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ABSTRACT
Continuous testing during development is a well-established
technique for software-quality assurance. Continuous model
checking from revision to revision is not yet established as
a standard practice, because the enormous resource con-
sumption makes its application impractical. Model checkers
compute a large number of verification facts that are nec-
essary for verifying if a given specification holds. We have
identified a category of such intermediate results that are
easy to store and efficient to reuse: abstraction precisions.
The precision of an abstract domain specifies the level of
abstraction that the analysis works on. Precisions are thus a
precious result of the verification effort and it is a waste of
resources to throw them away after each verification run. In
particular, precisions are reasonably small and thus easy to
store; they are easy to process and have a large impact on
resource consumption. We experimentally show the impact
of precision reuse on industrial verification problems created
from 62 Linux kernel device drivers with 1 119 revisions.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification F.3.1 [Logics
and Meanings of Programs]: Specifying, Verifying, Reasoning
about Programs

General Terms: Verification, Reliability, Languages

Keywords: Formal Verification, Regression Checking

1. INTRODUCTION
Reliable software is essential both for convenience and

safety in our daily lives and for the revenue in the economy.
Producing reliable software is costly; and speeding up testing
and formal verification of software can save huge amounts
of time and money. Economic pressure requires companies
to come up with innovations more quickly by introducing
more features in shorter release cycles — software is a key
contributor to today’s innovations. However, the problem of
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extending software, e.g., by introducing a new feature, is that
this might break existing features — bugs get introduced.
This is known as regression. To avoid regression, developers
execute automated tests before a new revision of a piece
of software is checked-in, in the hope that the tests alarm
the developer of any new bug. The quality of the software
(in terms of correctness) depends on the coverage of the
regression test set. Regression testing is an established and
well-investigated technique since many years (e.g., [24,32,34]).

The confidence of correctness can be increased by augment-
ing the development process with formal verification, i.e.,
regression verification [18,25,27,35,37]. Formal verification
exhaustively checks the program for bugs, but at the same
time consumes large amounts of computation resources (time
and memory), in particular when applied to industrial-size
software. Regression verification applies formal verification
techniques to continuously check development revisions in
order to identify regressions early. Innovations in this field
pave the road that leads from regression testing to regression
verification, and from simply finding bugs to actual proofs of
correctness during the whole software-development process.

Verification tools spend much effort on computing interme-
diate results that are needed to check if the specification holds.
In most uses of model checking, these intermediate results are
erased after the verification process — wasting precious in-
formation (in failing and succeeding runs). There are several
directions to reuse (intermediate) results [16]. Conditional
model checking [7, 20] outputs partial verification results for
later re-verification of the same program by other verification
approaches. Regression verification [18,25,27,35,37] outputs
intermediate results (or checks differences) for re-verification
of a changed program by the same verification approach.

The contribution of this paper is to reuse precisions as
intermediate verification results. In program analysis, e.g.,
predicate analysis, shape analysis, or interval analysis, the
respective abstract domain defines the kind of abstraction
that is used to automatically construct the abstract model.
The precision for an abstract domain defines the level of
abstraction in the abstract model, for example, which predi-
cates to track in predicate analysis [9], or which pointers to
track in shape analysis [8]. Such precisions can be obtained
automatically; interpolation is an example for a technique
that extracts predicate precisions from infeasible error paths.

Precisions are a good choice for reuse in regression verifi-
cation, because they are technically easy to use and do not
require much extra computation effort before they can be
reused, they have a small memory footprint, and they are,
as we show, rather insensitive to changes in the program
source code. We performed an extensive experimental study
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Table 1: Verification of driver extcon-arizona without and with precision reuse; time in seconds of CPU usage
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3 Implement button detection support safe 24 24 792 792 4.7 4.6 unsafe 8 8 38 38 1.1 1.0
4 Free MICDET IRQ on error during probe safe 24 0 792 27 4.6 .99 unsafe 8 0 38 14 1.1 .85
5 fix typos in extcon-arizona safe 24 0 792 27 4.7 1.0 unsafe 8 0 38 14 1.1 .86
6 Use bypass mode for MICVDD safe 4 0 10 3 .86 .68 unsafe 1 0 3 2 .59 .58
7 Merge tag ’driver-core-3.6’ of git://git.kernel.org/. . . safe 24 0 792 27 4.6 1.0 unsafe 8 0 38 14 1.0 .84
8 unlock mutex on error path in arizona micdet() safe 24 0 792 27 4.5 1.0 safe 43 16 571 524 5.0 4.5
9 remove use of devexit safe 24 0 792 27 4.6 1.0 unsafe 8 0 38 22 1.1 1.2

10 remove use of devinit safe 24 0 792 27 4.6 1.0 unsafe 8 0 38 22 1.1 1.2
11 remove use of devexit p safe 24 0 792 27 4.6 1.0 unsafe 8 0 38 22 1.1 1.2
12 Merge tag ’pull req 20121122’ of git://git.kernel.org/. . . safe 24 0 792 27 4.6 1.0 safe 43 0 571 27 5.0 .97

Specification 1: ‘Spinlocks lock/unlock’ Specification 2: ‘Mutex lock/unlock’

on industrial code, in order to show the significant impact of
precision reuse on regression verification (in terms of perfor-
mance gains and increased number of solvable verification
tasks). The benchmark verification tasks were extracted
from the Linux kernel, which is an important application do-
main [15], and prepared for verification using the Linux Driver
Verification toolkit (LDV) [29,31]. Our study consisted of a
total of 16 772 verification runs for 4 193 verification tasks,
composed from a total of 1 119 revisions (spanning more than
5 years) of 62 Linux drivers from the Linux kernel repository.

Verifying large numbers of program revisions often takes
several hours or even days. Our approach of precision reuse
can speed this up by a factor greater than 4 (in terms of
CPU time for the analysis) on average for predicate analysis.

Example. We consider ten revisions of the Linux device
driver extcon-arizona for which a bug was discovered using
formal verification by the LDV team1. Table 1 lists the
revisions and the corresponding commit messages (in bold:
the commit that fixes the above-mentioned bug). We verify
two specifications with a CEGAR-based predicate analysis:
(1) ‘Spinlocks lock/unlock’, and (2) ‘Mutex lock/unlock’.
Revisions 3 to 7 and 9 to 11 violate specification 2. Tasks that
violate the specification generally need less refinements and
abstraction computations, because the analysis terminates as
soon as a bug is found. In cases where the specification holds,
the whole state space of the program has to be analyzed;
mostly a large number of refinements (> 20) and expensive
abstraction computations (> 500) have to be performed.

The columns titled ‘with Reuse’ show the results with
precision reuse. For cases where a complete reusable precision
from a successful verification of a previous revision is not
available (revision 3 for specification 1, revisions 3 to 8 for
specification 2) because the whole state space was not yet
analyzed before, there is no speedup. For most cases where
a complete state-space analysis was done in a previous run
(with result ‘safe’), and thus a large precision is available for
reuse, a speedup of 4 can be achieved (CPU time for analysis
around 1 s instead of over 4 s). Refinements are eliminated
completely because all necessary verification facts are already
specified by the reused precision that is given as input.

Contributions. We make the following novel contributions:

• We identify the abstraction precisions as intermediate
results that are valuable for reuse in regression checking.

• We define a tool-independent format for persistent storage
and exchange of precisions.

1
https://patchwork.kernel.org/patch/1694901/

• We extend the existing software-verification tool
CPAchecker [11] in order to support regression verifi-
cation with precision reuse.

• We prepare and consolidate a benchmark set for regression
verification that is based on industrial source code from
the Linux kernel and consists of thousands of benchmarks.

• In an extensive experimental study, we show that precision
reuse leads to significant performance improvements and
causes almost no overhead for the verification tool as
well as for the benchmarking infrastructure (and thus, no
additional barriers in a software-development process).

Related Work. The desire of constructing efficient tools
for incremental formal verification exists since more than 15
years [25,36]. In the literature, there are two main directions
to approach the problem of regression verification: (1) based
on analyzing the difference between the program and another
program that was successfully verified in a previous verifica-
tion run, and (2) based on reuse of intermediate results that
were costly computed in previous verification runs.

Verification of Differences. The first group of approaches
to efficient regression verification takes two programs as input
and analyzes the differences in order to verify whether the
specification is still fulfilled. An input condition can restrict
the analysis to certain relevant parts of the state space [17,
22]. These approaches can be seen as conditional model
checking [7], where the input condition instructs the verifier to
perform a partial verification. The parts of the program that
were identified as not being affected by modifications can be
skipped [22,33] during the verification process. A technique
for proving conditional equivalence of two programs [18,22]
isolates and abstracts the functions of both versions using
uninterpreted functions and then proves their equivalence.
Checking the equivalence of two programs can be reduced to
checking just those parts impacted by changes [1].

Reuse of Verification Results. The other group of ap-
proaches reuses state-space graphs [10, 27, 30], constraint
solving results [38, 40], function summaries [35], or coun-
terexample traces [16]. To ensure that the information is
valid to be reused, those parts of the information that were
affected by changes (to the analyzed program or its spec-
ification) have to be re-validated. The check for reusabil-
ity is done either before the actual verification process is
started [35, 39, 40] or immediately before certain informa-
tion should be reused [27,30]. Extreme model checking [27]
is the only existing approach that uses unbounded model
checking with lazy abstraction and predicate analysis for

390



regression verification. eVolCheck [35] is based on bounded
model checking; the reuse is focused on function summaries,
enhanced by a syntactic analysis of the differences between
the program versions for improved performance. Another
way of information reuse is to not store the concrete data,
but its hash value. One such approach [25] stores hashes of
verified models; these models are constructed by reducing a
program to those parts that are relevant to prove a property.
To be efficient, model construction must be less expensive
than verifying the model. For formal regression verification
of hardware using the ic3 algorithm, the reuse of correctness
proofs and counterexamples has been proposed [19]. A more
general fashion of reuse is to store and reuse canonicalized
constraint-solver queries and the corresponding results [38].

Our approach belongs to the second category: we reuse
abstraction precisions as intermediate results and do not
(explicitly) analyze the differences in the program code (our
approach implicitly spends more effort on changed parts).
This is the first work that reuses abstraction precisions.

In general, it is possible to combine the reuse of differ-
ent kinds of information, for example, state-space graphs,
abstraction precisions, and constraint-solver results. Ap-
proaches for reusing verification results can also be preceded
by (inexpensive syntactic) checks for differences between
program versions for improved performance.

2. BACKGROUND
Abstract Reachability Graph. The class of analyses
that we consider in our work is based on creating an abstract
model of the program in form of an abstract reachability
graph (ARG). An example for such an analysis is Blast [6].
The ARG is constructed iteratively by unrolling the control-
flow automaton (CFA) of the program, creating an abstract
successor state for the next location whenever the control
flow passes through an edge of the CFA. The creation of
abstract-successor states is usually over-approximating and
guided by some form of precision that instructs the analysis
which facts should be tracked and which facts should be
omitted by abstraction. The abstract domain determines the
characteristics of the precision. For example, if the abstract
domain tracks information on program variables explicitly,
then the set of relevant program variables to consider at a
program location is a suitable precision for the analysis [13].
The precision in use should require the tracking of just enough
information to prevent false alarms, while at the same time
be as concise as possible for an efficient analysis.

Counterexample-Guided Abstraction Refinement
(CEGAR). CEGAR [21] is a well-established technique
for automatically finding a suitable precision that matches
the above criteria. Beginning with an initial coarse or even
empty precision, the ARG is created based on this initial
precision. If no state violating the specification is found, the
program is proved safe. If a violation of the specification is
found, the concrete path of this counterexample is analyzed
for feasibility. If it is feasible, the program is unsafe and
the analysis terminates. Otherwise the abstract model of
the program was too coarse, so the precision needs to be
refined to exclude this infeasible counterexample from future
explorations. Depending on the abstract domain, the facts
necessary to rule out this counterexample are extracted from
the proof of infeasibility and added to the precision. Then the
CEGAR loop is continued with this newly-refined precision.

Lazy Abstraction. The efficiency of CEGAR-based analy-
ses can be increased by using lazy abstraction [28]. Instead
of always restarting the analysis from scratch after an in-
feasible counterexample was found, the abstract model is
refined in a “lazy” style. That is, during counterexample
analysis the newly-learned facts that are extracted from the
counterexample are only added where necessary. Then only
those parts from the ARG that were computed with a too
coarse precision are removed and scheduled for re-exploration.
The remainder of the ARG, for example, a prefix of the cur-
rent counterexample path, or other paths not related to the
current counterexample, are kept and are neither removed
nor re-explored. This does not only reduce unnecessary re-
computations, but also reduces computation effort by lazily
applying the new, stronger, precision only to those states
of the ARG where it is needed. States on unrelated paths
of the ARG are still computed with the old, weaker, and
thus more efficient, precision. A further improvement is to
use different precisions for each program location in order to
track as little information as possible (and for example to
erase information during path exploration when reaching a
location after which the information is not needed any more).

Predicate Analysis. One technique which is used widely
together with the above concepts is predicate abstraction [23].
Given the set X of program variables, and the set P of
quantifier-free predicates over variables from X, the abstract
domain here is the set of boolean combinations of predicates
from P. The precision π is a set of predicates from P. When
constructing the ARG, abstract successor states are created
by computing either the cartesian or the boolean abstraction
of the current state using the predicates from π with an
SMT solver. Using Craig interpolation, predicates can be
generated fully automatically from a proof of unsatisfiability
for the formula representing a spurious counterexample [26].

The performance of predicate abstraction can be improved
by adjustable-block encoding (ABE) [12]. This technique
groups program statements into blocks and computes abstrac-
tions only at the end of each block instead of at all program
locations. Furthermore, if control flow merges within a block,
paths in the ARG are also merged so that sets of paths are
considered instead of single program paths. When using
ABE-Loops (which encodes loop-free parts of the program
into blocks), abstractions will be computed only at loop-head
locations. Thus, predicates will be relevant only at these
locations, and no precision is used at all other locations.

Explicit-Value Analysis. Another domain that can utilize
a precision is explicit-value analysis [13], which tracks the
current value for each program variable explicitly. Within
this analysis, an abstract state is represented as an abstract
variable assignment X → Z ∪ {>,⊥}, where X denotes the
set of program variables of a program. The value > repre-
sents a variable valuation that is unknown, e.g., due to an
uninitialized variable; the value ⊥ represents a variable valua-
tion that is impossible. Abstract successor computations are
performed by evaluating program operations and assigning
the resulting values to the respective program variables in
abstract variable assignments explicitly — in contrast to
modeling them symbolically as in the predicate domain.

The precision for an abstract variable assignment is defined
as a set π of variables from X, which is used to restrict an ab-
stract variable assignment to variables from that precision π.
For example, applying the precision π = {b} to the abstract
variable assignment v = {a 7→ 4, b 7→ 15} would result in the
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abstract variable assignment vπ = {b 7→ 15}. Experiments
show that a variable that is relevant for one path, is often
relevant on similar paths as well, and thus it is beneficial
to add a newly-found relevant variable to the precision for
all locations of the function in which it is relevant. This
reduces the number of refinements, because similar paths
can be eliminated often without further refinements.

3. PRECISION REUSE
Definitions. A precision is the information that an abstrac-
tion-based analysis uses to guide the abstraction computation
for creating abstract states.Given an analysis, we write Π for
the set of possible precisions, and π for one element thereof.
The empty precision is the coarsest precision from Π (usually,
this precision defines that all information is abstracted). The
union of two precisions from Π is defined in the intuitive
way. For example, for predicate abstraction, a precision is
a set of predicates over program variables, and the union of
two precisions is the union of the two sets of predicates.

In order to use lazy abstraction, which supports different
precisions at different program locations, we define a program
precision as a mapping L → Π from the set L of program
locations to the set of precisions Π. The union of two program
precisions p1 and p2 is the program precision that maps every
location l to the union of p1(l) and p2(l).

Format for Program-Precision Files. In order to write
and read precisions to and from persistent storage, we de-
fine a simple text-based file format that describes program
precisions in a human-readable and tool-independent way.
A formal definition of the format is given in a technical re-
port [14]. The basic structure is the same for all analyses.
The file starts with a header (the content depends on the
analysis). After the header, an arbitrary number of sections
follow, each consisting of one line of scope selectors, and an
analysis-dependent precision. There are three kinds of scope
selectors: the literal * (representing all program locations),
the name of a function in the program (representing all loca-
tions inside this function), and the id of a program location
(representing this single location). The precision given in a
section is used at all locations represented by the specified
scope selector. The effective precision for any given program
location is the union over the precisions from all sections
with a scope selector matching that location.

For explicit-value analysis, the header is empty and each
precision is a list of variables that occur in the program. For
predicate analysis, each precision is a list of predicates given
in the syntax of the SMT-LIB 2 standard [3] (a standard
for SMT-solver interfaces supported by state-of-the-art SMT
solvers); the header contains a sequence of term declarations
which may be referenced by the formulas in the sections of
the precision file.

Example. Consider a C program that contains two vari-
ables lock and x, both of which are relevant for proving the
safety of the program. Variable lock may be relevant at all
locations, whereas variable x may be relevant only in the
functions main and f. An example program-precision file for
explicit-value analysis that encodes this information is given
in Fig. 1 (left). An example for predicate analysis is shown
in Fig. 1 (right), assuming that the model checker encodes
these variables as real numbers, and the predicates lock = 0
and x ≤ 1 are relevant.

*:
lock

main f:
x

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

Figure 1: Example program-precision files; left:
explicit-value analysis; right: predicate analysis

Generating Program-Precision Files. In order to en-
able the reuse of precisions, we collect all program precisions
that are created during the analysis (typically, there is one
for each refinement step), and create the union over all these
program precisions. This resulting program precision is writ-
ten to a file. For each program location, the precision is
written once with the id and once with the function name of
the program location as scope selector (not written if empty).

Precision Reuse. In order to reuse a precision for the
subsequent analysis of the same or a similar program, an
initial program precision for the analysis is created by inter-
preting the contents of a previously stored program-precision
file. There are three possibilities to construct such a pre-
cision. First, precisions can be function-scoped, such that
a precision is created for each function of the program, by
taking the union of all precisions labeled with the function
name. The result is assigned to all locations of the respective
function. Note that this will widen the scope of precisions
(thus potentially leading to a more precise abstraction), and
also loose precisions if functions are renamed. This precision
assignment is insensitive to changes of the control-flow struc-
ture within functions of a program. Second, precisions can
be location-scoped such that the location ids in the file are
used to identify the locations to which the read precision is
assigned in the resulting program precision. For all program
locations that do not occur in the file, the empty precision is
assigned. Note that location ids may change if the program
code was changed, and thus, precisions get assigned to lo-
cations that do not semantically correspond to the original
location in the previous program. Third, precisions can be
global-scoped by taking the union of all precisions in the
file and assigning the result to all locations of the program.
This will not loose any precision from the previous analysis,
but might apply precisions to locations where they are not
necessary (and thus make the analysis more expensive). In
any case, precision elements that reference removed program
variables or functions and are thus irrelevant can be identified
and ignored with a quick syntactical check.

After the creation of the initial program precision, the
analysis is started as usual. No change to the analysis itself
is necessary. If the provided precision is strong enough to
prove the program safe, no further refinement effort will be
needed. If the input precision contains only a part of the
necessary precision to be tracked, spurious counterexamples
will be detected and subsequent refinements will strengthen
the precision. Note that even in this case the input precision
likely reduces the effort by decreasing the number of necessary
refinements. This process may be iterated by writing again
the program precision that was further refined by the second
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analysis to file, and using this as the input for a further
analysis, possibly on a newer version of the program.

Discussion. One significant effect of reusing precisions from
a previous verification run is a reduced number of refinements.
These are usually among the most expensive operations exe-
cuted by a model checker (for example involving satisfiability
checks and interpolation queries over formulas that represent
sets of complete program paths from the entry point to the
error state). The second significant effect is that fewer re-
finements lead to a reduced effort on (partial) ARG pruning
and re-construction. This is especially important for anal-
yses that perform expensive operations during this phase,
for example in predicate analysis, which needs SMT-solver
queries to compute abstractions. While the introduction
of large-block encoding [5, 12] has reduced the number of
such computations by only abstracting at loop-head locations
and not at every program location, the need to use boolean
abstraction still makes this costly.

Precision reuse is an elegant and conceptually simple ap-
proach, because it integrates naturally into the techniques
that are used by many successful model checkers. These tech-
niques can be applied as they exist without any change, to the
first, initial, verification run (when no reusable information
is present), and also to the subsequent re-verification runs.
Furthermore, this makes precision reuse applicable not only
for the two presented analyses, but also to any analysis and
abstract domain that is based on CEGAR and incorporates
an abstraction step that is guided by some form of precision.
For example, precision reuse would extend naturally to the
abstract domain of shape analysis [8].

Precision reuse is easy to implement in existing model
checkers that are based on CEGAR and abstractions. Only
the import and export of precisions before and after the
actual analysis needs to be added. Complex algorithms,
as required for comparing two revisions of a program and
detecting similar and changed code, are not necessary in our
approach. The format we defined is easy to parse and write,
and could be supported by a variety of model checkers, thus
even enabling the reuse of precisions across different tools.

Furthermore, precision reuse is also user-friendly: a user
that is already familiar with using one model checker will not
need to learn how to use new concepts or tools. Exporting
precisions as part of the analysis result should be enabled by
default in most tools, and thus the only necessary action by
the user is to supply the previously written program-precision
file as an additional input to the next verification run. Even
if the user mistakenly specifies a wrong program-precision file
as input, the analysis will still work correctly (the result will
be valid), and only the performance might degrade slightly.
In order to employ precision reuse, it is not necessary to have
access to previous program revisions; the only information
needed is the (small) generated program-precision file.

Applicability of Precisions. The precisions from the pre-
vious verification run can be applied to the program loca-
tions of the program’s next revision using three strategies,
which differ in how they widen the scope of the precisions.
A location-scoped precision is applied at exactly those lo-
cations stated in this precision. For example, consider a
precision that is relevant at locations 5 to 10 of a program.
Now, a change is made to the program, and a statement that
is unrelated to the safety of the program is introduced right
after location 6. Thus, the previous locations 5 to 10 now
correspond to the new locations 5, 6, 8–11. The previous

precision is not applied to location 11 and the analysis would
find an infeasible error path, thus needing at least one re-
finement to rediscover the missing facts. Function-scoped
precisions are insensitive to such changes. Even changes due
to cross-cutting concerns that affect code locally in many
functions are expected to be verifiable without many further
refinements. Changes to the call graph of the program, how-
ever, might still generate a similar need for refinements, for
example, if code that is relevant to the safety of a program
is moved to another function. Global-scoped precisions re-
duce this problem further, making refinements only necessary
if code referenced by the precision is changed directly (for
example, if variables are renamed).

We consider location-scoped precisions to be too sensitive
to program-code revisions. Which of the other two strategies
performs better depends on the class of program changes
(e.g., whether heavy refactorings changing the functions of the
program are common), and how expensive an unnecessarily
fine precision is for the analysis. Often, the latter has less
effect than one would intuitively consider. For example,
specifying local variables from a function f in the precision
of a function g has no effect because the local variables in f
are out of scope in g. The policy of most projects is to create
small commits with mostly local changes, thus, we expect
function-scoped precisions to be most promising in practice.

4. EXPERIMENTAL EVALUATION
In order to evaluate the impact of precision reuse on the

effectiveness and efficiency of regression verification, we per-
formed an extensive experimental evaluation. We used in-
dustrial software for our experiments: in total, we prepared
4 193 verification tasks from 1 119 revisions of 62 device
drivers from the Linux kernel. We started verification runs
on all those problems with both an explicit-value analy-
sis and a predicate analysis, each with and without preci-
sion reuse (a total of 16 772 runs). Our tool implementa-
tion, the C source code of the device drivers, and the full
benchmark results are available on our supplementary web
page: http://www.sosy-lab.org/∼dbeyer/cpa-reuse/. During
our experiments, we found an actual bug in the Linux kernel2.

Implementation. Our implementation is based on the
open-source verification framework CPAchecker3 [11], which
is available under the Apache 2.0 license. CPAchecker pro-
vides implementations of explicit-value analysis [13] and pred-
icate analysis with ABE [12]. Both approaches are based on
CEGAR and use a precision to define the level of abstraction.
Thus we only had to add support for writing the program
precision to file after a verification run, and reading a previ-
ously written program precision to be used as initial precision
before a verification run. The format for persistent storage of
program precisions is described in Sect. 3. Further changes
to the verification tool were not necessary, in particular, the
verification algorithm and the abstract domains were not
changed. Our extension for precision reuse is integrated into
the trunk of the project’s source-code repository4.

Verification Tasks. A verification task is a fully specified
verification input, which is referred to by a triple that consists
of the name of the driver, the specification that the driver
has to satisfy, and the revision number from the repository.

2
https://patchwork.kernel.org/patch/2204681/

3
http://cpachecker.sosy-lab.org

4
https://svn.sosy-lab.org/software/cpachecker
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Preparation of an Industrial Benchmark for Regres-
sion Verification. We started our selection process by
considering the verification tasks from the category ‘De-
viceDrivers64’ of the 2nd Intl. Competition on Software Ver-
ification (SV-COMP’13) [4], which is a benchmark set that
consists of 1 237 verification tasks. From this set of verifi-
cation tasks, we selected those device drivers that met the
following two criteria: (1) CPAchecker, in revision 7481,
needed more than 20 s of CPU time to report either safe
or unsafe and (2) at least one refinement was necessary to
verify the driver. This selection process helped us to omit
trivial tasks and those for which precisions are not needed.

In total, 62 device drivers from the SV-COMP’13 bench-
marks fulfilled the criteria above. We extracted the sources
for all available revisions of those drivers from the official
Linux kernel repository5. Each of these device drivers con-
sists of several header and source files, each having its own
revision history. We considered all commits to all C source
files of the device driver, in chronological order, starting
with the revision in which the device driver was added to its
directory in the kernel repository (if the driver resided in the
“staging” area of the kernel before being accepted into the
main area, these revisions were not considered). In order to
obtain a linear history of changes we excluded commits that
occurred on branches that were created during the develop-
ment of a driver (the merge commits that reintegrated such
branches are included, and thus no changes are lost). Our
oldest revisions date back to the year 2007, and the latest
revisions to the end of 2012.

In order to obtain verification tasks, we also need specifica-
tions. We used as specifications six different rules for correct
Linux kernel core API usage (cf. Table 2). We composed each
revision of the 62 selected drivers with each specification.
The composition was done using the LDV toolkit 6 [29,31]
and consisted of: (1) adding a main function that simu-
lates calls to the device driver from the Linux kernel core,
(2) weaving in one of the six specifications (reducing the
rule-based specification of the property into a reachability
property by instrumenting the driver with a monitor automa-
ton), and (3) combining all files that the device driver (in
the particular revision) consists of, into a single file (using
Cil pre-processing). The result of this composition process
is a verification task that consists of a single verifiable C file,
for each revision.

We omitted tasks where the specification is trivially sat-
isfied, e.g., specification “Module get/put” for drivers that
do not call the functions try module get() and module put().
For evaluating the effect of our approach, we need to consider
those verification tasks for which the precision needs to be
fully discovered and where repeated application of the verifier
yields deterministically the same precision. This is not the
case for verification tasks with a known specification viola-
tion, because the analysis can terminate as soon as finding a
counterexample, skipping parts of the state space. Of course,
precision reuse is applicable in such cases as well (witnessed
by the bug we found), but in our benchmarks the numbers
would not be comparable. Therefore, we remove from our
benchmark set all verification tasks with the expected result
unsafe. The resulting benchmark set7 for regression verifica-

5
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

6
http://linuxtesting.org/project/ldv

7
http://www.sosy-lab.org/∼dbeyer/cpa-reuse/

regression-benchmarks/

Table 2: Considered specifications (LDV rules)8

Name Description

08 1a Module get/put. For each successful call to
try module get() a corresponding call to module put()
that unblocks the module must exist.

32 1 Mutex lock/unlock. A less accurate implementation of
specification 32 7a.

32 7a Mutex lock/unlock. A mutex must not be acquired or
released twice. A mutex must not be released without
prior acquiring. Finally, all mutexes must be released.

39 7a Spinlocks lock/unlock. A spin lock must not be acquired
or released twice. A spin lock must not be released without
prior acquiring. Finally, all spin locks must be released.

43 1a Memory allocation inside spinlocks. The flag for atomic
allocation operations must be used whenever a memory
allocation function call is done while a spin lock is held.

68 1 USB alloc/free urb. For each allocation of an USB Re-
quest Block (URB) using usb alloc urb() a corresponding
call to usb free urb() must exist.

tion consists of a total of 4 193 industrial-strength verification
tasks, which allows us to perform a significant experimental
study. Its high quality and usefulness has been acknowledged
by the ESEC/FSE Artifact Evaluation Committee.

Differences between Verification-Task Revisions.
While normally source-code changes for the device drivers
are rather limited from revision to revision, our benchmark
set has quite large source-code differences between revisions,
which is (not by design, rather as a side-effect) good to
evaluate insensitivity to changes. We explain the main three
reasons in the following: (1) Whenever commits occurred
in branches, we did not include the corresponding revisions
along the branch; instead, we extracted only revisions
from the mainline branch. The revisions after a merge
into the mainline branch result from a single (generally
larger) commit. (2) Another reason for a large difference
between revisions is the omission of revisions with a known
specification violation. Thus, the changes from such revisions
appear together with the changes of the next commit, in
the succeeding revision without a specification violation.
(3) Another cause for large differences is that we took one
snapshot of the code for each revision in which one of the
C source files of the device driver was changed. However,
in the kernel project there are many other (header) files
that influence the code of a particular file, by being included
from the file, and by defining macros, types, inline functions
etc., which are used in the code. Thus, the change between
two revisions incorporates not only the changes to the C
source files of the device driver, but also the changes to all
other kernel (header) files since the last revision. The latter
changes are sometimes even larger in size and effect than
changes to the driver. For example, the introduction of the
kernel feature CONFIG_BRANCH_TRACER (profiling of unlikely
and likely branches in the code by code instrumentation)
added several lines of auxiliary variables per if statement,
and this additional code appears as new code in the next
revision that was made for each driver after the feature
was introduced. Our benchmark set of verification tasks
has an average of 688 changed lines of source code between
subsequent revisions. Our results, presented in the following,
show that precision reuse is quite insensitive to such large
differences between revisions.

8
http://linuxtesting.org/ldv/online?action=rules
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Table 3: Results for driver dvb-usb-az6007 using pred-
icate analysis; time in seconds of CPU usage
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08 1a

32 - 6.3 2 1352 6.1 2 1352
33 593 6.0 2 1352 .78 0 24
34 707 15 3 5971 7.2 1 683
35 478 14 3 5971 3.2 0 156
36 2 15 3 5971 3.2 0 156

Total 56 13 20617 20 3 2371

32 7a

32 - 3.5 27 186 3.4 27 186
33 752 3.8 28 210 1.6 1 48
34 961 27 264 2351 18 22 977
35 462 27 264 2351 5.8 0 156
36 2 27 264 2351 5.9 0 156

Total 88 847 7449 35 50 1523

39 7a

32 - 9.9 10 8432 9.5 10 8432
33 595 10 10 8432 .89 0 24
34 707 35 19 36659 15 9 3171
35 462 35 19 36659 3.6 0 156
36 2 35 19 36659 3.6 0 156

Total 120 77 126841 33 19 11939

Setup. All experiments were performed on machines with a
3.4 GHz Quad Core CPU (Intel Core i7-2600) and 32 GB of
RAM. We used Ubuntu 12.04 (64-bit) with Linux 3.2 and
OpenJDK 1.7. We used CPAchecker, revision 8112. The
predicate analysis uses MathSAT 5.2.5 as SMT solver. Each
verification run was limited to 15 minutes of run-time and
15 GB of RAM; the Java heap size was limited to 10 GB. This
is a similar environment to the community-agreed setting
of SV-COMP’13. The analysis time that we report refers
to the CPU time of the analysis phase of the verification
tool (excluding startup and program parsing), and is given
in seconds with two significant digits. The size of code
differences between two revisions of one program is given as
the number of differing lines excluding whitespace changes
(calculated with diff --ignore-all-space | diffstat).

Results. We experiment with the reuse of precisions across
a sequence of different revisions of a program. For this we
start the verification of the first revision with the empty
precision, save the generated precision and use it as the
initial precision for the verification of the second revision.
The final precision of the second verification run is used as
input precision for the verification of the third revision and
so on. We compare the time needed for this process against
the time that is needed for verifying all revisions individually
(using the empty precision as the input for each run and
without generating program-precision files).

Results for a Single Driver. The results for a single
driver (dvb-usb-az6007) from the Linux kernel are shown
in Table 3. There are five revisions for this driver, and we
show the verification of three specifications using predicate
analysis. The column “Diff. Lines” shows the number of lines
differing in one revision compared to the previous revision.
The lines “Total” show the sum of the respective values for
all revisions with one specification.

As expected, the run time for verifying the first revision
is not decreased by the reuse of precisions (there is no pre-
cision to reuse); also, there is no significant overhead for
writing the precision to the output file. For the remaining

revisions, the run time results show a clear improvement of
performance if the precision from the previous revision is
reused. This is achieved by almost completely eliminating the
need for refinements, and by lowering the number of (costly)
boolean-abstraction computations considerably, compared to
the verification of the same program without precision reuse.
It is interesting to observe the third revision of this driver:
This revision affected the program source in a way that made
additional predicates necessary for all specifications (wit-
nessed by the increase in the number of refinements). In such
a case, the analysis with precision reuse also has to perform
refinements, because these additional predicates are not yet
known. However, those refinements that were necessary to
discover predicates for the first revision, are not necessary,
because the results are read from the precision file. Thus, the
run time is still much better than without precision reuse.

Results for all Device Drivers and Specifications. Ta-
bles 4 and 5 show the results of verifying all revisions of
all 62 device drivers against all appropriate specifications
from Table 2, with predicate analysis and explicit-value anal-
ysis, respectively. Due to space reasons we restrict these
tables to the 50 best and 10 worst cases out of the total
259 driver/specification pairs (sorted by column “Analysis
Speedup”). We also show all cases where due to precision
reuse, the analysis is able to verify more revisions. The
complete tables are available on the supplementary webpage.

The columns “Analysis CPU Time” show the accumulated
CPU time used by the analysis to verify all revisions of
the device driver against the given specification (excluding
revisions for which a timeout or an out-of-memory occurred).
In addition, the columns “Total CPU Time” show the total
CPU time used by the tool (including program-startup and
parsing time). The columns “1st Rev.” show the time needed
for verifying only the first revision (this is the same with
and without reuse). The column “Solved Tasks” shows the
number of successfully verified revisions out of the total
number of revisions for this driver (the remaining cases were
either timeout or out-of-memory, there were no incorrect
verification results). If the value in this column is of format
“N + M”, this means that without precision reuse only N
revisions could be verified, whereas with precision reuse
N +M revisions could be verified; otherwise the number of
successfully verified revisions is the same. There were no
cases where a revision could be verified without reuse, but
not with precision reuse. The column “Analysis Speedup”
gives the average speedup for the task of verifying a single
revision of the driver if a precision from a previous revision
is reused in relation to the case where no information is
reused (based on the analysis CPU time without program
startup and parsing). The analysis time of the first revision
of each driver is not taken into account for calculating the
speedup, in order to make this value independent from the
number of revisions per driver (otherwise a driver with more
revisions would in general show a higher speedup because
the cost of the verification of the first revision has less impact
on the speedup). We also excluded from calculating the
speedup such revisions that could not be verified by the
configuration without reuse. In the last column, we report
the (maximal) size in bytes of the final program-precision file
that was produced during the verification of the revisions of
this driver. Note that our file format is purely text-based,
thus, this number gives a coarse over-approximation of the
amount of information that is reused between verification
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Table 4: Best and worst results for predicate analysis (details for highlighted line in Table 3)

Device Driver Spec. Tasks Avg. Refinements Total CPU Time Analysis CPU Time Solved Analysis Max.
Diff. no 1st no 1st no Tasks Speedup Size of
Lines Reuse Reuse Rev. Reuse Reuse Rev. Reuse Reuse Prec.

leds-bd2802 43 1a 4 426 210 6 220 2000 250 210 2000 240 3+1 63 640
leds-bd2802 08 1a 14 504 960 8 200 3200 350 190 3200 320 14 24 471
mos7840 39 7a 57 621 35865 789 140 8600 780 140 8400 590 57 18 3307
dp83640 39 7a 16 557 2256 140 78 1500 220 74 1400 170 16 14 3516
farsync 08 1a 5 984 154 32 20 85 37 17 71 21 5 14 815
i2c-algo-pca 68 1 7 477 238 35 8.5 70 28 5.8 53 9.3 7 14 917
i915 39 7a 79 842 3472 72 140 3500 870 140 3000 370 79 12 3075
i2c-algo-pca 32 1 7 223 131 19 6.5 47 22 4.4 32 6.6 7 12 668
dmx3191d 08 1a 2 1432 20 10 52 110 59 49 99 53 2 11 514
vsxxxaa 68 1 2 1354 28 14 11 20 15 7.9 14 8.6 2 9.5 706
it87 43 1a 15 612 105 7 8.4 150 60 5.6 100 16 15 9.4 405
videobuf-vmalloc 68 1 18 490 232 14 5.8 110 57 3.0 60 9.8 18 8.4 750
dvb-usb-vp7045 68 1 2 1831 20 10 6.4 13 9.9 3.7 7.5 4.2 2 7.8 512
xilinx uartps 39 7a 3 352 531 177 14 41 22 11 33 14 3 7.7 2248
mos7840 08 1a 60 795 722 15 39 2600 570 36 2400 370 60 7.3 889
arkfb 39 7a 22 447 1320 70 360 1500 580 360 1400 500 22 7.1 2322
vsxxxaa 32 1 2 755 14 7 8.3 16 11 5.8 11 6.4 2 7.0 474
i915 08 1a 79 731 1264 20 57 1900 670 53 1400 250 79 6.9 527
vsxxxaa 43 1a 2 786 11 5 6.4 14 9.2 4.1 9.0 4.8 2 6.8 1007
spcp8x5 39 7a 37 481 4701 348 30 920 250 27 810 140 37 6.8 1847
i2c-algo-pca 39 7a 14 367 236 17 5.6 77 45 3.0 46 9.4 14 6.6 810
cp210x 39 7a 71 256 424 34 850 18000 3600 850 18000 3500 33+8 6.4 2105
dvb-usb-rtl28xxu 39 7a 10 173 154 10 7.6 120 50 4.5 92 18 10 6.3 1820
it87 39 7a 54 462 1358 37 18 1900 470 16 1700 290 54 6.2 2091
sym53c500 cs 39 7a 19 468 1947 113 13 290 110 10 230 46 19 6.1 2634
mISDN core 39 7a 59 1265 2674 38 13 930 470 6.4 560 99 59 6.0 2691
rtc-pcf2123 68 1 2 46 18 10 7.1 13 10 4.4 7.6 5.1 2 5.9 567
i915 32 7a 79 777 1184 24 6.1 1700 630 2.7 1300 230 79 5.8 1020
dmx3191d 39 7a 2 1597 104 57 140 280 170 130 270 160 2 5.6 3321
uartlite 39 7a 9 326 198 22 8.1 71 36 5.5 48 13 9 5.6 2151
budget-patch 39 7a 9 1669 205 27 7.4 74 41 4.2 42 11 9 5.5 2290
it87 32 7a 59 463 860 25 16 1600 480 13 1400 270 59 5.4 1696
sym53c500 cs 68 1 8 522 120 20 8.0 63 36 4.9 41 11 8 5.4 769
cp210x 32 1 14 219 1473 227 66 1200 310 62 1200 270 14 5.3 693
twidjoy 39 7a 2 1458 46 26 7.0 13 10 4.2 8.8 5.0 2 5.3 2159
mtdoops 68 1 20 345 157 15 5.2 93 63 2.4 46 11 20 5.3 511
cp210x 68 1 14 538 954 162 330 4300 1100 330 4200 1100 14 5.3 938
i2c-matroxfb 39 7a 7 617 120 15 3.2 36 21 .90 17 4.0 7 5.3 1426
sym53c500 cs 32 1 8 507 60 10 6.8 53 31 4.2 32 9.5 8 5.2 503
rtc-pcf2123 39 7a 9 769 138 15 6.3 54 31 4.0 33 9.6 9 5.2 1398
i915 68 1 79 354 900 18 23 970 540 20 550 120 79 5.1 825
wm831x-dcdc 32 7a 34 298 84 4 2.8 220 110 .56 140 28 34 5.1 762
dvb-usb-rtl28xxu 32 7a 10 173 58 4 6.2 90 46 3.2 59 15 10 4.9 724
metro-usb 39 7a 25 158 351 15 7.3 190 100 4.4 120 28 25 4.9 1417
dvb-usb-az6007 39 7a 5 353 77 19 13 140 50 9.5 120 33 5 4.9 1856
ar7part 68 1 2 677 16 8 3.2 6.9 6.0 .75 1.8 .97 2 4.9 409
spcp8x5 68 1 13 740 508 46 9.6 250 86 6.9 210 49 13 4.8 1385
ssu100 39 7a 28 337 791 44 11 390 160 8.2 310 72 28 4.8 2417
panasonic-laptop 68 1 4 775 47 32 9.0 24 19 6.5 13 8.0 4 4.8 854
metro-usb 32 7a 25 184 104 8 3.6 130 77 1.2 66 15 25 4.8 1115

... For full results cf. http://www.sosy-lab.org/∼dbeyer/cpa-reuse/predicate.html
...

cp210x 32 7a 71 257 600 20 43 5000 2000 39 4800 1800 56+15 2.7 1639

...
...

farsync 32 7a 9 889 0 0 4.0 48 46 1.3 21 20 9 1.0 2
slram 08 1a 9 563 60 6 3.3 31 31 1.2 11 11 9 1.0 490
cfag12864b 43 1a 2 74 0 0 2.4 4.7 4.8 .49 .97 .97 2 1.0 2
i2c-algo-pca 43 1a 7 478 0 0 2.4 19 19 .30 3.0 3.0 7 1.0 2
magellan 32 7a 2 1267 10 9 3.9 7.4 7.5 1.6 3.0 3.1 2 .93 1209
wl12xx sdio 08 1a 38 258 38 2 3.2 120 130 .65 24 27 38 .87 579
mtdoops 08 1a 41 264 47 4 4.8 110 110 2.3 19 22 41 .86 539
wl12xx sdio 32 7a 38 261 42 3 3.2 120 130 .64 24 27 38 .86 776
slram 32 7a 9 625 34 15 2.4 28 30 .28 8.1 10 9 .78 1578
mos7840 43 1a 25 1018 658 73 220 1700 2500 220 1700 2400 12+6 .66 3973

Sum 4 193 90 190 5 197 4 700 99 000 38 000 4 000 83 000 23 000 4 048+30 245 276
Average 16 688 361 21 19 390 150 16 330 90 16 4.3 981

runs. The highlighted row shows the driver dvb-usb-az6007,
for which further details are available in Table 3 (the line
here corresponds to the line labeled “Total” for specification
39_7a in Table 3). The bottom rows report the sum and the
average of the respective values per driver/specification pair.

Precision reuse not only increases the efficiency, but also
the effectiveness: For five pairs of driver and specification, the

number of successfully solved verification tasks was increased
by our approach. This is possible if an early revision of a
driver is verifiable, and a later revision results in a timeout.
With precision reuse, the verification of the later revision is
easier, because a large part of the precision is given as input;
sometimes making it possible to successfully verify tasks that
could not be verified before.
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Table 5: Best and worst results for explicit-value analysis

Device Driver Spec. Tasks Avg. Refinements Total CPU Time Analysis CPU Time Solved Analysis Max.
Diff. no 1st no 1st no Tasks Speedup Size of
Lines Reuse Reuse Rev. Reuse Reuse Rev. Reuse Reuse Prec.

cfag12864b 08 1a 4 326 344 86 510 2200 530 510 2100 520 4 210 374
cfag12864b 32 7a 4 369 246 82 540 1500 550 540 1500 550 3+1 210 405
cfag12864b 32 1 2 48 32 16 530 1000 530 530 990 530 2 180 267
com20020 cs 39 7a 2 524 18 9 4.6 9.7 7.4 1.9 3.8 2.1 2 10 304
mISDN core 39 7a 59 1265 974 19 20 1400 480 14 1000 120 59 9.3 499
wl12xx sdio 39 7a 38 266 372 11 4.8 190 120 2.2 85 12 38 8.8 352
slram 68 1 5 511 20 4 3.8 19 14 1.5 7.9 2.2 5 8.6 204
uartlite 39 7a 9 326 63 7 4.6 41 27 2.1 18 4.1 9 8.3 219
slram 08 1a 9 563 58 5 3.3 30 24 .88 11 2.2 9 7.4 193
sil164 39 7a 3 383 18 6 4.6 14 10 2.0 6.0 2.6 3 7.2 192
slram 39 7a 9 599 145 18 4.5 40 26 2.1 19 4.4 9 7.2 396
tcm loop 39 7a 41 263 517 14 6.6 300 180 3.0 160 25 41 6.9 428
slram 32 1 5 450 15 3 3.1 17 13 1.0 5.7 1.7 5 6.9 181
i2c-matroxfb 39 7a 7 617 51 8 4.2 29 22 1.5 11 3.0 7 6.7 242
intel vr nor 39 7a 10 274 40 4 3.1 29 24 .90 7.7 1.9 10 6.7 141
mtdoops 39 7a 35 243 145 6 3.5 120 82 1.4 40 7.2 35 6.7 202
dvb-usb-rtl28xxu 39 7a 10 173 90 9 5.4 56 36 2.2 22 5.2 10 6.6 304
panasonic-laptop 39 7a 16 410 104 7 4.2 63 50 1.4 25 5.0 16 6.5 213
xilinx uartps 39 7a 3 352 21 7 4.8 14 11 1.9 5.7 2.5 3 6.5 219
lms283gf05 39 7a 13 458 80 7 3.7 49 34 1.4 16 3.7 13 6.4 213
uio sercos3 39 7a 5 897 29 8 3.7 18 13 1.5 6.3 2.3 5 6.2 254
cfag12864b 68 1 2 155 6 3 3.6 6.7 6.1 1.1 2.1 1.2 2 6.2 196
gpio-regulator 39 7a 20 193 80 4 3.2 70 46 1.0 21 4.4 20 6.0 141
dvb-usb-az6007 39 7a 5 353 45 9 5.7 33 20 2.8 18 5.4 5 6.0 304
i2o scsi 39 7a 6 454 55 10 5.0 29 20 2.1 13 4.0 6 5.8 282
rtc-max6902 39 7a 8 890 44 7 4.3 29 24 1.7 10 3.2 8 5.8 213
metro-usb 39 7a 25 158 175 7 4.6 110 82 1.7 46 9.3 25 5.8 226
ems usb 39 7a 21 666 199 10 5.6 120 74 2.5 55 12 21 5.8 325
keyspan remote 39 7a 7 929 43 7 3.9 26 20 1.4 9.5 2.8 7 5.5 213
cx231xx-dvb 39 7a 13 577 127 10 6.0 89 51 3.1 45 11 13 5.5 325
dvb-usb-vp7045 39 7a 12 1001 110 11 4.9 62 42 2.1 28 6.9 12 5.4 359
budget-patch 39 7a 9 1669 98 13 4.4 45 31 1.7 19 5.0 9 5.3 421
pcc-cpufreq 39 7a 3 554 21 7 3.8 10 9.1 1.2 3.5 1.6 3 5.2 210
lms283gf05 32 7a 13 476 71 7 3.5 46 37 .99 15 3.8 13 5.2 228
budget-patch 43 1a 5 1239 20 4 5.5 29 18 2.9 14 5.1 5 5.1 178
dvb-usb-az6007 32 7a 5 435 940 99 7.9 59 28 5.1 43 13 5 5.1 869
keyspan remote 43 1a 3 285 12 4 3.4 9.0 9.0 .79 2.4 1.1 3 5.1 261
rtc-pcf2123 39 7a 9 769 48 7 4.1 35 24 1.8 12 3.9 9 5.0 213
cp210x 39 7a 71 256 456 8 6.4 450 250 3.6 260 56 71 4.9 227
dp83640 39 7a 16 557 176 11 6.7 100 62 3.7 57 15 16 4.9 441
mISDN core 68 1 26 2481 52 2 7.6 350 210 2.3 160 35 26 4.8 35
dvb-usb-vp7045 68 1 2 1831 4 2 3.8 7.7 7.0 .97 2.3 1.2 2 4.8 35
ssu100 39 7a 28 337 209 9 6.0 160 100 2.7 77 18 28 4.8 271
mt2266 39 7a 5 806 31 7 3.3 16 13 .95 4.9 1.8 5 4.7 213
ab8500-usb 39 7a 6 183 24 4 3.6 20 17 1.0 6.4 2.2 6 4.7 141
catc 39 7a 22 893 246 13 5.4 130 84 2.5 70 17 22 4.7 411
sym53c500 cs 39 7a 19 468 175 10 5.4 110 66 2.6 53 13 19 4.7 282
dvb-usb-rtl28xxu 32 7a 10 173 30 3 4.4 43 35 1.3 14 4.0 10 4.5 110
it87 39 7a 54 462 513 10 4.6 410 230 2.2 240 55 54 4.5 356
mtdoops 68 1 20 345 58 3 3.2 64 54 .89 19 4.9 20 4.5 206

... For full results cf. http://www.sosy-lab.org/∼dbeyer/cpa-reuse/explicit.html
...

abyss 32 7a 4 2025 2 2 2.6 13 13 .51 3.5 3.5 4 1.0 72
twidjoy 32 7a 2 1268 2 2 2.3 4.6 4.5 .25 .45 .43 2 1.0 57
i915 43 1a 79 746 0 0 3.7 460 450 .34 36 36 79 1.0 3
dmx3191d 32 7a 2 1608 3 3 2.8 6.9 7.0 .17 1.6 1.6 2 .99 87
pt 32 7a 9 615 0 0 4.8 41 44 2.0 18 18 9 .99 3
farsync 32 7a 9 889 0 0 2.9 28 28 .21 2.9 3.0 9 .99 3
abyss 43 1a 3 1465 0 0 3.0 8.3 9.2 .52 1.5 1.6 3 .95 3
i2c-algo-pca 43 1a 7 478 0 0 2.4 16 18 .12 .91 1.0 7 .90 3
ar7part 43 1a 2 220 1 1 2.1 3.7 4.4 .04 .20 .23 2 .89 11
magellan 32 7a 2 1267 2 2 2.4 5.0 4.8 .27 .47 .51 2 .88 57

Sum 4 193 15 852 1 200 2 600 28 000 20 000 1 900 13 000 4 900 4 186+1 29 239
Average 16 688 62 5 10 110 78 7.3 52 19 16 3.8 113

The maximum analysis speedup is 63 for predicate analy-
sis and 210 for explicit-value analysis, with average analysis
speedups of 4.3 and 3.8, respectively. The time that the
predicate analysis used for successfully verifying 4 048 veri-
fication tasks without precision reuse was 83 000 s, whereas
with precision reuse, 4 078 verification tasks (30 more) were
verified in only 23 000 s, less than a third of the time.
The time used by the explicit-value analysis improved from
13 000 s to 4 900 s if our technique of precision reuse is applied

to the 4 193 verification tasks. This gives evidence for the
significant performance improvement of our approach.

We also list all negative results; there are only a few. The
last lines of the tables report the few cases for which the
verification with precision reuse takes a bit more time than
without. Most of these cases have only a low average CPU
time per revision of about 1 s. There is only one case for
which the time for verification with precision reuse is signifi-
cantly higher (the last line in Table 4, driver mos7840 with
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Table 6: Results for considering all revisions versus considering only every 4th revision

Analysis Revs. Tasks Avg. Total CPU Time Analysis CPU Time Analysis Solved
Diff. no no Speedup Tasks
Lines Reuse Reuse Reuse Reuse

Predicate
All 4193 688 99000 38000 83000 23000 4.3 4048+30
4th 1090 1579 24000 13000 21000 9200 3.0 1055+7

Explicit-Value
All 4193 688 28000 20000 13000 4900 3.8 4186+1
4th 1090 1579 6300 5100 2200 1000 2.5 1090

specification 43_1a). However, note that precision reuse in-
creased the number of successfully solved tasks from 12 to 18
for this case. We generally consider an increase in the number
of solved programs to be more important than a performance
difference. A detailed analysis of the mos7840 driver code
revealed that a single variable is used as loop counter in
three different loops. Some predicates about this variable
are added to the precision, and due to the function-scoped
precisions in our benchmark configuration are now applied
to all three loops, the analysis becomes more expensive. The
verification of the same driver against the other specifications
actually shows nice speedups (e.g., line 3 of Table 4).

Size of Precision. The size of the precision that is neces-
sary to be stored between verification runs is small: usually
just a few kBs in our uncompressed plain-text format. The
average size for predicate analysis is 1 kB (max: 4 kB); for
explicit-value analysis it is 110 bytes (max: 1 kB). The total
amount of precision storage that was necessary for verifying
all 4 193 verification tasks was 250 kB for predicate analy-
sis and 30 kB for explicit-value analysis, which is orders of
magnitude less compared to the size of the source code.

Scaling with Larger Changes. The changes between sub-
sequent revisions in our benchmark set are rather large (af-
fecting 688 lines on average) compared to typical developer
commits. To find out how our approach scales with the size
of changes per revision (change-size sensitivity), we created
verification problems with even more changes: we consider
only every 4th revision per driver/specification pair as an
alternative benchmark set. Thus, the difference between two
revisions in this benchmark set combines the differences of
four actual driver revisions into one.

Table 6 shows the results for this experiment in the lines
that are marked “4th” in column “Revs.” (the lines marked
“All” show the results from Tables 4 and 5 for comparison).
The average size of differences between revisions increased
from 688 to 1579 lines. As expected, the speedup decreases,
but only from 4.3 to 3.0 for predicate analysis, and from 3.8
to 2.5 for explicit-value analysis. In both cases the speedup
decrease is significantly smaller than the increase in the size
of the code differences. This shows that our approach copes
well even with massive changes to the analyzed code.

Threats to Validity. To obtain significant experimental
results, we created a large benchmark set consisting of 4 193
verification tasks. For highly credible experimental data, and
instead of relying on random or artificial benchmarks, our
selection of verification tasks is based on hundreds of actual
source-code commits to 62 different Linux device drivers. The
characteristics of systems software, in particular kernel device
drivers, might be similar and could have an impact on the
validity of our experiments, but (Linux) driver verification is
important enough to be representative on its own [15]. The
Linux Driver Verification program of the Linux Verification
Center [29] and Microsoft’s Static Driver Verifier project [2]
dedicate considerable resources to driver verification.

We used an experimental setup and environment that is
identical to the infrastructure for the competition on soft-
ware verification (community-agreed). Precision reuse has a
different impact on different abstract domains. We included
two very different analysis approaches in our experimental
evaluation: a symbolic and an explicit model-checking ap-
proach. Our experiments are not based on one particular
specification, but on six different, real-world specifications,
with all showing a considerable speedup.

It would be interesting to compare precision reuse to other
approaches for regression verification. Our implementation
does not analyze for syntactical differences, in order to be
able to identify the speedup that is achievable by precision
reuse in isolation (such optimizations are orthogonal and
could be used in combination with precision reuse as well).

5. CONCLUSION
Precisions, defining the abstraction level of an abstract

model, are costly to compute and represent precious in-
termediate verification results. We propose to treat these
abstraction precisions as reusable verification facts, because
precisions are easy to extract from model checkers that au-
tomatically construct an abstract model of the program
(e.g., CEGAR), have a small memory footprint, are tool-
independent, and are easy to use for regression verification.

The technical insight of our approach is that reusing pre-
cisions drastically reduces the number of refinements. The
effort spent on analyzing spurious counterexamples and re-
exploring the abstract state space in search for a suitable
abstract model is significantly reduced.

To confirm the effectiveness and efficiency of our approach,
we derived an extensive collection of verification tasks from
the Linux kernel, in order to enable a meaningful evaluation
of regression-verification techniques. Our benchmark set con-
sists of 4 193 single verification tasks and is publicly available
for download on our supplementary web page.

Based on these benchmarks, we show that the reuse of
precisions has a significant effect on the verification process.
The approach drastically improves the performance on most
verification problems, and does not have noticeable negative
side effects. Besides improving the run time, we are also able
to solve verification problems that were not solvable before,
within the given time and memory limits.

Because the information that we reuse does not depend on
source-code details, our approach is less sensitive to changes
in the source code, compared to other approaches.

Precision reuse is applicable to all verification approaches
that are based on abstraction and automatically computing
the precision of the abstract model (including, e.g., CEGAR-
based approaches). Both the efficiency and effectiveness of
such approaches can be increased by reusing the precision.

As a result of the experiments for this paper, a previously
unknown bug in the Linux kernel was discovered and a fix
was submitted to the maintainers by the LDV team2.
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