reusing predicates from earlier runs.

Availability. CPA/TIGER is free software and available from the CPACHECKER2

web page. FSHELL3 is available as binary for several platforms. The experimental
data that are discussed in this article are available on the supplementary webpage
http://cpachecker.sosy-lab.org/cpa-tiger.

6 Related Work

In our multi-goal reachability analysis approach we unify query-driven program test-
ing (e.g., [20]) with monitor-based safety checking (e.g., [4, 26]). An extension of
BLAST embeds path automata in a relational querying language, for specifying safety

2 http://cpachecker.sosy-lab.org
3 http://code.forsyte.de/fshell

http://cpachecker.sosy-lab.org/cpa-tiger/
http://cpachecker.sosy-lab.org
http://code.forsyte.de/fshell
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verification problems [4, 5], but not test coverage, as a set of single-goal reachability
queries. In a model-based setting, automata-based specifications of coverage were pre-
sented by Blom et al. [8] for test-case generation using the model checker UPPAAL [23].
In contrast to directed testing [12] —where ‘directed’ means directed by branching con-
ditions and randomization— the directedness in our approach stems from user-defined
coverage specifications which separate the control from algorithmic issues.

The test-input generator FSHELL [19,20] encodes many TGA into a formula describ-
ing a finite unrolling of a program and tries to determine which of the TGA are feasible.
Due to the underlying BMC engine of FSHELL, FSHELL can not determine whether a
TGA is infeasible (it can only achieve that for a specific unrolling), while CPA/TIGER is
able to infer infeasibility as well. Furthermore, the architecture of CPA/TIGER enables
the combination of different kinds of reachability analysis (under- and overapproxima-
tion as well as different abstraction techniques). We see FSHELL as an complementary
test input generation technique which we plan to integrate into the CPA/TIGER archi-
tecture.

Our approach generalizes the concepts of summaries where usually pre- and post-
conditions for specific code parts are encoded. In principle, the summarized code part
can be arbitrary, but so far summaries were usually generated at function level [1,2,11].
In this work, we propose the shared behavior of automata as criterion for summariz-
ing and storing reachability information. Albarghouthi et al. [1] divide a reachability
query into subqueries in order to parallelize the computation of one reachability anal-
ysis whereas our approach enables a parallelized analysis of different TGA as well. At
the moment CPA/TIGER supports a very simple parallelization strategy: it splits the
sets of test goals and performs separate multi-goal reachability analyses for these sub-
sets of TGA. But, except for test inputs, we do not exchange any information between
these analysis runs at the moment. Our approach has one potential benefit: the single
reachability analyses do not have to finish in order to make reachability information
available to other queries. We consider [1, 2, 11] as orthogonal work which is relevant
in the context of the reachability analysis we perform. Their summarization and paral-
lelization approach is only of limited use when we want to reason about information
reuse across different reachability queries.

Extreme model checking [16] investigates the possible information reuse across dif-
ferent versions of a program. They reexplore a subtree of an abstract reachability tree
at abstract states where their abstraction was affected by code changes. In constrast
to our approach, they fix the specification across different analysis runs. In multi-goal
reachability analysis the specification changes but the code remains the same. In their
approach, only the prefix of an abstract reachability tree can be reused. We can reuse
more than a prefix of an abstract reachability graph since we do not deal with code
changes but changes in the specifications. As soon as the specifications behave the same
for some part of the program, we can reuse the respective reachability information.

Different notions of simulation are used in work minimizing specifications given as
Büchi automata [10, 27]. The simulation relations are formulated between the origi-
nal automaton and a minimized version of it. In simulation modulo transition sets, we
capture the situation that only parts of a specification are simulated by another automa-
ton. Furthermore, we deal with automata over finite words instead of the infinite word
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automata used in the above mentioned work. We use simulation relations to identify
shared parts of two automata and not to minimize an automaton. CPA/TIGER never-
theless performs some simple minimization steps in order to speed-up the reachability
analysis process and increase the precision of the simulation relation computation.

Existing model-checking technology has been applied to test-case generation in a
number of other projects, such as Java PathFinder [28] or SAL2 [15]. Recently, model
checking and testing were given a more uniform view, combining over-approximating
and under-approximating analyses [14] and using interpolation [24]. For hardware de-
signs, [18] presented a coverage-driven test generation approach. As in our approach
they reason about reachability as well as unreachability of coverage states (for a fixed
coverage criterion) but use different techniques to achieve that: they use BDDs for en-
coding the state space and underapproximate the set of unreachable coverage states.

7 Conclusion and Future Work

This paper presents an approach for reusing reachability information based on the au-
tomaton structure of reachability queries. We introduced simulation modulo a transition
set as central concept for identifying shared information of queries. This notion enables
us to dynamically query for reachability information in a way similar to databases.

Future research on multi-goal reachability analysis based on our approach of infor-
mation reuse has a theoretical and a practical side: on the theory side, a deeper inves-
tigation of how temporal logics and automata can be used to infer more facts from ex-
isting reachability information is of interest; on the practical side, our approach enables
the parallelization of the reachability-analysis step and the information-reuse reasoning
step which we have not investigated in depth yet. Furthermore, our approach enables
the use of offline storage of reachability information which we want to investigate to
improve scalability to large programs. At the moment, CPA/TIGER integrates over-
and underapproximation in a very simplistic way. Since FSHELL 2 and CPA/TIGER

showed complementary strengths in the experiments, a deeper investigation on how to
combine over- and underapproximations in reachability analyses is needed.
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