
Reusing Precisions for
Efficient Regression Verification

Dirk Beyer 1, Stefan Löwe 1, Evgeny Novikov 2, Andreas Stahlbauer 1, and Philipp Wendler 1

1 University of Passau, Germany
2 Institute for System Programming (ISP RAS), Russia

Technical Report, Number MIP-1302
Department of Computer Science and Mathematics

University of Passau, Germany
May 2013

ar
X

iv
:1

30
5.

69
15

v1
 [

cs
.S

E
]

 2
9

M
ay

 2
01

3

Reusing Precisions for
Efficient Regression Verification

Dirk Beyer 1, Stefan Löwe 1, Evgeny Novikov 2, Andreas Stahlbauer 1, and Philipp Wendler 1

1 University of Passau, Germany
2 Institute for System Programming (ISP RAS), Russia

Abstract—Continuous testing during development is a well-
established technique for software-quality assurance. Continuous
model checking from revision to revision is not yet established as a
standard practice, because the enormous resource consumption
makes its application impractical. Model checkers compute a
large number of verification facts that are necessary for verifying
if a given specification holds. We have identified a category of
such intermediate results that are easy to store and efficient
to reuse: abstraction precisions. The precision of an abstract
domain specifies the level of abstraction that the analysis works
on. Precisions are thus a precious result of the verification effort
and it is a waste of resources to throw them away after each
verification run. In particular, precisions are small and thus
easy to store; they are easy to process and have a large impact
on resource consumption. We experimentally show the impact
of precision reuse on industrial verification problems, namely,
59 device drivers with 1 119 revisions from the Linux kernel.

I. INTRODUCTION

Reliable software is essential both for convenience and safety
in our daily lives and for the revenue in the economy. Producing
reliable software is costly; and speeding up testing and formal
verification of software can save huge amounts of time and
money. Economic pressure requires companies to come up
with innovations more quickly by introducing more features
in shorter release cycles — software is a key contributor
to today’s innovations. However, the problem of extending
software, e.g., by introducing a new feature, is that this might
break existing features — bugs get introduced. This is known as
regression. To avoid regression, developers execute automated
tests before a new revision of a piece of software is checked-in,
in the hope that the tests alarm the developer of any new bug.
While regression testing is an established and well-investigated
technique since many years (e.g., [17], [25], [27]), in the end,
the quality of the software (in terms of correctness) depends on
the coverage percentage achieved by the regression test suite.

The confidence of correctness can be increased by aug-
menting the development process with formal verification,
i.e., regression verification [11], [18], [20], [28], [30]. Formal
verification exhaustively checks the program for bugs, but at the
same time consumes large amounts of computation resources
(time and memory), in particular when applied to industrial-size
software. Regression verification applies formal verification
techniques to continuously check development revisions in
order to identify regressions early. Innovations in this field
pave the road that leads from regression testing to regression

verification, and from simply finding bugs to actual proofs of
correctness during the whole software-development process.

Verification tools spend much effort on computing interme-
diate results that are needed for verifying if the specification is
satisfied. In most uses of model checking, these intermediate
results are erased after the verification process — wasting
precious information (in failing and succeeding runs). There are
several directions to reuse (intermediate) results. Conditional
model checking [5], [13] outputs partial verification results for
later re-verification of the same program by another verification
approach. Regression verification [11], [18], [20], [28], [30]
outputs intermediate results (or checks differences) in order
to enable a more efficient re-verification of a revised program
relying on the very same verification approach.

The contribution of this paper is to reuse precisions as
intermediate verification results. In program analysis, e.g.,
predicate analysis, shape analysis, or interval analysis, the
respective abstract domain defines the kind of abstraction that
is used to automatically construct the abstract model. The
precision for an abstract domain defines the level of abstraction
in the abstract model, for example, which predicates to track in
predicate analysis, or which pointers to track in shape analysis.
Such precisions can be obtained automatically; interpolation is
an example for a technique that extracts predicate precisions
from infeasible error paths.

Precisions are a good choice for reuse in regression veri-
fication, because they are technically easy to use and do not
require much extra computation effort before they can be
reused, they have a small memory footprint, and they are, as
we show, not sensitive to changes in the program source code.
We performed an extensive experimental study on industrial
code, in order to show the significant impact of precision reuse
for regression verification (in terms of performance gains). The
benchmark verification tasks were extracted from the Linux
kernel, which is an important application domain [9], and
prepared for verification using the Linux Driver Verification
toolkit (LDV) [22], [24]. Our study consisted of a total of
16 772 verification runs for 4 193 verification tasks, composed
from a total of 1 119 revisions (spanning more than 5 years)
of 59 Linux drivers from the Linux kernel repository.

Example. We consider ten revisions of the Linux device
driver extcon-arizona for which a bug was discovered
using formal verification by the LDV team1. Table I lists the

1https://patchwork.kernel.org/patch/1694901/

https://patchwork.kernel.org/patch/1694901/

TABLE I
VERIFICATION OF LINUX DEVICE DRIVER EXTCON-ARIZONA WITHOUT AND WITH PRECISION REUSE

Rev. Commit Message Result R
efi

ne
m

en
ts

w
ith

R
eu

se

A
bs

tr
ac

tio
ns

w
ith

R
eu

se

C
PU

Ti
m

e

w
ith

R
eu

se

Result R
efi

ne
m

en
ts

w
ith

R
eu

se

A
bs

tr
ac

tio
ns

w
ith

R
eu

se

C
PU

Ti
m

e

w
ith

R
eu

se

3 Implement button detection support safe 24 24 792 792 10 10 unsafe 8 8 38 38 3.7 3.6
4 Free MICDET IRQ on error during probe safe 24 0 792 27 9.9 3.5 unsafe 8 0 38 14 3.6 3.4
5 fix typos in extcon-arizona safe 24 0 792 27 9.8 3.5 unsafe 8 0 38 14 3.6 3.4
6 Use bypass mode for MICVDD safe 4 0 10 3 3.2 3.1 unsafe 1 0 3 2 3.1 3.1
7 Merge tag ’driver-core-3.6’ of git://git.kernel.org/. . . safe 24 0 792 27 10 3.5 unsafe 8 0 38 14 3.6 3.4
8 unlock mutex on error path in arizona_micdet() safe 24 0 792 27 10 3.5 safe 43 16 571 524 8.8 8.3
9 remove use of __devexit safe 24 0 792 27 10 3.6 unsafe 8 0 38 22 3.5 3.7

10 remove use of __devinit safe 24 0 792 27 10 3.5 unsafe 8 0 38 22 3.5 3.8
11 remove use of __devexit_p safe 24 0 792 27 10 3.6 unsafe 8 0 38 22 3.6 3.7
12 Merge tag ’pull_req_20121122’ of git://git.kernel.org/. . . safe 24 0 792 27 10 3.6 safe 43 0 571 27 8.8 3.7

Specification 1: ‘Spinlocks lock/unlock’ Specification 2: ‘Mutex lock/unlock’

revisions and the corresponding commit messages (in bold:
the commit that fixes the above mentioned bug). We verify
two specifications with a CEGAR-based predicate analysis:
(1) ‘Spinlocks lock/unlock’, and (2) ‘Mutex lock/unlock’.
Revisions 3 to 7 and 9 to 11 violate specification 2. Tasks
that violate the specification generally need less refinements
and abstraction computations since the analysis can terminate
as soon as it finds a bug. In cases where the specification
holds, the whole state space of the program has to be analyzed;
mostly a large number of refinements (> 20) and expensive
abstraction computations (> 500) have to be performed.

The columns titled ‘with Reuse’ show the results with
precision reuse. For cases where a complete reusable precision
from a successful verification of a previous revision is not
available (revision 3 for specification 1, revisions 3 to 8 for
specification 2) because the whole state space was not yet
analyzed before, there is no speedup. For most of the cases
where the state space was completely analyzed in a previous run,
and a complete precision is available for reuse, a speedup of at
least factor 2 can be achieved (CPU time less than 4 s instead
of greater than 8 s). Refinements are eliminated completely
because all necessary verification facts are already specified
by the reused precision.

Verifying large numbers of (more complex) program revi-
sions often takes several hours or even days. Our approach of
precision reuse can speed this up by a factor greater than 3 on
average for predicate analysis.

Contributions. We make the following novel contributions:

• We identify the abstraction precisions as intermediate
results that are valuable for reuse in regression checking.

• We define a tool-independent format for persistent storage
and exchange of precisions.

• We extend an existing software-verification tool in order
to support regression verification with precision reuse.

• We prepare and consolidate a benchmark set for regression
verification that is based on industrial source code from
the Linux kernel and consists of thousands of benchmarks.

• In an extensive experimental study, we show that precision
reuse leads to significant performance improvements and
causes almost no overhead for the verification tool as well
as for the benchmarking infrastructure (and thus, forms
no additional barriers in a software-development process).

Related Work. The goal of constructing efficient tools for
incremental formal verification is more than 15 years old [18],
[29]. In the literature, there exist two main directions to
approach the problem of regression verification: (1) based
on analyzing the difference between the program and other
programs that were successfully verified in a previous verifica-
tion run, and (2) based on reuse of intermediate results that
were costly computed in previous verification runs.
Verification of Differences. The first group of approaches to
efficient regression verification takes two programs as input
and analyzes the differences in order to verify whether the
specification is still fulfilled. An input condition is used to limit
the verification to certain relevant parts of the state space [10],
[15]. These approaches can be seen as conditional model
checking [5], where the input condition instructs the verifier
to perform a partial verification. The parts of the program that
were identified as not being affected by modifications can be
skipped [15], [26] during the verification process. A technique
for proving conditional equivalence of two programs [15]
isolates and abstracts the functions of both versions using
uninterpreted functions and then proves their equivalence (also
extended to multi-threaded programs [11]).
Reuse of Verification Results. The other group of approaches
reuses state-space graphs [20], [23], constraint solving re-
sults [31], [33], or function summaries [28]. To ensure that
the information is valid to be reused, those parts of the
information that were affected by modifications (to the analyzed
program or its specification) have to be validated. The check for
reusability is done either before the actual formal verification
process is started [28], [32], [33] or immediately before
certain information should be reused [20], [23]. Extreme model
checking [20] is the only existing approach that uses un-
bounded model checking with lazy abstraction and predicate
analysis for regression verification. Another way of information
reuse is to not store the concrete data, but its hash value. One
such approach [18] stores hashes of verified models; these
models are constructed by reducing a program to those parts
that are relevant to prove one property. To be efficient, model
construction must be less expensive than verifying the model.
For formal regression verification of hardware using the ic3
algorithm, the reuse of correctness proves and counterexamples
has been proposed [12]. A more general fashion of reuse is
to store and reuse canonicalized constraint solver queries and

2

the corresponding results. This idea is supported by the Green
framework [31], which provides a solver wrapper interface.

Our approach belongs to this second category: we reuse
abstraction precisions as intermediate results and do not
(explicitly) analyze the differences in the program code (our
approach implicitly spends more effort on changed parts). This
is the first work that reuses abstraction precisions.

II. BACKGROUND

Abstract Reachability Graph. The class of analyses we
consider in our work is based on creating an abstract model of
the program in form of an abstract reachability graph (ARG).
An example for such an analysis is implemented in BLAST [4].
The ARG is created iteratively by unrolling the control-flow
automaton (CFA) of the program, creating an abstract successor
state for the next location whenever the control flow passes
through an edge of the CFA. The creation of abstract-successor
states is usually over-approximating and guided by some form
of precision that instructs the analysis which facts should be
tracked and which facts should be omitted by abstraction. The
abstract domain determines the characteristics of the precision.
For example, if the abstract domain tracks information of
program variables explicitly, then the set of relevant program
variables to consider at a program location is a suitable
precision for the analysis. The precision in use should require
the tracking of just enough information to prevent false alarms,
while at the same time be as concise as possible in order to
enable an efficient analysis.
Counterexample-Guided Abstraction Refinement
(CEGAR). CEGAR [14] is a well established technique
for automatically finding a suitable precision that matches
the above criteria. Beginning with an initial coarse or even
empty precision, the ARG is created based on this initial
precision. If no state violating the specification is found, the
program is proved safe. If a violation of the specification is
found, the concrete path of this counterexample is analyzed
for feasibility. If it is feasible, the program is unsafe and
the analysis terminates. Otherwise the abstract model of
the program was too coarse, so the precision needs to be
refined to exclude this infeasible counterexample from future
explorations. Depending on the abstract domain, the facts
necessary to rule out this counterexample are extracted from
the proof of infeasibility and added to the precision. Then the
CEGAR loop is restarted with this newly refined precision.
Lazy Abstraction. The efficiency of CEGAR-based analyses
can be increased by using lazy abstraction [21]. Instead of
always restarting the analysis from scratch after an infeasible
counterexample was found, the abstract model is refined in
a “lazy” style. That is, during counterexample analysis the
newly-learned facts that are extracted from the counterexample
are only added where necessary. Then only those parts from
the ARG that were computed with a too coarse precision are
removed and scheduled for re-exploration. The remainder of
the ARG, for example, a prefix of the current counterexample
path, or other paths not related to the current counterexample,
are kept and are neither thrown away nor re-explored. This
does not only reduce unnecessary recomputations, but also

reduces computation effort by lazily applying the new, stronger,
precision only to those states of the ARG where it is needed.
States on unrelated paths of the ARG are still computed
with the old, weaker, and more efficient, precision. A further
improvement is to use different precisions for each program
location in order to track as little information as possible. For
example, the analysis drops information during path exploration
when reaching a location after which this piece of information
is no longer needed.

Predicate Analysis. One technique which is used widely
together with the above concepts is predicate abstraction [16].
Given the set X of program variables, and the set P of
quantifier-free predicates over variables from X , the abstract
domain here is the set of boolean combinations of predicates
from P . The precision π is a set of predicates from P . When
constructing the ARG, abstract successor states are created by
computing either the cartesian or the boolean abstraction of the
current state using the predicates from π with an SMT solver.
Using Craig interpolation, predicates can be generated fully
automatically from a proof of unsatisfiability for the formula
representing a concrete counterexample [19].

The performance of predicate abstraction can be improved
with adjustable-block encoding (ABE) [7]. This technique
groups program statements into blocks and computes abstrac-
tions only at the end of each block instead of at all program
locations. Furthermore, if control flow merges within a block,
paths in the ARG are also merged so that sets of paths
are considered instead of single program paths. When using
ABE-Loops (which encodes loop-free parts of the program
into blocks), abstractions will be computed only at loop-
head locations. Thus predicates will be relevant only at these
locations, and the precision is ignored at all other locations.

Explicit-Value Analysis. Another domain that can utilize
a precision is explicit-state analysis [8], which tracks the
current value for each program variable explicitly. Within
this analysis, an abstract state is represented as an abstract
variable assignment X → Z ∪ {>,⊥}, where X denotes
the set of program variables of a program. The value >
represents a variable valuation that is unknown, e.g., due to
an uninitialized variable; the value ⊥ represents a variable
valuation that is impossible. Abstract successor computation
is done by evaluating program operations and assigning the
evaluated value to the respective program variables in abstract
variable assignments explicitly — in contrast to modeling them
symbolically as done in the predicate domain.

The precision for an abstract variable assignment is defined
as a set π of variables, which is used to restrict an abstract
variable assignment to variables that are in that precision π.
For example, applying the precision π = {b} on the abstract
variable assignment v = {a 7→ 4, b 7→ 15} would result in
the abstract variable assignment vπ = {b 7→ 15}. Experiments
show that a variable that is relevant for one path, is often
relevant on similar paths as well, and thus it is beneficial to
add a newly-found relevant variable to the precision for all
locations of the functions in which it is relevant. This reduces
the number of refinements, because similar paths can now often
also be ruled out without further refinements.

3

〈program-precision〉 ::=-- 〈header〉 ‘\n\n’-

- � � ‘ ’ �� 〈scope-selector〉 � ‘:\n’ 〈precision〉 �� ‘\n\n’ �-�
〈scope-selector〉 ::=-- � ‘*’� function name �� location number �� -�

〈explicit-header〉 ::=-- -�

〈explicit-precision〉 ::=-- � program variable �� ‘\n’ � -�

〈predicate-header〉 ::=-- � 〈SMT-LIB 2 declaration〉 �� ‘\n’ �-�
〈predicate-precision〉 ::=-- � 〈SMT-LIB 2 assert〉 �� ‘\n’ � -�

Fig. 1. Format of program-precision file; depending on the abstract domain,
we use the respective definitions of 〈header〉 and 〈precision〉

III. PRECISION REUSE

Definitions. A precision is the information an abstraction-
based analysis uses to guide the abstraction computation for
creating abstract states. Given one analysis, we write Π for
the set of possible precisions, and π for one element thereof.
The empty precision is the coarsest precision from Π (usually,
this precision defines that all information is abstracted). The
union of two precisions from Π is defined in the intuitive way.
For example, for predicate abstraction, a precision is a set
of predicates over program variables, and the union of two
precisions is the union of the two sets of predicates.

In order to use lazy abstraction, which enables the use of
different precisions at different program locations, we define
a program precision as a mapping L→ Π from the set L of
program locations to the set of precisions Π. The union of two
program precisions p1 and p2 is the program precision that
maps every location l to the union of p1(l) and p2(l).

Format for Program-Precision Files. In order to write and
read precisions to and from persistent storage, we define a
simple text-based file format that describes program precisions
in a human-readable and tool-independent way. A formal
definition of the format is given in the syntax diagram of
Fig. 1. The basic structure defined by 〈program-precision〉 is
the same for all analyses. The file starts with a header (the
content depends on the analysis) followed by a blank line.
After the header, an arbitrary number of blocks separated by
blank lines follow, each consisting of one line with a non-
empty sequence of scope selectors, and an analysis-dependent
precision. There are three kinds of scope selectors: the literal *
(representing all program locations), the name of a function
of the program (representing all locations inside this function),
and the number of a program location (representing this single
location). The precision given in a block is used at all locations
represented by the specified scope selectors. The effective
precision for any given program location is the union over

*:
lock

main f:
x

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

Fig. 2. Example program-precision files; left: explicit-value analysis; right:
predicate analysis

the precisions from all blocks that contain at least one scope
selector representing that location.

For explicit-value analysis, the header 〈explicit-header〉 is
empty. The precision 〈explicit-precision〉 is a list of variables
that occur in the program. For predicate analysis, we define the
precision 〈predicate-precision〉 as a list of assert commands
as defined by the SMT-LIB 2 standard [2] (a standard
for SMT-solver interfaces supported by state-of-the-art SMT
solvers). The header 〈predicate-header〉 is a sequence of term
declaration commands as defined by SMT-LIB 2 (including
the commands define-fun and declare-fun), and the
formulas in the precisions may reference these declarations.

Example. Consider a C program that contains two variables
lock and x, both of which are relevant for proving the safety
of the program. Variable lock may be relevant at all locations,
whereas variable x may be relevant only in the functions main
and f. An example program-precision file for explicit-value
analysis that encodes this information is given on the left in
Fig. 2. An example for predicate analysis could look as shown
on the right in Fig. 2, assuming that the model checker encodes
these variables as real numbers, and the predicates lock = 0
and x ≤ 1 are relevant.

Generating Program-Precision Files. In order to enable the
reuse of precisions, we collect all program precisions that are
created during the analysis (typically, there is one for each
refinement step), and create the union over all these program
precisions. The resulting precision is written to a file. For each
program location, the precision is dumped and labeled with
the number and the function name of the program location
(empty precisions can be omitted.)

Reuse of Precisions. In order to reuse a precision for the
subsequent analysis of the same or a similar program, an initial
program precision for the analysis is created by interpreting the
contents of a previously stored program-precision file. There are
three possibilities to construct such a precision. First, precisions
can be function-scoped, such that a precision is created for each
function of the program, by taking the union of all precisions
labeled with the function name. The result is assigned to all
locations of the respective function. Note that this will widen
the scope of precisions (thus potentially leading to a more
precise abstraction), and also loose precisions if functions are
renamed. This precision assignment is insensitive to changes
of the control-flow structure in the functions of a program.

4

Second, precisions can be location-scoped such that the location
numbers in the file are read as the keys for the resulting program
precision. For all program locations that do not appear in the
file, the empty precision is used. Note that location numbers
may change if the program code changes, and thus, precisions
get assigned to locations that correspond to a semantically
different location of the original program. Third, precisions
can be global-scoped by taking the union of all precisions in
the file and assigning the result to all locations of the program.
This will not loose any precision from the previous analysis,
but might apply precisions to locations where they are not
necessary (and thus make the analysis more expensive).

After the creation of the initial program precision, the
analysis is started as usual. No changes to the analysis itself
are necessary. If the provided precision is strong enough to
prove the program safe, no further refinement effort will be
needed. If the input precision contains only a part of the
necessary precision to be tracked, spurious counterexamples
will be detected and subsequent refinements will strengthen
the precision. Note that even in this case the input precision
likely reduces the effort by decreasing the number of necessary
refinements. This process may be iterated by writing again
the program precision that was further refined by the second
analysis to file, and using this as the input for a further analysis,
possibly on a newer version of the program.

Discussion. The most significant effect of reusing precisions
from a previous verification run is the reduction in the number
of necessary refinements. These are usually among the most
expensive operations executed by a model checker (for example
involving satisfiability checks and interpolation queries over
formulas that represent sets of complete program paths from the
entry point to the error state). Furthermore, fewer refinements
reduce the number of operations to prune and re-create parts of
the abstract reachability graph. This is especially important for
analyses that perform expensive operations during this phase,
for example for predicate analysis, which needs SMT-solver
queries to compute abstractions. While the introduction of
adjustable-block encoding [7] has reduced the number of such
computations by executing them only at loop-head locations and
not for every abstract state, the need to use boolean abstraction
still makes this costly.

Precision reuse is an elegant and conceptually simple
approach, because it integrates naturally into the techniques
that are used by many successful model checkers. These
techniques can be applied as they exist without any change, to
the first, initial, verification run (when no reusable information
is present), and also to the subsequent re-verification runs.
Furthermore, this makes precision reuse applicable not only
for the two presented analyses, but also for any analysis and
abstract domain that is based on CEGAR and incorporates
an abstraction step that is guided by some form of precision.
For example, precision reuse would extend naturally to other
abstract domains such as interval or shape analysis.

Precision reuse is easy to implement in existing model
checkers that are based on CEGAR and abstractions. Only
the import and export of precisions before and after the actual
analysis needs to be added. Complex algorithms, as required for

comparing two revisions of a program and detecting similar
and changed code, are not necessary in our approach. The
format we defined is easy to parse and write, and could be
supported by a variety of model checkers, thus even enabling
the reuse of precisions across different tools.

Furthermore, precision reuse is also user-friendly: a user
that is already familiar with using one model checker will not
need to learn how to use new concepts or tools. Dumping of
precisions as part of the analysis result should be enabled by
default in most tools, and thus the only necessary action by
the user is to supply the previously written program-precision
file as an additional input to the next verification run. Even if
the user mistakenly specifies a wrong program-precision file as
input, the result will be still correct (the analysis is still sound)
and only the performance might be slightly worse. In order
to employ precision reuse, it is not necessary to have access
to previous program revisions; the only information needed is
the (small) generated program-precision file.

Applicability of Precisions. As described above, there are
three strategies how the precisions from the previous verifi-
cation run can be applied to the program locations of the
program’s next revision. The strategies differ in how they
widen the scope of the precisions. A location-scoped precision
is applied at exactly those locations stated in this precision,
risking to not have a precision at a location where it would be
relevant in the new revision. For example, consider a precision
that is relevant for locations 5 to 10 of a program. Now, a
change is made to the program, and a statement that is unrelated
to the safety of the program is introduced right after location 6.
Thus, the previous locations 5 to 10 now correspond to the new
locations 5, 6, 8− 11. The previous precision is not applied to
location 11 and the analysis first fails to prove the program safe,
thus needing at least one additional refinement to rediscover
the missing facts. Function-scoped precisions are insensitive
to such changes. Even changes due to cross-cutting concerns
that affect code locally in many functions are expected to be
verifiable without further refinements. Changes to the call graph
of the program, however, might still generate a similar need for
refinements, for example, if code that is relevant to the safety
of a program is moved to another function. Global-scoped
precisions reduce this problem further, making refinements
only necessary if code referenced by the precision is changed
directly (for example, if variables are renamed).

We consider location-scoped precisions to be too sensitive
when program code changes. Which of the other two strategies
performs better depends on the class of program changes
(e.g., whether heavy refactorings changing the functions of the
program are common), and how expensive an unnecessarily
coarse precision is for the analysis. Often, the latter has
less effect than one would intuitively consider. For example,
specifying variables from a function f in the precision of a
function g would have no effect as the variables in f are out
of scope in g anyway. The policy of most projects is to create
small commits with mostly local changes, thus, we expect
function-scoped precisions to be most promising in practice.

5

IV. EXPERIMENTAL EVALUATION

In order to evaluate the impact of precision reuse on
the effectiveness and efficiency of regression verification,
we performed an extensive experimental evaluation. We use
industrial software for our experiments: in total, we prepared
4 193 verification tasks from 1 119 revisions of 59 device drivers
from the Linux kernel. We started verification runs on all those
problems with both an explicit-value analysis and a predicate
analysis, each with and without precision reuse. Our tool
implementation, the C source code of the device drivers, and
the full benchmark results are available on our supplementary
web page: http://www.sosy-lab.org/∼dbeyer/cpa-reuse/. During our
experiments, we found an actual bug in the Linux kernel2.
Implementation. Our implementation is based on the open-
source verification framework CPACHECKER3 [6], which is
available under the Apache 2.0 license. CPACHECKER provides
implementations of explicit-state analysis [8] and predicate
analysis with ABE [7]. Both approaches are based on CEGAR
and use a precision to define the level of abstraction. Thus
we only had to add support for writing the program precision
to file after a verification run, and reading in a previously
written program precision to be used as initial precision
before a verification run. The format for persistent storage
of the program precision is described in Sect. III. Further
changes to the verification tool were not necessary, in particular,
the verification algorithm and the abstract domains were not
changed. Our extension for precision reuse is integrated into
the trunk of the project’s source-code repository4.
Verification Tasks. A verification task is a fully specified
verification input, which is referred to by a triple that consists
of the name of the driver, the specification that the driver has
to satisfy, and the revision number from the repository.
Preparation of an Industrial Benchmark for Regression
Verification. We started our selection process by considering
the verification tasks from the category ‘DeviceDrivers64’
of the 2nd Intl. Competition on Software Verification (SV-
COMP’13) [3], which is a benchmark set that consists of
1 237 verification tasks. From this set of verification tasks,
we selected those device drivers that fulfill the following two
criteria: (1) CPACHECKER, in revision 7481, needed more than
20 s of CPU time to report either SAFE or UNSAFE (to ensure
that the startup time like JVM startup, parsing, etc., does not
influence the total run-time too much); (2) the device driver
needs at least one refinement during verification (to omit trivial
problems and those for which precisions are not needed).

This selection process resulted in a total of 59 device drivers
from the SV-COMP’13 benchmarks that fulfilled the above
criteria. We extracted the sources for all available revisions of
those drivers from the official Linux kernel repository5. Each of
these device drivers consists of several header and source files,
each having its own revision history. We considered all commits
to all C source files of the device driver, in chronological order,
starting with the revision in which the device driver was added

2https://lkml.org/lkml/2013/3/1/550
3http://cpachecker.sosy-lab.org
4https://svn.sosy-lab.org/software/cpachecker
5git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

TABLE II
CONSIDERED SPECIFICATIONS (LDV RULES)6

Name Description

08_1a Module get/put. For each successful call to try_module_get()
a corresponding call to module_put() that unblocks the
module must exist.

32_1 Mutex lock/unlock. A less accurate implementation of speci-
fication 32_7a.

32_7a Mutex lock/unlock. A mutex must not be acquired or released
twice. A mutex must not be released without prior acquiring.
Finally, all mutexes must be released.

39_7a Spinlocks lock/unlock. A spin lock must not be acquired or
released twice. A spin lock must not be released without
prior acquiring. Finally, all spin locks must be released.

43_1a Memory allocation inside spinlocks. The flag for atomic allo-
cation operations must be used whenever a memory allocation
function call is done while a spin lock is held.

68_1 USB alloc/free urb. For each allocation of an USB Request
Block (URB) using usb_alloc_urb() a corresponding call to
usb_free_urb() must exist.

to its directory in the kernel repository (if the driver resided in
the “staging” area of the kernel before being accepted into the
main area, these revisions were not considered). In order to
obtain a linear history of changes we excluded commits that
occurred on branches that were created during the development
of a driver (the merge commits that reintegrated such branches
are included, and thus no changes are lost). The oldest revisions
taken date back to the year 2007, and the latest ones to the
end of 2012.

In order to obtain verification tasks, we also need specifica-
tions. We used as specification six different rules for correct
Linux kernel core API usage (see Table II). We composed each
revision of the 59 selected drivers with each specification. The
composition was done using the LDV-toolkit 7 [22], [24] and
consisted of: (1) adding a main function that simulates calls to
the device driver from the Linux kernel core, (2) weaving in one
of the six specifications (reducing the rule-based specification
of the property into a reachability property by weaving in a
monitor automaton), and (3) combining all files that the device
driver (in the particular revision) consists of, into a single
file (using CIL pre-processing). The result of this composition
process is a verification task that consists of a single verifiable
C file, for each revision.

We omitted tasks where the specification is trivially satisfied,
e.g., specification “Module get/put” for drivers that do not
call the function try_module_get(). For evaluating the effect of
our approach, we need to consider those verification tasks for
which the precision needs to be fully discovered and where
repeated application of the verifier yields deterministically
the same precision. This is not the case for verification tasks
with a known specification violation, because the analysis can
terminate as soon as finding a counterexample, skipping parts
of the state space. Of course, precision reuse is applicable in
such cases as well (witnessed by the bug we found), but in our

6http://linuxtesting.org/ldv/online?action=rules
7http://linuxtesting.org/project/ldv

6

http://www.sosy-lab.org/~dbeyer/cpa-reuse/
https://lkml.org/lkml/2013/3/1/550
http://cpachecker.sosy-lab.org
https://svn.sosy-lab.org/software/cpachecker
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/project/ldv

benchmarks the numbers would not be comparable. Therefore,
we remove from our benchmark set all verification tasks with
the expected result UNSAFE. The resulting benchmark set for
regression verification consists of a total of 4 193 industrial-
strength verification tasks, which allows us to perform a
significant experimental study.

Differences between Verification-Task Revisions. While nor-
mally source-code changes for the device drivers are rather
limited from revision to revision, our benchmark set has quite
large source-code differences between revisions, which is (not
by design, rather as a side-effect) good to evaluate insensitivity
to changes. We explain the main three reasons in the following:
(1) Whenever commits occurred in branches, we did not
include the corresponding revisions along the branch; instead,
we extracted only revisions from the mainline branch. The
revisions after a merge into the mainline branch result from a
single (generally larger) commit. (2) Another reason for a large
difference between revisions is the omission of revisions with
a known specification violation. Thus, the changes from such
revisions appear together with the changes of the next commit,
in the succeeding revision without a specification violation.
(3) Another cause for large differences is that we took one
snapshot of the code for each revision in which one of the actual
core device-driver source files changed. However, in the kernel
project there are many other (header) files that influence the
code of a particular file, by being included from the file, and by
defining macros, types, inline functions etc., which are used in
the code. Thus the change between two revisions incorporates
not only the changes of the actual device-driver source files,
but also the changes to all other kernel (header) files since the
last revision. The latter changes are sometimes even larger in
size and effect than changes to the driver. For example, the
introduction of the kernel feature CONFIG_BRANCH_TRACER
(profiling of unlikely and likely branches in the code by code
instrumentation) added several lines of auxiliary variables per
if statement, and this additional code appears as new code
in the next revision that was made for each driver after the
feature was introduced. Our benchmark set of verification tasks
has an average of 688 changed lines of source code between
subsequent revisions. Our results, presented in the following,
show that precision reuse is quite insensitive to such large
differences between revisions.

Setup. All experiments were performed on machines with a
3.4 GHz Quad Core CPU (Intel Core i7-2600) and 32 GB
of RAM. We used Ubuntu 12.04 (64-bit) with Linux 3.2
and OpenJDK 1.7. We used CPACHECKER, revision 7537. The
predicate analysis uses MathSAT 5.2.3 as SMT solver. Each
verification run was limited to 15 minutes of run-time and
15 GB of RAM; the Java heap size was limited to 10 GB.
The run-time that we report refers to the total CPU time of
the verification tool (including startup and reading/writing of
program-precision files), and is given in seconds with two sig-
nificant digits. This is a similar environment to the community-
agreed setting of SV-COMP’13. The size of code differences
between two revisions of one program is given as the number
of differing lines excluding whitespace changes (calculated
with diff --ignore-all-space | diffstat).

TABLE III
RESULTS FOR VERIFYING DRIVER DVB-USB-AZ6007 USING PREDICATE

ANALYSIS

n-
th

R
ev

.

D
iff

.L
in

es

without Precision Reuse with Precision Reuse

Spec. CPU
Tim

e

Refi
ne

men
ts

Abs
tra

cti
on

s

CPU
Tim

e

Refi
ne

men
ts

Abs
tra

cti
on

s

08_1a

32 - 9.1 2 1352 9.5 2 1352
33 593 9.5 2 1352 3.6 0 24
34 707 9.8 2 1352 3.6 0 24
35 478 9.3 2 1352 3.7 0 24
36 2 9.2 2 1352 3.9 0 24

Total 47 10 6760 24 2 1448

32_7a

32 - 6.5 27 186 6.6 27 186
33 752 7.2 28 210 4.5 1 48
34 961 8.0 29 234 4.8 1 48
35 462 7.9 29 234 4.4 0 24
36 2 7.9 29 234 4.4 0 24

Total 37 142 1098 25 29 330

39_7a

32 - 58 10 8432 58 10 8432
33 595 58 10 8432 3.8 0 24
34 707 58 10 8432 4.1 0 24
35 462 60 10 8432 4.2 0 24
36 2 60 10 8432 4.2 0 24

Total 290 50 42160 75 10 8528

Results. We experiment with the reuse of precisions across a
sequence of different revisions of a program. For this we start
the verification of the first revision with the empty precision,
dump the generated precision and use it as the initial precision
for the verification of the second revision. The final precision
of the second verification run is the input precision for the
verification of the third revision and so on. We compare the
time needed for this process against the time that is needed
for verifying all the revisions individually (using the empty
precision as the input for each run and without generating
program-precision files).

Results for a Single Driver. The results for a single driver
(dvb-usb-az6007) from the Linux kernel are shown in
Table III. There are five revisions for this driver, and we show
the verification of three specifications using predicate analysis.
The column “Diff. Lines” shows the number of lines differing
in one revision compared to the previous revision. The lines
“Total” show the sum of the respective values for all revisions
with one specification.

As expected, the runtime for verifying the first revision
is not decreased by the reuse of precisions (as there is no
precision to reuse); also, there is no significant overhead for
writing the precision to the output file. For the remaining
revisions, the runtime results show a clear improvement of
performance when reusing the precision from the previous
revision. This is achieved by almost completely eliminating the
need for refinements, and by lowering the number of (costly)
boolean-abstraction computations considerably, compared to
the verification of the same program without precision reuse. It
is interesting to observe the second and third revisions of this
driver when verified against the specification 32_7a: These
two revisions affected the program source in a way that made
additional predicates necessary (witnessed by the increase in
the number of refinements from 27 to 29). In such a case, the

7

analysis with precision reuse also has to perform refinements,
because these additional predicates are not yet known. However,
the 27 refinements that were necessary to discover predicates
without precision reuse, are not necessary, because the results
are read from the precision file. Thus, the runtime is still much
better than without precision reuse.

Results for all Device Drivers and Specifications. Tables IV
and V show the results of verifying all revisions of all 59 device
drivers against all appropriate specifications, with predicate
analysis and explicit analysis, respectively. Due to space
reasons we restrict these tables to the 50 best and 25 worst
cases out of the total 259 driver/specification pairs (sorted by
column “Speedup”). The complete tables are available on the
supplementary webpage.

The columns “CPU Time” show the total time used by
the model checker to verify all revisions of the device driver
against the given specification (excluding the revisions for
which it failed due to a timeout or an out-of-memory condition).
The column “CPU Time 1st Rev.” shows the time needed
for verifying the first revision (this is the same with and
without reuse). The column “Solved Tasks” shows the number
of successfully verified revisions out of the total number of
revisions for this driver (the remaining cases were either timeout
or out-of-memory, there were no incorrect verification results).
If the value in this column is of format “N +M”, this means
that without precision reuse only N revisions could be verified,
whereas with precision reuse N+M revisions could be verified;
otherwise the number of successfully verified revisions is
the same. There were no cases where a revision could be
verified without reuse, but not with precision reuse. The column
“Speedup” gives the average speedup for the task of verifying a
single revision of the driver when a precision from a previous
revision is available for reuse, as opposed to the case where
no information is available for reuse. The verification time of
the first revision of each driver is not taken into account for
calculating the speedup, in order to make this value independent
from the number of revisions per driver (otherwise a driver
with more revisions would in general show a higher speedup
because the cost of the verification of the first revision is less
relevant). We also excluded from calculating the speedup such
revisions that could not be verified by one or both of the two
configurations (without and with reuse). In the last column,
we report the size in bytes of the final program-precision file
that was produced during the verification of the revisions of
this driver. Note that our file format is purely text-based, thus,
this number gives a coarse over-approximation of the amount
of information that is reused between verification runs. The
two highlighted rows show the driver dvb-usb-az6007, for
which further details are available in Table III (the two lines
here correspond to the lines labeled “Total” in the previous
table). The bottom rows of the table report the sum and the
average of the respective values per driver/specification pair.

Precision reuse not only increases the efficiency, but also
the effectiveness: For five pairs of driver and specification, the
number of successfully solved verification tasks was increased
by our approach (for predicate analysis). This may happen if
an early revision of a driver is verifiable, and a later revision

TABLE VI
RESULTS FOR CONSIDERING ALL REVISIONS VERSUS CONSIDERING ONLY

EVERY 4TH REVISION

Analysis Revs. # Tasks Avg. CPU Time Speedup Solved
Diff. w/o w/
Lines Reuse Reuse

Predicate All 4193 688 130000 40000 3.7 4001+56
4th 1090 1579 34000 14000 3.2 1045+12

Explicit All 4193 688 27000 20000 1.4 4191
4th 1090 1579 6300 5100 1.3 1090

would need more than 900 s to be verified. With precision reuse,
the verification of the later revision is easier, because a large
part of the precision is given as input; often up to the point
that it actually can be verified successfully. The maximum
speedup for predicate analysis is 50, and for 77 out of 259
driver/specification pairs the speedup is at least two.

We also list all negative results: there are only a few. The last
lines of the tables report the few cases for which the verification
with precision reuse takes a bit more time than without. Most of
these cases have a rather low average CPU time per revision,
and in almost all of these cases, the performance drop is
not worse than 5 %. There is one case for which the time
for verification with precision reuse is significantly higher
(the last line in Table IV, driver mos7840 with specification
43_1a). However, note that precision reuse increased the
number of successfully solved tasks from 11 to 18 for this
case. We generally consider an increase in the number of
solved programs to be more important than a performance
difference. The verification of the same driver against the other
specifications actually shows nice speedups (e.g., third line;
also with increase of solved tasks).

The total time that the predicate analysis used for successfully
verifying 4001 verification tasks without precision reuse was
130 000 s, whereas with precision reuse a total of 4057 veri-
fication tasks (56 more) were verified in only 40 000 s, less
than a third of the time. This gives evidence of the significant
performance improvement of our approach.

Size of Precision. The size of the precision that is necessary to
be stored between subsequent verification runs is small: usually
just a few KBs in our uncompressed plain-text format. The
average size for predicate analysis is 1 KB (max: 4 KB); for
explicit analysis it is 3 KB (max: 35 KB).

The total amount of precision storage that was necessary for
verifying all 4 193 verification tasks was 236 KB for predicate
analysis and 738 KB for explicit analysis, which is orders of
magnitude less compared to the size of the source-code.

Scaling with Larger Changes. As explained above, the changes
between subsequent revisions in our benchmark set are already
rather large (affecting 688 lines on average) compared to typical
developer commits. To find out how our approach scales with
the size of changes per revision (change-size sensitivity), we
created verification problems with even more changes: we
consider only every 4th revision per driver/specification pair
as an alternative benchmark set. Thus, the difference between
two revisions in this benchmark set combines the differences
of four actual driver revisions.

8

TABLE IV
RESULTS FOR PREDICATE ANALYSIS (DETAILS FOR HIGHLIGHTED LINES IN TABLE III)

Device Driver Spec. # Tasks Avg. Diff Refinements CPU Time Solved Speedup Size of
Lines w/o Reuse w/ Reuse 1st Rev. w/o Reuse w/ Reuse Tasks Precision

leds-bd2802 43_1a 4 426 210 6 220 1900 250 3+1 50 640
dp83640 39_7a 16 557 2256 140 590 11000 860 16 39 3516
mos7840 39_7a 57 621 27522 767 580 23000 1300 45+12 31 3307
dmx3191d 39_7a 2 1597 104 57 640 1300 670 2 21 3321
dvb-usb-vp7045 39_7a 12 1001 356 44 41 1700 120 12 20 2680
leds-bd2802 08_1a 14 504 960 8 200 3300 360 14 20 471
ems_usb 39_7a 21 666 796 40 72 2400 190 21 20 2934
dvb-usb-az6007 39_7a 5 353 50 10 58 290 75 5 15 1680
catc 39_7a 22 893 1100 52 32 4100 340 22 13 3282
cp210x 39_7a 71 256 24 12 770 1600 850 2+26 9.7 1539
spcp8x5 39_7a 37 481 4701 348 54 2400 310 37 9.4 1847
cxd2820r 39_7a 23 468 624 42 3.1 4200 480 23 8.8 2380
i915 39_7a 79 842 3428 72 49 5800 770 78 8.0 3075
i2o_scsi 39_7a 6 454 381 64 29 230 54 6 7.6 2495
dmx3191d 08_1a 2 1432 20 10 54 110 62 2 7.5 514
it87 39_7a 54 462 1358 37 20 5000 680 54 7.4 2091
dvb-usb-rtl28xxu 39_7a 10 173 154 10 7.8 310 51 10 6.9 1820
sym53c500_cs 39_7a 19 468 1947 113 21 650 120 19 6.6 2634
arkfb 39_7a 22 447 960 56 81 1200 260 20 6.4 2009
budget-patch 39_7a 9 1669 205 27 12 200 44 9 6.0 2290
cp210x 68_1 14 538 954 162 330 4600 1100 14 5.4 938
mos7840 08_1a 60 795 722 15 46 3000 610 60 5.3 889
xilinx_uartps 39_7a 3 352 531 177 22 66 30 3 5.3 2248
farsync 08_1a 5 984 159 30 18 100 33 5 5.0 815
it87 32_7a 59 463 860 25 17 2900 590 59 4.9 1696
ssu100 39_7a 28 337 791 44 35 830 200 28 4.7 2417
cp210x 32_1 14 219 1473 227 63 1100 310 14 4.3 693
mISDN_core 39_7a 59 1265 2651 50 20 2200 540 59 4.1 2691
it87 08_1a 59 478 603 14 18 2100 550 59 3.8 818
leds-bd2802 68_1 4 463 57 16 38 170 75 4 3.4 1361
metro-usb 39_7a 25 158 351 15 8.4 310 97 25 3.4 1417
i2c-algo-pca 68_1 7 477 238 35 8.6 68 26 7 3.3 917
vsxxxaa 68_1 2 1354 28 14 11 22 14 2 3.2 706
sil164 39_7a 3 383 54 18 12 37 20 3 3.2 1693
dp83640 08_1a 16 527 190 12 24 400 140 16 3.1 789
spcp8x5 68_1 13 740 508 46 11 260 92 13 3.1 1385
leds-bd2802 32_1 4 121 32 10 25 120 55 4 3.1 1135
cp210x 08_1a 71 304 186 9 170 8200 2800 71 3.1 387
i915 08_1a 79 731 1264 20 69 1900 680 79 3.0 527
uartlite 39_7a 9 326 198 22 11 98 40 9 3.0 2151
it87 43_1a 15 612 105 7 9.0 150 56 15 2.9 405
i2c-algo-pca 32_1 7 223 131 19 6.7 50 21 7 2.9 668
i915 32_7a 79 777 1184 24 5.9 1800 640 79 2.9 1020
mos7840 32_7a 60 615 779 49 6.4 2500 900 60 2.8 1902
cp210x 32_7a 71 257 600 20 44 5500 2100 56+10 2.6 1248
lms283gf05 39_7a 13 458 320 23 11 140 62 13 2.6 1658
arkfb 68_1 6 706 136 48 95 300 170 6 2.6 2575
dvb-usb-az6007 08_1a 5 356 10 2 9.5 47 24 5 2.6 312
twidjoy 39_7a 2 1458 46 26 10 19 14 2 2.5 2159
wm831x-dcdc 39_7a 34 286 133 4 4.8 470 190 34 2.5 1402

... For full results c.f. http://www.sosy-lab.org/∼dbeyer/cpa-reuse/predicate.html ...

tcm_loop 32_7a 41 259 58 3 4.0 160 160 41 1.0 614
mt2266 32_7a 5 748 3 1 2.3 13 12 5 1.0 565
adl_pci7432 39_7a 13 122 46 4 2.5 32 32 13 1.0 816
slram 08_1a 9 563 60 6 3.5 34 33 9 1.0 490
spi_ks8995 32_7a 4 516 12 4 2.8 11 11 4 1.0 828
drbd 08_1a 96 2657 96 1 9.0 870 860 96 1.0 245
mtdoops 08_1a 41 264 47 4 4.4 110 110 41 1.0 539
farsync 32_7a 9 889 0 0 4.2 49 49 9 1.0 2
rtc-max6902 32_1 5 564 5 1 2.9 14 14 5 1.0 221
adl_pci7432 08_1a 13 122 23 2 2.4 31 31 13 1.0 604
wl12xx_sdio 32_7a 38 261 42 3 3.2 130 130 38 1.0 776
ar7part 43_1a 2 220 3 3 2.0 4.2 4.2 2 1.0 277
i915 43_1a 79 746 0 0 6.2 640 640 79 .99 2
mISDN_core 43_1a 26 2079 156 6 7.0 190 190 26 .99 223
mt2266 08_1a 5 725 5 1 2.6 13 13 5 .99 557
rtc-max6902 43_1a 5 562 4 1 2.7 13 13 5 .99 219
rtc-pcf2123 32_7a 9 747 27 9 2.9 28 28 9 .98 1252
i2c-matroxfb 43_1a 5 409 8 2 2.5 12 13 5 .98 257
keyspan_remote 32_1 3 285 3 1 2.7 7.7 8.0 3 .98 297
wl12xx_sdio 08_1a 38 258 38 2 3.2 120 130 38 .97 579
i2c-matroxfb 08_1a 7 565 7 2 2.6 18 19 7 .96 283
ads7871 08_1a 10 265 10 1 2.3 22 23 10 .96 245
magellan 32_7a 2 1267 10 9 3.9 7.4 7.6 2 .96 1209
slram 32_7a 9 625 34 16 2.7 30 36 9 .83 1618
mos7840 43_1a 25 1018 518 1 390 980 4800 11+7 .21 3965

Sum 4193 80280 5034 5800 130000 40000 4001+56 242197
Average 16 688 321 20 23 520 160 16 3.7 969

9

http://www.sosy-lab.org/~dbeyer/cpa-reuse/predicate.html

TABLE V
RESULTS FOR EXPLICIT-VALUE ANALYSIS

Device Driver Spec. # Tasks Avg. Diff. Refinements CPU Time Solved Speedup Size of
Lines w/o Reuse w/ Reuse 1st Rev. w/o Reuse w/ Reuse Tasks Precision

cfag12864b 08_1a 4 326 36 9 75 290 89 4 15 4846
cfag12864b 32_1 2 48 14 7 71 140 76 2 13 3175
cfag12864b 39_7a 4 414 49 13 240 1100 310 4 12 20606
mISDN_core 39_7a 59 1265 738 15 25 1900 490 59 4.0 34859
cfag12864b 32_7a 4 369 37 10 71 350 140 4 3.8 10573
it87 39_7a 54 462 478 10 5.7 540 250 54 2.2 3324
mISDN_core 68_1 26 2481 52 2 6.8 410 200 26 2.1 958
tcm_loop 39_7a 41 263 517 14 8.1 360 180 41 2.0 15686
budget-patch 43_1a 5 1239 20 4 6.7 37 22 5 2.0 4135
mISDN_core 32_7a 59 1179 202 7 10 860 440 59 2.0 26517
sil164 39_7a 3 383 18 6 6.5 18 13 3 1.9 9100
com20020_cs 39_7a 2 524 18 9 6.2 12 9.4 2 1.9 11896
uartlite 39_7a 9 326 63 7 6.4 52 31 9 1.9 15106
i2o_scsi 39_7a 6 454 55 10 6.4 38 23 6 1.8 10457
wl12xx_sdio 39_7a 38 266 372 11 6.6 240 130 38 1.8 2869
ems_usb 39_7a 21 666 199 10 7.0 140 82 21 1.8 6129
slram 68_1 5 511 25 5 5.7 28 18 5 1.8 7030
mISDN_core 08_1a 59 1532 118 2 11 730 420 59 1.8 1972
slram 39_7a 9 599 72 9 5.5 51 31 9 1.8 7567
cx231xx-dvb 39_7a 13 577 127 10 6.2 87 53 13 1.7 6854
it87 32_7a 59 463 299 11 4.9 480 270 59 1.7 15657
dvb-usb-az6007 39_7a 5 353 45 9 7.0 35 23 5 1.7 14225
dvb-usb-rtl28xxu 39_7a 10 173 90 9 6.3 66 41 10 1.7 8771
it87 08_1a 59 478 229 3 4.7 430 250 59 1.7 535
arkfb 39_7a 22 447 132 7 7.1 180 110 22 1.7 4375
dp83640 39_7a 16 557 176 11 6.9 110 69 16 1.7 9995
dvb-usb-vp7045 39_7a 12 1001 110 11 6.5 78 48 12 1.7 13195
tdo24m 39_7a 12 536 74 7 6.3 68 43 12 1.7 5015
i2c-matroxfb 39_7a 7 617 51 8 5.3 35 24 7 1.7 5978
catc 39_7a 22 893 246 13 6.3 150 93 22 1.7 6604
cp210x 32_1 14 219 56 4 6.8 94 60 14 1.7 4175
cp210x 39_7a 71 256 456 8 6.2 460 280 71 1.7 1363
budget-patch 39_7a 9 1669 98 13 6.0 57 37 9 1.7 9617
xilinx_uartps 39_7a 3 352 21 7 5.6 16 12 3 1.6 11926
panasonic-laptop 39_7a 16 410 104 7 4.9 78 50 16 1.6 2549
slram 32_1 5 450 20 4 5.0 24 17 5 1.6 3330
sil164 32_7a 3 486 15 6 5.3 16 12 3 1.6 8326
sym53c500_cs 39_7a 19 468 175 10 6.4 120 75 19 1.6 5914
spcp8x5 39_7a 37 481 273 9 6.2 230 140 37 1.6 1962
wm831x-dcdc 39_7a 34 286 133 4 4.5 180 110 34 1.6 593
dmx3191d 39_7a 2 1597 14 8 6.2 12 10 2 1.6 9896
ssu100 39_7a 28 337 209 9 6.7 170 110 28 1.6 5041
dvb-usb-vp7045 32_1 2 1806 12 6 5.9 12 10 2 1.6 3961
wm831x-dcdc 68_1 3 128 10 4 6.1 17 13 3 1.5 8991
metro-usb 39_7a 25 158 175 7 5.5 120 83 25 1.5 4102
abyss 39_7a 3 2202 26 10 6.4 19 15 3 1.5 13496
pcc-cpufreq 39_7a 3 554 21 7 4.4 13 10 3 1.5 6689
mos7840 39_7a 57 621 416 9 6.8 410 280 57 1.5 1290
tdo24m 32_7a 12 586 60 8 5.1 64 45 12 1.5 4445
keyspan_remote 39_7a 7 929 43 7 5.0 31 23 7 1.5 7903

... For full results c.f. http://www.sosy-lab.org/∼dbeyer/cpa-reuse/explicit.html ...

videobuf-vmalloc 08_1a 31 363 31 1 2.6 79 79 31 1.0 57
intel_vr_nor 08_1a 10 275 10 1 2.6 24 24 10 .99 1130
uio_sercos3 32_7a 5 886 7 3 2.4 13 13 5 .99 2842
abyss 43_1a 3 1465 0 0 2.8 9.1 9.0 3 .99 0
rtc-pcf2123 43_1a 2 59 2 1 3.0 5.8 5.8 2 .99 1351
vsxxxaa 43_1a 2 786 2 1 2.9 5.3 5.5 2 .99 699
twidjoy 08_1a 2 1222 2 1 2.7 4.9 5.0 2 .99 1154
spcp8x5 43_1a 13 897 13 1 3.4 48 48 13 .99 652
i2c-algo-pca 08_1a 14 480 14 1 2.4 35 35 14 .99 173
i915 08_1a 79 731 93 1 4.5 510 510 79 .99 463
farsync 32_7a 9 889 0 0 3.1 29 30 9 .99 0
magellan 32_7a 2 1267 2 2 2.6 5.0 5.1 2 .98 1557
comedi_bond 08_1a 13 98 13 1 2.4 29 30 13 .98 173
mISDN_core 32_1 26 388 26 1 6.4 180 180 26 .98 308
mtdoops 43_1a 20 323 20 1 2.5 52 53 20 .98 223
rtc-max6902 32_7a 9 829 7 3 2.5 23 23 9 .98 2046
cxd2820r 32_7a 23 492 32 3 3.4 96 98 23 .98 1094
cfag12864b 43_1a 2 74 2 1 2.3 4.5 4.5 2 .97 399
twidjoy 32_7a 2 1268 2 2 2.6 4.9 5.1 2 .97 1557
abyss 32_7a 4 2025 2 2 2.8 13 14 4 .96 2774
cxd2820r 08_1a 23 451 23 1 3.1 92 97 23 .95 119
spaceorb 32_7a 2 1226 2 2 2.8 5.0 5.3 2 .94 1557
mISDN_core 43_1a 26 2079 26 1 5.8 170 180 26 .92 311
dmx3191d 32_7a 2 1608 3 3 3.0 7.3 7.8 2 .89 3246
drbd 08_1a 96 2657 96 1 10 950 1100 96 .89 89

Sum 4193 13313 911 1500 27000 20000 4191 756465
Average 16 688 52 4 5.8 100 76 16 1.4 2932

10

http://www.sosy-lab.org/~dbeyer/cpa-reuse/explicit.html

Table VI shows the result for this experiment in the lines
that are marked “4th” in column “Revs.” (the lines marked “All”
show the previous results for comparison). The average size
of differences between revisions increased from 688 to 1579
lines. As expected, the speedup decreased, but only from 3.7
to 3.2 for predicate analysis, and from 1.4 to 1.3 for explicit
analysis. This shows that our approach copes well even with
massive changes to the analyzed code.

Threats to Validity. To have a significant experimental basis,
we created a huge set of 4 193 benchmark verification tasks.
To derive highly credible test data, and instead of relying on
random or artificial benchmarks, our selection of verification
tasks is based on hundreds of actual source code commits
to 59 different Linux device drivers. The characteristics of
systems software, in particular kernel device drivers, might
be similar and could have an impact on validity, but, Linux
driver verification is important enough to be representative on
its own [9]. After all, there is the Linux Driver Verification
Program of the Linux Verification Center [22] and also
Microsoft dedicates considerable amounts of resources to
Windows driver verification [1]. We used an experimental setup
and environment that is virtually identical to the infrastructure
for the competition on software verification (community-
agreed). Precision reuse has a different impact on different
abstract domains. We included two totally different analysis
approaches in our experimental evaluation: a symbolic and
an explicit model-checking approach. Our experiments are
not operating on one particular specification to check, but we
rather consider six different, real-world specifications, with all
showing a considerable speedup.

V. CONCLUSION

We propose to use abstraction precisions as reusable verifica-
tion facts. Precisions are easy to extract from model checkers
that automatically construct an abstract model of the program
(abstract interpretation). Precisions are tool-independent and
it is easy for successive verification runs to read and use
precisions; their memory footprint is small.

We present an extensive collection of verification tasks for
benchmarking approaches for regression verification that is
derived from industrial code, namely, the Linux kernel. Our
benchmark consists of 4 193 single verification problems and
is publicly available on our supplementary web page.

Our experiments confirm that the reuse of precisions has a
significant effect on the verification process. The approach
drastically improves the performance on most verification
problems, and if not successful, it does not have a noticeable
negative impact. Besides improving the performance, we
sometimes even solve verification problems that were not
solvable before in the given time and memory resources.

The technical insight of our approach is that reusing
precisions drastically reduces the number of CEGAR iterations
(refinements), and therefore the effort spent on analyzing
spurious counterexamples and reconstructing abstract states for
refined parts of the system. Precisions are precious intermediate
results that are difficult to discover, and which define the
abstraction level of the abstract model. Thus, the work on

discovering the abstract model is significantly reduced in later
verification runs. Because the information that we reuse does
not depend on source-code details, our approach is less sensitive
to changes in the source code, compared to other approaches.
Precision reuse is applicable to all verification approaches
that are based on abstraction and automatically compute the
precision of the abstract model (this includes CEGAR-based
approaches and abstract interpretations).

As a result of the experiments for this paper, an unknown
bug in the Linux kernel was found and a fix was submitted to
the maintainers by the LDV team.

REFERENCES

[1] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

[2] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In Proc. SMT, 2010.

[3] D. Beyer. Second competition on software verification (Summary of SV-
COMP 2013). In Proc. TACAS, LNCS 7795, pages 594–609. Springer,
2013.

[4] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–
525, 2007.

[5] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional
model checking: A technique to pass information between verifiers. In
Proc. FSE. ACM, 2012.

[6] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer,
2011.

[7] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD,
2010.

[8] D. Beyer and S. Löwe. Explicit-state software model checking based on
CEGAR and interpolation. In Proc. FASE, LNCS 7793, pages 146–162.
Springer, 2013.

[9] D. Beyer and A. K. Petrenko. Linux driver verification. In Proc. ISoLA,
LNCS 7610, pages 1–6. Springer, 2012.

[10] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury. Partition-based
regression verification. In Proc. ICSE. IEEE, 2013.

[11] S. Chaki, A. Gurfinkel, and O. Strichman. Regression verification for
multi-threaded programs. In Proc. VMCAI, pages 119–135. Springer,
2012.

[12] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental
formal verification of hardware. In Proc. FMCAD, pages 135–143.
FMCAD, 2011.

[13] M. Christakis, P. Müller, and V. Wüstholz. Collaborative verification
and testing with explicit assumptions. In Proc. FM, LNCS 7436, pages
132–146, 2012.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[15] B. Godlin and O. Strichman. Regression verification: Proving the
equivalence of similar programs. Software Testing, Verification and
Reliability, 2009.

[16] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In
Proc. CAV, LNCS 1254, pages 72–83. Springer, 1997.

[17] T. L. Graves, M. J. Harrold, J.-M. Kim, A. A. Porter, and G. Rothermel.
An empirical study of regression test selection techniques. In Proc. ICSE,
pages 188–197. IEEE, 1998.

[18] R. H. Hardin, R. P. Kurshan, K. L. McMillan, J. A. Reeds, and N. J. A.
Sloane. Efficient regression verification. In Proc. WODES, pages 147–
150, 1996.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In Proc. POPL, pages 232–244. ACM, 2004.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido. Extreme
model checking. In Proc. Verification: Theory and Practice, LNCS 2772,
pages 332–358. Springer, 2003.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Proc. POPL, pages 58–70. ACM, 2002.

[22] A. V. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov. Establishing
Linux driver verification process. In Proc. Ershov Memorial Conference,
LNCS 5947, pages 165–176. Springer, 2009.

11

[23] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan. Incremental
state-space exploration for programs with dynamically allocated data. In
Proc. ICSE, pages 291–300. ACM, 2008.

[24] M. U. Mandrykin, V. S. Mutilin, E. M. Novikov, A. V. Khoroshilov,
and P. E. Shved. Using Linux device drivers for static verification tools
benchmarking. Programming and Computer Software, 38(5):245–256,
2012.

[25] G. J. Myers. The Art of Software Testing. Wiley, 1979.
[26] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental

symbolic execution. ACM SIGPLAN Notices, 46(6):504–515, 2011.
[27] G. Rothermel and M. J. Harrold. Analyzing regression test selection

techniques. IEEE Trans. Softw. Eng., 22(8):529–551, 1996.
[28] O. Sery, G. Fedyukovich, and N. Sharygina. Incremental upgrade

checking by means of interpolation-based function summaries. In Proc.

FMCAD, pages 114–121. FMCAD, 2012.
[29] O. V. Sokolsky and S. A. Smolka. Incremental model checking in the

modal mu-calculus. In Proc. CAV, LNCS 818, pages 351–363. Springer,
1994.

[30] O. Strichman and B. Godlin. Regression verification — a practical
way to verify programs. In Proc. Verified Software: Theories, Tools,
Experiments, pages 496–501. Springer, 2008.

[31] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: Reducing, reusing
and recycling constraints in program analysis. In Proc. FSE. ACM, 2012.

[32] G. Yang, M. B. Dwyer, and G. Rothermel. Regression model checking.
In Proc. ICSM, pages 115–124. IEEE, 2009.

[33] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized symbolic execution.
In Proc. ISSTA, pages 144–154. ACM, 2012.

12

	I Introduction
	II Background
	III Precision Reuse
	IV Experimental Evaluation
	V Conclusion
	References

