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Abstract—Product-line technology is increasingly used in
mission-critical and safety-critical applications. Hence, re-
searchers are developing verification approaches that follow
different strategies to cope with the specific properties of product
lines. While the research community is discussing the mutual
strengths and weaknesses of the different strategies—mostly at
a conceptual level—there is a lack of evidence in terms of
case studies, tool implementations, and experiments. We have
collected and prepared six product lines as subject systems
for experimentation. Furthermore, we have developed a model-
checking tool chain for C-based and Java-based product lines,
called SPLVERIFIER, which we use to compare sample-based and
family-based strategies with regard to verification performance
and the ability to find defects. Based on the experimental results
and an analytical model, we revisit the discussion of the strengths
and weaknesses of product-line–verification strategies.

I. INTRODUCTION

Software product lines (a.k.a. product families) are gaining

momentum in academia and industry. A product line is a family

of software systems that are distinguished in terms of features

(i.e., end-user–visible units of behavior). The goal of system-

atic product-line development is to facilitate reuse, manage

variability, and support automated product generation [12].

Companies and institutions such as General Motors, NASA,

HP, Boeing, and Nokia are applying product-line technology

to decrease time to market, improve software quality, and

diversify their product portfolio (cf. Product-Line Hall of

Fame: http://splc.net/fame.html). As product-line technology

is increasingly applied to safety-critical and mission-critical

software projects (e.g., in the domain of automotive and health-

care systems), analysis and verification techniques become

important means to ensure correctness, reliability, and security.

Recently, researchers began to apply model-checking tech-

nology to analyze and verify software product lines [2], [3],

[11], [18]. As a product line may comprise a multitude of

products—a number of products that is, in the worst case,

exponential in the number of features—it is imperative to tailor

existing model-checking technology to the specifics of product

lines. The brute-force approach to verify an entire product

line, called product-based strategy, is to create and analyze

every possible product individually. An alternative approach,

called sample-based strategy, is to concentrate on a subset of

possible products (i.e., for some selected feature combinations)

to reduce the verification problem and to identify defects faster.

A third approach, called family-based strategy, is to analyze

the design and implementation artifacts of a whole product

line (i.e., product family) in one single pass [2], [11], [18], for

example, by creating a simulator that simulates the behavior

of all individual products [2], [25].

Conceptually, the three strategies of product-line verification

have different strengths and weaknesses. The product-based

strategy is a brute-force approach: as the number of products

increases, this strategy quickly becomes infeasible; it is the

base line for our investigation. The sample-based strategy is

likely to find defects quickly, depending on how large the

sample is, but it may miss defects due to the incompleteness

of the approach. The family-based strategy is beneficial for

product lines that comprise many products with substantial

similarities [2], [11], [18], because similar product behaviors

are not re-checked for every product. However, verification

tasks may become more complex than for individual products,

which may exceed resource limits.

The research community began to discuss and weigh the

strengths and weaknesses of sample-based and family-based

strategies, each in comparison to the product-based strategy [2],

[10], [11], [18], [21], [28]. However, there is no work that

compares the sample-based strategy with the family-based

strategy systematically in a controlled setting. In general, there

is a lack of case studies and experiments in this field, which

was the motivation for us to collect and prepare existing

and implement further case-study product lines, as well as

to develop a model-checking tool chain, called SPLVERIFIER,

for the verification of product lines written in C and Java.

Specifically, we conducted a series of experiments based on

six case studies to compare the sample-based strategy and

the family-based strategy (with the product-based strategy

as a base line) with regard to their verification performance

and their ability to identify defects. We have concentrated on

undesired feature interactions, a specific class of defects that

is especially challenging for verification, because they emerge

between several features and not within individual features [8].

In summary, we make the following contributions:

• We provide the tool chain SPLVERIFIER for conducting

experiments with product-based, sample-based, and family-

based model checking of product lines written in C and

Java.

• We collected and prepared six case studies, written in

the general-purpose languages C and Java, to be used as

benchmarks for product-line verification.

• Based on the case studies, we conducted experiments

comparing the three verification strategies (including

three different sampling heuristics for feature-interaction
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detection) in terms of the verification performance and

the ability to identify defects.

• Based on the experiments, we revisit the discussion of

the strengths and weaknesses of sample-based and family-

based strategies and put them into perspective, and we

provide an analytic model that describes the trade-offs of

the individual verification strategies. A key result is that,

in our experiments, the family-based strategy outperforms

the sample-based strategy in terms of defect-detection

efficiency.

SPLVERIFIER, all case studies, and the experimental results

are available on the project’s web site: http://fosd.net/FAV.

II. PRODUCT-LINE VERIFICATION

We introduce product-based, sample-based, and family-based

verification strategies by means of an example.

A. Running Example and Setting

For illustration, we use a simple e-mail system as running

example. We used the example before in our work on feature-

interaction detection [2], but its roots lie in Hall’s work on

modularity of e-mail systems [14].

We implemented the features of the e-mail system by

feature modules in C and Java, and we compose them by

superimposition [1]. Basically, superimposition merges the

code of all feature modules recursively based on nominal

and structural similarity. Feature composition is generally

not commutative [1]. The composition tool expects a certain

order over the features of a product line that determines

the composition order (for a particular feature selection, the

composition tool constructs exactly one corresponding product,

because the tool is bound to the specific order).

In Fig. 1, we depict excerpts of four feature modules of

the e-mail system. Feature EMailClient implements a basic e-

mail client, feature Encrypt encrypts outgoing e-mails, feature

Decrypt decrypts incoming e-mails, and feature Forward

forwards incoming e-mails to another host. Note that encryption

and decryption rely on the availability of proper keys—a

circumstance that gives rise to a feature interaction, as we

will explain shortly.

EMailClient is the base feature in our example. It introduces

a structure email for representing e-mails and the two functions

outgoing and incoming for handling outgoing and incoming

e-mails. Composing it with feature Encrypt, the existing

structure email is extended by the two new fields isEncrypted

and encryptionKey, function encrypt is added, and the existing

function outgoing is overridden to intercept outgoing e-mails

and to encrypt them using function encrypt; keyword original

invokes the overridden function. Feature Decrypt introduces

a function decrypt and overrides the existing function incoming

to intercept and decrypt incoming e-mails. Feature Forward

introduces a function forward and overrides the existing function

incoming to forward incoming e-mails to another host.

For the purpose of the example, let us assume that all features

are optional except EMailClient, which is present in all products.

This flexibility gives rise to feature interactions, a class of

Feature EMailClient

1 // representation of e-mail

2 struct email {
3 int id; char ∗from; char ∗to; char ∗subject; char ∗body;
4 };
5

6 // outgoing e-mails are processed before they leave the system

7 void outgoing (struct client ∗client, struct email ∗msg) { ... }
8

9 // incoming e-mails enter here and are stored in a mailbox

10 void incoming (struct client ∗client, struct email ∗msg) { ... }

Feature Encrypt

11 // extending the e-mail structure by information on encryption

12 struct email {
13 int isEncrypted;
14 char ∗encryptionKey;
15 };
16

17 // encrypt an e-mail, if the public key of the receiver is known

18 void encrypt (struct client ∗client, struct email ∗msg) { ... }
19

20 // override ‘outgoing’ to encrypt e-mails before they are sent

21 void outgoing (struct client ∗client, struct email ∗msg) {
22 encrypt (client, msg);
23 original (client, msg); // invoke the overridden function

24 }

Feature Decrypt

25 // decrypt a given e-mail

26 void decrypt (struct client ∗client, struct email ∗msg) { ... }
27

28 // override ‘incoming’ to decrypt encrypted incoming e-mails

29 void incoming (struct client ∗client, struct email ∗msg) {
30 decrypt (client, msg);
31 original (client, msg); // invoke the overridden function

32 }

Feature Forward

33 // forward an e-mail to another host

34 void forward (struct client ∗client, struct email ∗msg) { ... }
35

36 // override ‘incoming’ to forward e-mails automatically

37 void incoming (struct client ∗client, struct email ∗msg) {
38 forward (client, msg);
39 original (client, msg); // invoke the overridden function

40 }

Fig. 1. Implementation of four features of our e-mail client in C [2]

defects that are difficult to detect. A feature interaction is a

situation in which new behavior emerges from the composition

of two or more features that cannot easily be deduced from

the behavior of the individual involved features. The emergent

behavior can be undesired and associated with unexpected

program states [8].

While the features Encrypt and Decrypt are designed to

cooperate, feature Forward has been developed independently

of the two, only based on feature EMailClient. The composition

of all four features leads to an undesired feature interaction.

The interaction occurs if one host sends an encrypted e-mail to

a second host that forwards the e-mail automatically to a third

host. If the second host does not have the public key of the third

host, it forwards the e-mail in plain text (Forward has been

developed independently and thus does not take encryption

into account). This situation contradicts the requirement that

encrypted e-mails must never be sent in plain text over the

network [14].
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Note that, even if there is a feature model that describes

the domain dependencies between features [12], it typically

does not cover (hidden) implementation-level dependencies

that may lead to inadvertent feature interactions at run time [2].

Hence, we need analysis and verification techniques that check

whether a feature composition satisfies the specifications of

the involved features.

In our case studies, individual features come with their own

specification(s), expressed in the form of assertions that indicate

erroneous executions, or by automata that are woven into the

code in the form of assertions [2]. In Fig. 2, we show the

specification of feature Encrypt expressed as an automaton:

When the client receives an encrypted e-mail (Lines 7–9),

the status (encrypted or not) of the message is stored into a

field (Line 8) that has been attached as a shadow to the email

structure (Line 4). When an e-mail that was encrypted leaves

the system (Lines 11–13), it must still be encrypted; if not, the

e-mail client reaches an error state flagged by fail (Line 12).

1 automaton EncryptSpec {
2 // introduce an auxiliary field to store the state of an e-mail

3 introduction {
4 shadow struct email { int in_encrypted; };
5 }
6 // if an e-mail is encrypted when entering the system...

7 before void incoming(_: struct client ∗, msg: struct email ∗) {
8 msg−>in_encrypted = isEncrypted(msg);
9 }

10 // ...it must be encrypted as well when leaving the system

11 after void outgoing(_: struct client ∗, msg: struct email ∗) {
12 if (msg−>in_encrypted && ! isEncrypted(msg)) { fail; }
13 }
14 }

Fig. 2. Automaton-based specification of feature Encrypt [2]

B. Verification Strategies

Product-Based Strategy: Pursuing a product-based strat-

egy, all products of a product line are generated and analyzed,

each using a standard model checker. In our example, we

compose the set P of all eight valid products: EMailClient is

mandatory, so it is present in all products; of the remaining

three features, we form all possible combinations respecting

the predefined composition order. Then, we verify the imple-

mentation of each product, based on the specifications of the

involved features:

∀p ∈ P : ∀f ∈ p : impl(p) |= spec(f)

where impl(p) is the implementation of product p, and spec(f)
the specification of feature f .

In our setting, the implementation is made up of real C

or Java code; specifications are mostly local to individual

features and comprise safety properties that must hold if

the corresponding features are selected. If there is a global

specification, all products are checked against it.

Sample-Based Strategy: Generating and analyzing all

products in a brute-force fashion is feasible only for product

lines with a small number of products. Hence, the sample-based

strategy selects a restricted number of products, usually based

on some coverage criterion:

∀p ∈ sample(P) : ∀f ∈ p : impl(p) |= spec(f)

where sample(P) selects a subset of all valid products

according to a sampling heuristic.

In our experiments, we use the following heuristic for n-wise

sampling of feature combinations, where n is the (minimal)

number of features in the sample:

for each subset {f1, . . . , fn} ⊆ F of n features,
select a small product p ∈ P with f1 ∈ p ∧ . . . ∧ fn ∈ p

where F is the set of features of the product line and ‘small

product’ refers to a valid product with a small number of

features (≥ n).

For n = 2 (pair-wise), all binary feature interactions can be

detected. While this heuristic reduces the number of products

to be generated and analyzed significantly (from an exponential

number, in the worst case, to a polynomial number), interactions

between more than two features cannot be detected—so the

analysis is incomplete. Using this heuristic, we can reduce the

number of products in our example from eight to three: as

EMailClient is mandatory, we form three pairs of the remaining

three optional features. However, this way, we do not detect

interactions that occur only between all of the three optional

features. In our experiments, we also use two other sampling

heuristics: single-wise (n = 1) and triple-wise (n = 3).

Our sampling heuristics are inspired by previous work

on feature-interaction detection [9], [23], prediction of non-

functional properties [26], and analysis of model-weaving inter-

ference [15]. As they aim at small products that cover certain

feature combinations, they facilitate the process of detecting,

isolating, and understanding individual feature interactions. An

alternative would be to aim at large products, which decreases

the sample size, but makes identification of feature interactions

and the set of all defective features difficult (cf. Sect. IV).

Family-Based Strategy: Typically, there are many similari-

ties between the products of a product line [12]. Thus, checking

products individually leads to redundant analyses of execution

paths that are similar among products. To minimize effort, the

family-based strategy analyzes the entire code base of a product

line in one single pass. This can be achieved by combining all

code of all features in a single product simulator. In a nutshell,

a product simulator simulates the behavior of all products

of the corresponding product line depending on the values

of feature variables that represent the presence or absence of

individual features [2], [25]. All necessary information on valid

feature combinations and feature-dependent execution paths

is encoded in the code of the product simulator. The model

checker initializes the boolean feature variables within the

product simulator using a non-deterministic choice, such that

it must assume that all feature combinations that are allowed

by the feature model may occur. This way, it checks all valid

execution paths of all products without the need of generating

and checking any individual product.

Technically, the approach relies on the concept of variability

encoding [2], [25], which is a modification of the regular
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feature-composition process. Basically, the variability induced

by different combinations of features is encoded in the form

of conditional program executions using if statements:

1) All features are composed according to the total composi-

tion order of the product line.

2) For each feature, there is a global boolean feature variable

defined (initialized at program load time) that models the

presence or absence of the feature.

3) For each function refinement, a dispatcher function is

introduced that dispatches between the refined and the

refining function, depending on whether the feature that

contains the refinement is selected.

4) Dependencies between features (i.e., the feature model) are

encoded by means of a boolean formula over the feature

variables that models the corresponding constraints.

5) The entire program execution is enclosed in a conditional

block that is executed only if the constraints imposed by

the feature model are satisfied; this way, execution paths

that are associated with invalid feature combinations are

not considered by the model checker.

The resulting product simulator can simulate the behavior of

any product of the product line, depending on the values of

the feature variables. More details about variability encoding

(including a formal model and a discussion of correctness) are

provided elsewhere [2].

Using a family-based strategy, a product line can be checked

in a single pass:

∀f ∈ F : P(F ) |= spec(f)

where F is the set of all features of the product line and P

is the product simulator that results from variability encoding,

incorporating all valid combinations of features in F .

Figure 3 shows the product simulator for the composition

of EMailClient and Forward , as produced by the variability

encoding of our tool chain (cf. Sect. III). Function incoming

(Lines 10–13) dispatches between its variants with and without

feature Forward. The feature model is encoded (Lines 2–7)

and the execution is guarded (Line 28). In Fig. 4, we show the

effect of variability encoding on the state graph. States that are

associated with invalid feature combinations are not considered

by the analysis (left sub-tree). All other states are checked

(right sub-tree). Hence, it can be verified if none of the valid

feature combinations exhibits an unsafe feature interaction (or

other defects). Also, one can see how both alternative execution

paths—for products with and without feature Forward—are

encoded in the state graph.

Late Splitting and Early Joining: Largely implicit in

previous work, there are two principles that allow the model

checker to exploit similarities between products using a family-

based strategy: late splitting and early joining.

Late splitting means that, as long as the execution paths

of different products are equal (starting from the common

program entry point), they are explored by the model checker

only once. Only if execution paths diverge (i.e., the values of

feature variables differ in the subsequent program state), the

state-space exploration is split.

1 // one boolean variable per feature

2 int EMailClient, Forward;
3

4 // encoding the feature model

5 int feature_model() {
6 return EMailClient; // EMailClient && (Forward || !Forward);

7 }
8

9 // dispatch between ’Forward’ and ’!Forward’

10 void incoming (struct client ∗client, struct email ∗msg) {
11 if (Forward) { incoming_Forward (client, msg); }
12 else { incoming_EMailClient (client, msg); }
13 }
14

15 // refinement of method ’incoming’ by ’Forward’

16 void incoming_Forward (struct client ∗client, struct email ∗msg) {
17 forward(client, msg);
18 incoming_EMailClient(client, msg);
19 }
20

21 // base implementation of method ’incoming’ by ’EMailClient’

22 void incoming_EMailClient(struct client ∗client, struct email ∗msg) { ... }
23

24 // base implementation of method ’forward’ by ’Forward’

25 void forward (struct client ∗client, struct email ∗msg) { ... }
26

27 int main(int argc, char ∗∗argv) {
28 if (feature_model()) { /∗ start the e-mail client ∗/ }
29 return 0;
30 }

Fig. 3. Variability encoding of the features EMailClient and Forward [2]

main(argc, argv)

...

[feature_model() != 0][feature_model() == 0]

[Forward == 0] [Forward != 0]

... ...

incoming(client, msg)

states associated with
valid feature combinations

incoming_Forward(client, msg)

program

incoming_EMailClient(client, msg)

termination

Fig. 4. State graph of the product simulator of Fig. 3 [2]

Early joining means that, if two program states differ only

in the values of their feature variables, the execution paths are

joined and explored from there only once (until a further split).

Because feature variables are boolean, they can be efficiently

checked for equivalence, and joined using disjunction, by binary

decision diagrams (BDDs). We refer to previous work for

details on encoding feature-variables in BDDs [10], [30] and

on BDD-based software model checking [6].

III. CASE STUDIES AND EXPERIMENTS

Both sample-based and family-based strategies promise to

significantly decrease verification time, either by analyzing

only a subset of products, or by sharing analysis results among

products. To learn about the trade-offs of the two strategies,

we compare them (as defined in Sect. II-B) in terms of their

verification performance and their ability to identify defects;

we use the product-based strategy as a base line.
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A key hypothesis is that sample-based strategies are faster

than the family-based strategy (the fewer products are checked,

the less time is needed for verification), but may miss defective

products. Conversely, the family-based strategy consumes more

verification time than sampling, but is complete.

With regard to the sample-based strategy, we are interested in

the tension between sample, defect, and detection rates and their

influence on verification time. For the family-based strategy,

we are interested in the factors that influence verification

performance. Especially, we want to explore whether late

splitting and early joining are the driving factors for the

speedups observed by us and others using family-based

strategies. We quantify the number of verification steps that

are saved due to sharing analysis results among products.

For the experiments, we collected and prepared six case

studies, which exceed the case studies used in previous work

on product-line verification substantially, in terms of volume

and complexity (Sect. IV). This corpus of case studies is also

meant to serve as a benchmark suite in further work, which is

in itself a valuable contribution to the community.

A. Tool Chain

We developed a tool chain for product-line verification, called

SPLVERIFIER, which consists of a number of tools: For feature

composition, we use FEATUREHOUSE [1]. For model checking,

we use the tools CPACHECKER [4] (revision 5540; branch

“explicit”) for C, and JAVA PATHFINDER [29] (revision 635) for

Java. Both support the verification of safety properties by means

of explicit-state and symbolic model checking. Specifically, we

use the explicit analyses of CPACHECKER (-explicitAnalysis [5])

and JAVA PATHFINDER (jpf-core); for product simulators, we

use additionally a BDD-based treatment (cf. Sect. II-B) of

feature variables (-explicitAnalysis-featureVars for CPACHECKER

and the jpf-bdd extension [30] for JAVA PATHFINDER).

All specifications are woven into the target code in the form

of assertions, by means of aspect weaving (cf. Sect. II-A); we

use ACC 1 for C code, and ASPECTJ 2 for Java code. Variability

encoding is implemented using FEATUREHOUSE’s composition

facilities. More details on specification weaving and variability

encoding in SPLVERIFIER are available on the project’s web

site (http://fosd.net/FAV).

B. Subject Systems

As subject systems, we selected three product lines that

have been used before to assess product-line verification, and

developed implementations in C and Java:

• The e-mail system of Hall [14] models an e-mail com-

munication suite. It provides several features, such as

encryption, automatic forwarding, and e-mail signatures,

which can be activated or deactivated.

• The elevator system has been designed by Plath and

Ryan [24]. It is an elevator model that is extensible by

various features such as stopping if the elevator is empty

or priority service for a special floor.

1http://research.msrg.utoronto.ca/ACC
2http://eclipse.org/aspectj/

• The mine-pump system is based on work in the CONIC

project [17]. It simulates a water pump in a mining

operation, including several features that vary the pump’s

behavior. The pump keeps the bottom of the mine shaft dry,

but must be deactivated if the mine contains combustible

methane gas.

Based on the respective original systems, we created for

each system a C and a Java implementation, obtaining six

implementations in sum (we used the C implementation of the

e-mail system in previous work [2]). Note that the respective

Java and C implementations may differ in details. Although

we aimed at comparability, the differences of the languages as

well as the corresponding support of the model-checking tools

forced us to diverge from a common implementation schema

(e.g., the explicit-value analysis of CPACHECKER did not yet

support arrays and structures).

Additionally, we selected three existing Java product lines

from the FEATUREHOUSE repository. 3 All of them have been

developed for other purposes. The primary selection criterion

was that the Java code could be processed properly by JAVA

PATHFINDER.

• AJStats is a product line of source-code–analysis tools. It

has been developed by the first author to explore the

use of AspectJ. It provides several features to tailor

the analysis process, for example, recognizing various

syntactic program structures.

• GPL is a product line of graph libraries developed by

Lopez-Herrejon and Batory, as a standard problem for

the evaluation of product-line techniques. It allows a

programmer to tailor graph data structures, including

optional support for weighted and directed edges as well

as different traversal strategies and algorithms.

• ZipMe is an open-source zip compression library for

Java ME. It has been refactored into a product line by

Kuhlemann. It includes features for computing check-sums

and different compression techniques.

For the product lines e-mail, elevator, and mine pump, we

adapted the original specifications, which have been distributed

with their models. Mostly, the specifications concern domain-

specific safety properties such as that encrypted e-mails are

never transferred in plain text, the elevator must refuse to

operate if the maximum weight is exceeded, or the mine pump

must be deactivated when methane gas is detected. Furthermore,

all three case studies contain defects (documented by the

original authors) violating at least one specification.

For the product lines AJStats, GPL, and ZipMe, we included

proper specifications based on domain knowledge (two for

AJStats, two for GPL, and one for ZipMe). The systems AJStats

and ZipMe do not contain defects; for GPL, we used defects

introduced by others [7]. In Table I, we summarize relevant

information on all case studies.

Note that, although the subject systems are implemented

in C and Java, the implementations comprise only the key

functionalities of the product lines. In this sense, the implemen-

3http://fosd.net/fh/
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TABLE I
OVERVIEW OF SUBJECT SYSTEMS

System Lang. LOC Features Specs Products

E-Mail Java 1233 9 9 40

C 258 9 9 40

Elevator Java 1046 6 9 20

C 877 6 6 20

Mine pump Java 580 7 5 64

C 279 7 5 64

AJStats Java 13393 20 2 200

GPL Java 1405 18 2 42

ZipMe Java 3636 8 1 10

tations are models of the respective product lines. Nevertheless,

we use software model-checking technology to verify the code,

without the need of extracting intermediate models manually—

the software model checkers extract the models from the code

automatically (cf. Sect. III-A).

C. Experiments

We performed all experiments on a Ubuntu 11.10 system

that has an Intel i7-2600 CPU with 3.4 GHz, 8 cores, and

16 GB RAM. For each subject system, we created:

1) all products (product-based strategy),

2) product samples that cover all (a) single-wise, (b) pair-

wise, and (c) triple-wise combinations, and

3) a corresponding product simulator using variability encod-

ing (family-based strategy).

The overall goal of the verification tasks is to identify all

defective products (which violate the specification of one

feature, at least) of the given product line. That is, for each

specification, we have to run a sequence of verification tasks: for

the product-based and sample-based strategies, one verification

task per (selected) product; for the family-based strategy, one

verification task for the product simulator.

For the product-based and sample-based strategies, we

terminated the verification task after detecting a violation, and

continued with the next product to be checked. For the family-

based strategy, we determined which products contributed to

the detected violation, and proceeded with the exploration of

the remaining state space that was not associated with these

products. 4

The composition time for our subject systems is negligible

compared to the verification time, thus we compare the verifica-

tion times only (including the generation of counterexamples).

That is, we measure five values for each specification to be

checked (product-based, single-wise, pair-wise, triple-wise,

family-based). Additionally, for the sample-based strategies,

we determine what percentage of defective products has been

identified (i.e., the detection rate), and we log what percentage

of products has been checked (i.e., the sample rate).

D. Results

In Fig. 5, we illustrate the relative verification times of

using the sample-based and the family-based strategies for

4We could have stopped the verification once a violation was identified, but
then we could not have been certain that we identified all defective products.
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each subject system, compared to the product-based strategy

(whose time defines the 100 %). As expected, sample-based and

family-based strategies can improve verification performance

significantly compared to a product-based strategy (except for

triple-wise sampling in ZipMe, which effectively selects all

possible products): single-wise by 75 %, pair-wise by 60 %,

triple-wise by 36 %, and family-based by 73 %, on average.

The family-based strategy is in many cases faster than

most of our sampling heuristics; for six subject systems, it

outperforms even single-wise sampling. Note that, using a

sample-based strategy, we may find only a fraction of all

defective products. In Fig. 6, we provide sample and detection

rates (side by side, for later comparison) for the different

sampling heuristics. The detection rates for AJStats and ZipMe

are omitted because they do not contain defects. In Table II

and III (cf. Appendix), we provide all raw data for replication.

E. Discussion

We divide our discussion into three parts, regarding (1) the

sample-based strategy, (2) the family-based strategy, and (3) a

comparison of the two.

Sample-Based Strategy: First, we consider the probability

of sample-based strategies to identify defective products. The

detection rate depends on the defect and sample rates (which

are based on the set P of valid products of a product line,

the non-empty subset Pd ⊆ P of defective products, and the

subset Ps ⊆ P of products that are selected by a sampling

heuristic), as well as the subset Pf = Pd ∩ Ps of selected

products that are actually defect (detected defects). The defect

rate rd is defined as |Pd|/|P|, the sample rate rs as |Ps|/|P|,
and the detection rate rf as |Pf |/|Pd|. There are no special

assumptions about P , Pd, Ps, and Pf .
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The probability qi to identify exactly i defective products

(derived from combinatorics 5) is given as:

qi =



























(

|Pd|

i

)(

|P| − |Pd|

|Ps| − i

)

(

|P|

|Ps|

)

if i ≤ |Pd|, i ≤ |Ps|,
and |Ps| − i ≤ |P| − |Pd|

0 otherwise

The probability qall to identify all defective products (rf = 1)

is then q|Pd|, and the probability qsome to identify at least one

defective product (rf > 0) is 1−q0. In Fig. 7, we illustrate the

corresponding probabilities of detecting all and some defective

products depending on varying defect and sample rates.

Note that a single product may contain several defects,

and a single defect may be contained in several products.

So, identifying a defective product and removing the defect

from the product line’s code base, may remove the defect also

from other products. While this is an advantage for sample-

based strategies (which is more likely to detect some defective

products quickly; useful in early development stages), it still

does not help with verification (which is about providing

guarantees that all products are correct; typically, the goal

in later development stages).

Next, we consider how the detection rate is related to the

sample rate, as illustrated in Fig. 6. On the one hand, the

higher the detection rate is for some given fixed defect and

sample rates, the better is a sampling heuristic. On the other

hand, the lower the sample rate is for some given fixed defect

and detection rates, the better is a sampling heuristic. In this

light, triple-wise sampling performs best, because the ratio

between detection rate and sample rate is large in many cases

(cf. Fig. 6).

Finally, we consider how the detection rate is related to the

time that is actually needed for verification. Ideally, the goal is

to achieve a high detection rate and a low fraction of verification

time, compared to the product-based strategy. In Fig. 8, we

show for each sample-based verification of our experiments

5In the numerator, we count all possible samples that contain exactly i
defective products: the first term counts all possible selections of i defective
products, the second term counts all possible selections of the remaining
products. In the denominator, we count all possible samples. The probability
is 0 for all situations that cannot exist.
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the detection rate and the corresponding time fraction. The

higher the detection rate is for a given time fraction that is

needed for verification, the better is the sampling heuristic. In

our experiments, the triple-wise sampling heuristic has high

detection rates, as compared to the time spent for verification;

the ratio between detection rate and fraction of verification time

is large in many cases (cf. Fig. 6). We get back to this ratio

when we compare sample-based and family-based strategies.

Family-Based Strategy: For the family-based strategy, it

is more difficult to explain the observed verification times. In

our experiments, we observed speedups of up to thirty times

(mine pump), compared to a product-based strategy.

A key question—which has not been answered in previous

work—is whether late splitting and early joining are the driving

factors for the observed speedups, or whether other effects such

as internal optimizations in the model checker or technical

issues play a dominant role. Hence, we instrumented jpf-bdd to

quantify the verification steps saved due to late splitting and

early joining. Specifically, for each transition t ∈ T (where

T is the set of transitions in the product line), we computed

the number of instructions that it contains (cost Ct) and in

how many products Pt it would have been executed. Then
∑

t∈T Ct ∗ (Pt − 1) is the number of verification steps (i.e.,

executed instructions) that are saved due to late splitting and

early joining.

In Fig. 9, we illustrate the fraction of verification steps (in

relation to the verification steps needed without late splitting

and early joining) and the fraction of verification time that

the family-based strategy needs (in relation to the product-

based strategy). Although the data points are not on the

dotted line, a statistical analysis reveals that the fraction of
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verification steps and the fraction of verification time correlate

(Pearson’s product-moment correlation: cor = 0.84, p ≪ 0.05).

This correlation suggests that the principles of late splitting and

early joining can explain similarity within product lines (i.e.,

the amount of shared instructions could be used as similarity

degree). However, the time consumed by join operations

depends on the size of the BDDs—a factor that causes the

deviations in Fig. 9.

Family-Based vs. Sample-Based Strategies: Our experi-

mental data suggest that both the family-based strategy and the

sample-based strategies outperform the product-based strategy

in terms of verification performance. But which strategy is

superior? We cannot compare solely their verification times, but

we have to take into account that, for sample-based strategies,

the detection rate decreases with the sample rate. Hence, we

compare the strategies with regard to detection efficiency,

which we define as the ratio between detection rate and the

time fraction (both in relation to the product-based strategy).

A verification strategy with a detection efficiency of one is

similarly efficient as the product-based strategy.

In Fig. 10, we show the detection efficiencies for all our

experiments, grouped by subject systems. It reveals that the

family-based strategy is the most detection-efficient strategy.

(The notion of detection efficiency can of course not be applied

to AJStats and ZipMe, which do not contain any defect.)

Of the sample-based strategies, only triple-wise sampling

exceeds in some cases the detection efficiency of product-based

verification. The fact that the family-based strategy is mostly

superior—in terms of detection efficiency—over our sample-

based heuristics is one of the main results of our experiments.

F. Threats to Validity

The kind and distribution of defects threatens internal validity,

because they affect the detection rate. If defects occur only

if many features interact, then sampling heuristics such as

pair-wise are only of limited use. However, the subject systems

under investigation contained only defects that occur within

single features or among pairs of features, which reflects what

is known about the distribution and probability of feature

interactions [9], [16], [22].

Much like the kind and distribution of defects, several

other characteristics of a product line influence the benefits

of the individual strategies. For example, the number and

distribution of dependencies among features (as documented

in the feature model) can have an influence on the sample and

detection rates; the degree of code sharing among products can

influence the potential for late splitting and early joining; the

granularity of variability may have an effect on the efficiency

of join operations (based on BDDs). Further work should

develop proper feature-model or code measures to predict

the benefits of sample-based and family-based strategies and

possibly combinations thereof.

The choice of the subject systems threatens external validity.

Hence, we selected as many subject systems as we were

able to locate, including standard benchmarks that condense

the state-of-the-art in the field. But the tool chain that we

used, as well as the availability of product lines that contain

specifications and that are amenable to model checking, were

limiting factors. Nevertheless, for the first time, a substantial

set of different subject systems written in different languages

has been considered for evaluating strategies of product-line

verification.

IV. RELATED WORK

So far, sample-based and family-based strategies have not

been compared systematically in a controlled setting. We

discuss related work that focused on either sample-based or

family-based strategies. For a comprehensive overview, we

recommend a survey report [28].

The sampling heuristics that we considered in this paper are

inspired by previous work on feature-interaction detection [9],

[15], [23], [26]; they are tailored to pin down execution paths of

individual feature interactions, without being distracted by other

features (i.e., they aim at small sample products). Alternative

sampling heuristics that are used in product-line testing [21]

and bug finding [27] have different characteristics and tradeoffs.

By means of case studies [21], [26], [27], it has been shown

that a sample-based strategy can have significant performance

benefits, while still being able to make reasonable statements

about the products of a product line (e.g., non-functional

properties and defects). For example, using a pair-wise sampling

strategy like ours, the database product-line SQLite could be

analyzed in 276 hours [26], with a prediction accuracy of

99.9 %, which was not feasible using a product-based strategy.

The family-based strategy has been used in several model-

checking approaches [2], [3], [10], [11], [13], [18], [25], but

there is less experience—compared to sampling—with respect

to performance gains over using a product-based strategy.

Still, it has been shown that substantial performance gains

are possible [2], [10], [11]: for example, an average speedup of

two was observed [10], [11], by using a family-based strategy,

compared to the product-based strategy (and a speedup of

sometimes two orders of magnitude if using BDDs for feature

variables).

Feature-based verification, which aims at verifying features

as far as possible in isolation to minimize the verification effort

upon feature composition [19], [20], was not considered in our
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study because practical verification tools and corresponding

case studies were not available.

Our work is based on state-of-the-art software model-

checking technology. We used the explicit-state verification

algorithms in CPACHECKER [5] and JAVA PATHFINDER [29],

and we encode feature variables in BDDs. Encoding of feature

variables in BDDs [10], [30] and BDD-based software model

checking of event-condition-action systems [6] have been

described before.

V. CONCLUSION

Approaches of product-line verification use different strate-

gies to cope with the specific properties of product lines.

Because they all promise benefits, we conducted experiments

to compare them with regard to verification performance and

the ability to identify defects. Our experiments are based on

the SPLVERIFIER tool chain for product-line model checking

and six case studies that are implemented in C and Java. We

found that the family-based strategy is in almost all case studies

superior: the corresponding verification runs produced results

faster and the analysis is exhaustive, compared to the considered

sample-based strategies (aiming at small sample products). By

means of our experimental data and an analytical model, we

have discussed the merits of the individual strategies. The

success of a sample-based strategy depends on the defect and

sample rates, whereas the success of the family-based strategy

depends on the similarity between products, represented by the

potential for late splitting and early joining. While sampling

can reduce the verification time significantly, this does not

necessarily increase the effectiveness of verification, because

many defective products may be missed. Key results of

our experiments are that triple-wise outperformed pair-wise

sampling, the family-based strategy outperformed all sample-

based strategies in terms of detection efficiency, and that late

splitting and early joining are the driving factors for the success

of the family-based strategy.
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APPENDIX

TABLE II
PERFORMANCE OF THE VERIFICATION TASKS (GIVEN IN SECONDS OF CPU TIME, THREE SIGNIFICANT DIGITS); ALL VERIFICATION TASKS SUCCEEDED AND

PRODUCED CORRECT RESULTS; AN ENTRY ‘–’ INDICATES THAT THE SPECIFICATION WAS NOT APPLICABLE TO THE RESPECTIVE PRODUCT

System Spec. Verification time

Product Single-wise Pair-wise Triple-wise Family

Java C Java C Java C Java C Java C

E-Mail 1 – 431 – 91.2 – 91.2 – 295 – 378

2 28.3 98.4 17.0 66.4 17.0 66.4 27.3 83.9 16.4 96.3
3 11.4 40.7 3.46 12.5 3.46 12.4 10.7 27.7 1.35 43.1
4 11.6 202 3.52 101 3.52 101 10.8 189 1.68 170

5 16.7 38.6 4.87 11.9 4.87 11.9 15.6 26.3 4.89 44.5
6 77.2 426 30.6 137 30.6 137 76.1 329 32.0 229

7 28.9 207 17.6 98.7 17.6 98.7 27.9 190 16.0 203

8 31.2 209 17.6 103 17.6 103 30.1 192 16.9 152

9 81.2 422 30.7 92.2 30.7 92.2 79.0 289 40.8 264

10 40.4 119 18.8 75.2 18.8 75.2 38.2 101 19.4 120

Elevator 1 81.4 50.2 36.5 14.8 62.5 32.4 52.2 37.7 49.2 4.24

2 80.2 48.2 35.8 14.1 61.8 31.1 51.4 36.5 48.1 3.68
3 81.7 52.2 36.3 15.7 62.1 33.9 58.0 39.2 39.8 6.50

4 156 – 46.6 – 101 – 117 – 79.7 –

5 83.1 24.1 38.0 11.8 71.6 11.8 52.5 21.8 48.3 3.72
6 59.6 – 8.90 – 30.1 – 51.8 – 26.8 –

7 59.4 – 9.03 – 30.1 – 51.7 – 27.0 –

8 50.0 18.3 17.5 9.11 36.8 9.11 45.8 18.3 26.3 2.85
9 63.5 25.1 35.3 12.6 35.4 12.6 43.8 22.7 33.0 3.94

Mine pump 1 172 99.6 21.3 10.3 56.8 31.3 38.8 53.4 7.69 3.25
2 208 106 20.8 10.5 61.8 33.1 44.3 57.6 8.96 3.67
3 89.5 103 7.63 10.8 28.5 33.0 21.6 55.8 6.89 3.12

4 183 103 20.8 10.3 58.7 32.0 41.2 55.4 8.20 4.05
5 235 109 24.3 10.7 74.4 33.6 53.4 58.7 9.98 3.74

AJStats 1 172 – 3.44 – 7.77 – 30.1 – 27.2 –

2 256 – 5.08 – 11.5 – 44.8 – 32.0 –

GPL 1 38.4 – 6.39 – 11.9 – 19.2 – 2.35 –

2 40.8 – 6.81 – 12.7 – 20.3 – 2.69 –

ZipMe 1 21.5 – 6.79 – 10.8 – 21.5 – 4.50 –

TABLE III
DETECTION RATES (x / y MEANS ‘x DEFECTS FOUND OUT OF A TOTAL OF y DEFECTS’) AND SAMPLE RATES (x / y MEANS ‘x PRODUCTS CHECKED OUT OF

A TOTAL OF y PRODUCTS’) OF THE SAMPLE-BASED VERIFICATION EXPERIMENTS; AJSTATS AND ZIPME DO NOT CONTAIN ANY DEFECTS

System Spec. Single-wise Pair-wise Triple-wise

Detection rate Sample rate Detection rate Sample rate Detection rate Sample rate

Java C Java C Java C Java C Java C Java C

E-Mail 1 – 1 / 8 – 6 / 20 – 1 / 8 – 6 / 20 – 4 / 8 – 13 / 20

2 3 / 14 3 / 14 5 / 16 5 / 16 3 / 14 3 / 14 5 / 16 5 / 16 13 / 14 9 / 14 15 / 16 11 / 16

3 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 15 / 16 11 / 16 15 / 16 11 / 16

4 5 / 16 2 / 12 5 / 16 5 / 16 5 / 16 2 / 12 5 / 16 5 / 16 15 / 16 7 / 12 15 / 16 11 / 16

5 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 5 / 16 15 / 16 11 / 16 15 / 16 11 / 16

6 1 / 8 1 / 8 5 / 16 5 / 16 1 / 8 1 / 8 5 / 16 5 / 16 7 / 8 4 / 8 15 / 16 11 / 16

7 3 / 14 2 / 12 5 / 16 5 / 16 3 / 14 2 / 12 5 / 16 5 / 16 13 / 14 7 / 12 15 / 16 11 / 16

8 3 / 14 2 / 12 5 / 16 5 / 16 3 / 14 2 / 12 5 / 16 5 / 16 13 / 14 7 / 12 15 / 16 11 / 16

9 1 / 8 1 / 8 5 / 16 6 / 20 1 / 8 1 / 8 5 / 16 6 / 20 7 / 8 4 / 8 15 / 16 13 / 20

10 3 / 14 3 / 14 5 / 16 5 / 16 3 / 14 3 / 14 5 / 16 5 / 16 13 / 14 9 / 14 15 / 16 11 / 16

Elevator 1 1 / 10 1 / 8 6 / 20 6 / 20 5 / 10 4 / 8 13 / 20 13 / 20 9 / 10 7 / 8 15 / 20 15 / 20

2 1 / 10 1 / 8 6 / 20 6 / 20 5 / 10 4 / 8 13 / 20 13 / 20 9 / 10 7 / 8 15 / 20 15 / 20

3 1 / 10 1 / 10 6 / 20 6 / 20 5 / 10 5 / 10 13 / 20 13 / 20 8 / 10 8 / 10 15 / 20 15 / 20

4 0 / 0 – 6 / 20 – 0 / 0 – 13 / 20 – 0 / 0 – 15 / 20 −

5 1 / 10 1 / 4 6 / 20 5 / 10 5 / 10 1 / 4 14 / 20 5 / 10 9 / 10 4 / 4 15 / 20 9 / 10

6 4 / 8 – 6 / 16 – 6 / 8 – 10 / 16 – 7 / 8 – 14 / 16 −

7 4 / 8 – 5 / 16 – 6 / 8 – 10 / 16 – 7 / 8 – 14 / 16 −

8 4 / 12 0 / 0 5 / 16 4 / 8 7 / 12 0 / 0 10 / 16 4 / 8 10 / 12 0 / 0 14 / 16 7 / 8

9 1 / 4 1 / 4 6 / 10 5 / 10 1 / 4 1 / 4 5 / 10 5 / 10 3 / 4 4 / 4 7 / 10 9 / 10

Mine pump 1 1 / 20 1 / 20 7 / 64 7 / 64 6 / 20 6 / 20 21 / 64 21 / 64 5 / 20 13 / 20 15 / 64 35 / 64

2 1 / 8 1 / 8 7 / 64 7 / 64 4 / 8 4 / 8 21 / 64 21 / 64 3 / 8 6 / 8 15 / 64 35 / 64

3 6 / 48 6 / 48 7 / 64 7 / 64 16 / 48 16 / 48 21 / 64 21 / 64 11 / 48 25 / 48 15 / 64 35 / 64

4 1 / 16 1 / 16 7 / 64 7 / 64 5 / 16 5 / 16 21 / 64 21 / 64 4 / 16 10 / 16 15 / 64 35 / 64

5 0 / 0 0 / 0 7 / 64 7 / 64 0 / 0 0 / 0 21 / 64 21 / 64 0 / 0 0 / 0 15 / 64 35 / 64

AJStats 1 – – 4 / 200 – – – 7 / 200 – – – 35 / 200 −

2 – – 4 / 200 – – – 7 / 200 – – – 35 / 200 −

GPL 1 7 / 42 – 7 / 42 – 10 / 42 – 10 / 42 – 21 / 42 – 21 / 42 −

2 7 / 42 – 7 / 42 – 10 / 42 – 10 / 42 – 21 / 42 – 21 / 42 −

ZipMe 1 – – 3 / 10 – – – 4 / 10 – – – 10 / 10 −
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