
Domain Types:
Selecting Abstractions Based on Variable Usage

Sven Apel 1, Dirk Beyer 1, Karlheinz Friedberger 1, Franco Raimondi 2, and Alexander von Rhein 1

1 University of Passau, Germany
2 Middlesex University, London, UK

Technical Report, Number MIP-1303
Department of Computer Science and Mathematics

University of Passau, Germany
May 2013

ar
X

iv
:1

30
5.

66
40

v1
 [

cs
.S

E
]

 2
8

M
ay

 2
01

3

Domain Types:
Selecting Abstractions Based on Variable Usage

Sven Apel 1, Dirk Beyer 1, Karlheinz Friedberger 1, Franco Raimondi 2, and Alexander von Rhein 1

1 University of Passau, Germany
2 Middlesex University, London, UK

Abstract—The success of software model checking depends on
finding an appropriate abstraction of the subject program. The
choice of the abstract domain and the analysis configuration
is currently left to the user, who may not be familiar with
the tradeoffs and performance details of the available abstract
domains. We introduce the concept of domain types, which classify
the program variables into types that are more fine-grained than
standard declared types, such as int or long, in order to guide
the selection of an appropriate abstract domain for a model
checker. Our implementation determines the domain type for
each variable in a pre-processing step, based on the variable usage
in the program, and then assigns each variable to an abstract
domain. The model-checking framework that we use supports to
specify a separate analysis precision for each abstract domain,
such that we can freely configure the analysis. We experimentally
demonstrate a significant impact of the choice of the abstract
domain per variable. We consider one explicit (hash tables for
integer values) and one symbolic (binary decision diagrams)
domain. The experiments are based on standard verification tasks
that are taken from recent competitions on software verification.
Each abstract domain has unique advantages in representing the
state space of variables of a certain domain type. Our experiments
show that software model checkers can be improved with a
domain-type guided combination of abstract domains.

I. INTRODUCTION

One of the main challenges in software model checking
is to automatically find, for each program variable, the right
abstract representation (also known as abstract domain) that
suffices to efficiently prove the program correct or to identify
an error path. Several abstract domains have been applied
successfully to software-verification problems, with different
strengths and weaknesses. 1 Abstract domains can be based
on explicit (e.g., hash tables for integers, memory graphs for
the heap) and symbolic (predicates, binary decision diagrams
(BDD)) representations. For example, using an explicit-value
domain [12] was efficient on many benchmarks from the
recent competition on software verification, while using a
BDD domain [13] was more efficient on event-condition-action
(ECA) systems that involve only simple operations over integers
in an ECA competition [27]. In the context of product-line
verification, it has been shown that BDD-encodings of feature
variables improve the performance [3], [22]. The overall picture
is that different abstract domains are successful on different
types of programs, and for every abstract domain, we can find
programs for which the abstract domain is not successful.

1For an overview, we refer the reader to the competition on software
verification: http://sv-comp.sosy-lab.org .

So far, the choice of the abstract domain for a given
verification problem (which often implies the choice of a certain
verification tool as well) was left to the user. The precision
(determining which facts to track) for an analysis using a
particular abstract domain is often automatically adjusted
using counterexample-guided abstraction refinement [21]. Also,
several (component) analyses can be combined to an analysis
combination, where each component analysis has its own
precision [8], [12], which can be dynamically adjusted (based
on certain domain-dependent measures) and determines the
level of abstraction inside the component analysis. This concept
is used to switch to another domain if the current domain is
not successful.

Our goal is to automate the choice of an effective abstract
domain using a pre-analysis (that runs before the model checker
starts the state-space exploration) and to automatically assign
program variables to abstract domains. To achieve this goal,
we analyze the usage of program variables and assign each
variable to a certain domain type. In addition to the standard
declared type in the programming language (e.g., int, char,
bool), the domain type of a variable represents information
about the value range and the operations in which the variable
is involved. Using this idea, we can even determine domain
types for variables in dynamically typed, or untyped, languages
(we focus on statically-typed C programs, though).

Our approach is based on a verification framework in which
each abstract domain has a precision associated with it [8].
We can now use the domain types from the pre-analysis as
guidance for assigning an abstract domain to each variable. In
the experiments that we conducted to demonstrate the impact
of our idea, we use two abstract domains, namely an explicit-
value domain and a BDD-based domain. For both domains,
the precision is a set of variables (which shall be tracked in
the domain). Depending on the domain type, we add each
variable to the precision of either the explicit-value domain or
the BDD domain. The precision of the abstract domain instructs
the analysis to track only those variables with that abstract
domain that occur in its precision. If the domain assignment
is good, then this approach improves the overall verification
performance, because then each domain manages only the
variables that it is best suited for.

Our analysis is implemented in the verification framework
CPACHECKER [10], which implements configurable program
analysis for C programs and provides abstract domains for an
explicit-value analysis and a BDD-based analysis. However, the

http://sv-comp.sosy-lab.org/

int enabled, a, b;
b=20;
if (enabled || a > 5) {

if (a == 0) {
b = 0;

}
assert (b∗b > 200);

}

Fig. 1: Example with variables of different domain types

approach is generally applicable to other model checking tools,
other abstract domains, and to other (statically or dynamically
typed) programming languages that support different domain
types.

We evaluate our approach on 7 benchmark sets from different
application domains (a total of 335 files) that have been used by
recent international competitions on software model checking
(SV-COMP 2012, RERS challenge 2012 [6], [27]). We explore
different mappings from domain types to abstract domains
and discuss which abstract domain proves suitable for which
domain type. We also compare our approach to a competitive
model-checking tool that won several awards in software model-
checking competitions.

Our evaluation shows that the programs in our benchmark
sets contain a significant number of variables that have a much
narrower domain type than the declared type of the variable.
The evaluation also shows that the performance of model
checking improves when these variables are analyzed with
a suitable abstract domain. Our results are available on the
supplementary website 2.

Example. Fig. 1 illustrates the advantage of our approach on
an example program. The program contains three variables
that are declared by the programmer as ‘integer’. The variables
are used in different ways: the variable enabled is used as a
boolean and the variables a and b are numeric; variables a and
b are used in a greater-than comparison and b is also used
in a multiplication. Neither the explicit-value analysis nor the
BDD-based analysis is able to efficiently verify such programs:
The explicit-value domain is perfectly suited to handle variable
b, because b has a concrete value, and the multiplication and
the greater than comparison can be easily computed, whereas
BDDs are known to be inefficient for multiplications [28]. The
BDD domain can efficiently encode the variables enabled and a,
whereas the explicit-value analysis is not good at encoding facts
like a > 5. Thus, without the information about variable a, the
explicit-value analysis does not know the value of variable b
and cannot determine the result of the multiplication.

A solution that has been proposed before is to use both
abstract domains in parallel, with each domain handling all
variables. If the domains are well communicating (reduced
products), this could solve the verification task, but the
load on each domain would be unnecessarily high, because
every domain has to handle more variables. Our experiments
show that the load on the abstract domain should not be
underestimated, especially considering the BDD domain.

2http://www.sosy-lab.org/projects/domaintypes/

Contributions. We make the following novel contributions:
• We developed the concept of domain types and designed

a pre-analysis that determines domain types of program
variables.

• We extended an existing model-checking tool to use and
synchronize several abstract domains (explicit-value and
BDD) in parallel, while each domain handles only the
variables that it is suited for.

• We evaluate our approach on seven benchmark sets from
competitions on software verification.

II. BACKGROUND

We explain the concepts that we use in our work informally,
and give references below to the literature for detailed de-
scriptions. In the presentation, whenever a concrete context
is necessary, we assume to verify C programs, and that we
analyze integer variables.

Abstract Domains and Program Analysis. Abstraction-based
software model checkers automatically extract an abstract
model of the subject program and explore this model using one
or more abstract domains. An abstract domain is an abstract
representation of certain aspects of the concrete program states
that the state exploration is supposed to track [1]. Different
abstract domains can track different aspects of the program
state space and complement each other. For example, a shape
domain stores, for each tracked pointer, the shape of the pointed-
to data structures on the heap [9], [23], [30]. Another example
is the explicit-value domain that, for each tracked variable,
tracks the explicit value of the variable [12], [25], [26].

The two examples illustrate that abstract domains can
represent different information. However, it is also possible to
use different abstract domains to represent the same information
in different ways. For example, consider a program in which the
value of variable x ranges from 3 to 9. This can be stored by an
interval domain using the abstract state x 7→ [3, 9] [15], or by
a predicate domain using the abstract state x ≥ 3 ∧ x ≤ 9 [5],
[7], [24].

Every abstract domain consists of
(a) a representation of sets of concrete states, defining the

abstract states (lattice elements),
(b) an operator to decide if one abstract state subsumes another

abstract state (partial order), and
(c) an operator that combines two abstract states into a new

abstract state that represents both (join).
Every tool for program analysis uses one or several abstract
domains to represent the states of the program. The abilities
of the abstract domain imply the effectivity (is the analysis
able to correctly solve the verification problem?) and efficiency
(is the analysis fast, does it scale to large programs?) of the
program analysis.

Precision. Each abstract domain can operate on different levels
of abstraction, i.e., it can be more fine-grained or more coarse.
The level of abstraction of an abstract domain is determined
by the abstraction precision, which controls if the analysis is
coarse or detailed. For example, the precision of the shape
domain could instruct the analysis which pointers to track,
and how large a shape can maximally grow. The precision

2

http://www.sosy-lab.org/projects/domaintypes/

0 int x,y,z;
1 x=5;
2 if (y > 1) {
3 z = 2;
4 } else {
5 z = 3−1;
6 }

(a) C Code

x→5

x→5x→5

x→5

z→2

x→5

z→2

1

2

3 5

4 6

7
x→5

z→2

(b) Abstract reachability graph

Fig. 2: Code example and abstract reachability graph (nodes
represent explicit states)

of the predicate domain is a set of predicates to track, which
can, for example, grow by adding predicate during refinement
steps [21].

Next, we describe the two abstract domains that we consider
in our experiments.

Explicit-Value Domain. The explicit-value domain stores
concrete values for all program variables that occur in the
precision (once a concrete value has been determined). Each
abstract state of the domain is represented by a map that assigns
to each program variable an integer value. Variables for which
a concrete value cannot be determined do not appear in the
map. For example, consider the code in Fig. 2 (a) and the
corresponding abstract reachability graph (ARG) in Fig. 2 (b):
Variable x is assigned, and the value is stored in a new abstract
state (state 2 in Fig. 2 (b)). Then, a conditional statement spawns
two possible execution paths, so the model checker explores
both paths. The explicit domain cannot store information on
variable y, because it does not have a concrete value. After both
branches of the conditional statement are executed, the ARG
has two “frontier” abstract states that are identical. Only one
of these abstract states is stored because the other is subsumed,
and state exploration continues from this ‘merged’ state.

The explicit-value domain might suffer from a loss of
information in cases where not all information can be stored,
e.g., y > 1. On the one hand, this introduces imprecision and
potentially false alarms, but, on the other hand, if values are
present, all operations can be executed extremely fast.

The abstraction precision controls which variables should
be tracked in the explicit-value domain. For the code fragment
from Fig. 2, we could use a precision {x, z} and omit y, if
we knew beforehand that there is no point in representing
variable y in the explicit-value domain.

BDD Domain. The BDD domain stores information about
program variables using binary decision diagrams (BDD).
Each abstract state in the BDD domain is represented by a
predicate over the variable values that the BDD represents [16].
BDDs can be efficient in storing predicates and performing
boolean operations. Because of this characteristics, BDDs
have been used in model checking of systems with a large

number of boolean variables, most prominently in hardware
verification [18], [28].

Values of integer variables can be represented by BDDs
using a binary encoding of the values and representing the
binary values in 32 boolean BDD variables. In our example,
this would require 96 BDD variables for the three integer
program variables. Because the size of the BDD has a strong
impact on the performance of BDD operations, it is important
to keep the number of BDD variables small.

The abstraction precision of the BDD domain is also a
simple set of program variables that the analysis should track
using this abstract domain. Considering again our example, if
we knew beforehand that variables x and y can be efficiently
represented by the explicit-value domain, we would not include
them in the precision, which would result in precision {z} for
the BDD domain, which needs only 32 BDD variables.

The additional power that allows us to store disjunctions in
BDDs comes at a price: the performance decreases with a grow-
ing number of variables, and thus, we should parsimoniously
use the BDD domain.

To achieve the goal of a better assignment of variables to
abstract domains, we introduce the concept of domain types
in the next section.

III. DOMAIN TYPES

Our new approach performs the verification process in three
steps: (1) We start with analyzing the subject program in
order to determine the domain type for each variable (pre-
analysis). (2) Then, each variable is mapped to an abstract
domain that the analysis will use to represent information about
the variable. The mapping from domain type to abstract domain
is not yet automated. This mapping determins the precision for
each abstract domain. (3) Finally, the actual model-checking
procedure with the individual precisions per abstract domain
is started.

Figure 3 illustrates our approach of a model-checking engine
that is based on domain-types. The state exploration algorithm
is implemented in the main module. It uses several abstract
domains to represent the state space of the program. Note that
each variable is tracked by only one abstract domain.

A. Domain Types — Classification

In statically-typed programming languages, each variable is
declared to be of a certain type. The type determines which
values can be stored in the variable and which operations can
use the variable as operand. For the assignment of abstract
domains to variables, we need more specific information about
the variables, in particular, information on the operations that
the variables are involved in.

For example, consider boolean variables in the programming
language C. The language C does not provide a type ‘boolean’.
In C, the boolean values true and false are represented by the
integer values 1 and 0, respectively. When integer variables are
read, the value 0 is interpreted as false and all other values are
interpreted as true. Let us consider the tiny code fragment in
Fig. 4).

3

Model-Checking Algorithm

Explicit Domain BDD Domain

State Exploration

Domain Synchronization

int x

int y
int lock

int enabled

BDD Library

Domain-Type
 Analysis

Fig. 3: A model-checking engine with two abstract domains
and domain-type analysis.

int enabled;
...
if (enabled) {

...
} else {

...
}

Fig. 4: Using an integer variable as boolean in C

The expression enabled in the if condition is internally
expanded to the expression enables != 0 [2]. It is clear from the
last section that such a variable should be represented in a BDD
by one single boolean variable, and not 32 boolean variables.
Therefore, we introduce a domain type Bool that represents the
more precise type. To determine whether an integer variable
has actually the domain type Bool, our pre-analysis inspects
all occurrences of the variable in expressions. If a variable is
found to be of domain type Bool, this fact can be considered
in the assignment of the abstract domain and thus, the variable
can be represented by a more efficient data structures during
model checking.

Other programming languages such as JAVA provide more
restrictive types like boolean and byte, but for the purpose of
assigning the best abstract domain, more precise information
is beneficial. In dynamically-typed or even untyped languages,
types of variables are unknown before program execution.
A static analysis of domain types can lead to considerable
improvements here, because it can infer quite constrained
domain types. This information can be used during the
verification to choose efficient algorithms and data structures.

Figure I shows the four domain types that we consider in the
static pre-analysis (many more are possible to be explored in
future work). Our pre-analysis assigns every program variable
to exactly one of these domain types, from which an appropriate
abstract domain can be derived.

TABLE I: Domain types that are considered in this paper

Domain type Short description
Bool Boolean variable
IntEq Equality comparisons with

a constant value (==,!=)
IntEqAdd Linear arithmetics only (+,–)
Int All integer variables

Bool IntEq

IntEqAdd

Int

Fig. 5: Hierarchical structure of domain types

B. Domain Types — Analysis

The first step of our approach is a static domain-type analysis
that determines the domain types for all program variables. It
works on an abstract representation of the program (a control-
flow graph, in our case, but an abstract syntax tree would also
be sufficient) and processes all program operations in which
variables are used. For a variable x, the analysis in its search
analyzes all expressions in which the variable x is involved.
For example, the expressions x==0, x==x+1, and y==x*z yield
the domain types Bool, IntEqAdd, and Int, respectively.

In the following, we informally define the criteria that the
type analysis is based on (for brevity, we omit the formal type
system). The four domain types are hierarchically overlapping
(subtypes), as illustrated in Fig. 5.
Bool. A variable belongs into the domain type Bool if all
expressions in which the variable is used are the boolean
expressions &&, ||, and !, as well as the comparisons with zero
==0 and !=0. Comparisons with other variables are possible if
their domain type is Bool as well.
IntEq. Variables of domain type IntEq are limited to boolean
expressions, equality tests with constant values and simple
comparisons (==,!=) with other variables of domain type IntEq.
IntEqAdd. The domain type IntEqAdd contains all variables
that are used in boolean expressions (&&, ||, !), linear arithmetic
(+,–), comparisons (==,!=,<,>,<=,>=), and in bit operations (&,|,ˆ).
Int. All other variables are of domain type Int. This includes
variables that use multiplication (*), division (/), and bitshift
operations (<<, >>).

Each variable that is of type Bool, is also of types IntEq,
IntEqAdd, and Int. The type system assigns the strongest (most
restrictive) possible type, i.e. the type system prefers domain
type Bool over IntEqAdd). When we discuss variables of
domain types in the text, we usually want to refer only to
variables that are not of the “smaller” domain types (e.g., only
the variables in IntEq that are not Bool); we use the set

4

if (a == 0) {
b = 1042;
c = b;

} else {
c = 989;

}

Fig. 6: Example of variables of IntEq domain type

notation to denote this (e.g., IntEq \ Bool). Fig. 6 shows
three variables of domain type IntEq. Variable a for example
is (more precisely) of domain type Bool. In such cases, we
assign the most restricted domain type: Bool.

We consider usual optimizations, for example, if IntEq
variables are limited to a small set of values, we use this
information to re-map the possible values to a simpler do-
main of successive numbers and possibly save boolean BDD
variables if the domain type IntEq gets assigned to the BDD
domain.

C. Domain Assignment

Once the domain types have been determined for all variables,
we need to assign each variable to a certain abstract domain
that the analysis uses to track the variable. For this, we use the
domain assignment, which is a map that assigns an abstract
domain to each domain type. For each abstract domain, we
add all variables that the abstract domain should track to the
abstraction precision of that abstract domain. In principle, every
abstract domain can represent any variable, but each abstract
domain has certain strengths and weaknesses (in terms of
effectiveness and efficiency). Therefore, we have to map every
domain type to an abstract domain that is appropriate for the
usage of the variables.

It seems straightforward to associate the domain type Bool
with the BDD domain. The BDD domain can efficiently
represent complicated boolean combinations of variables, but
is sensitive to the number of represented variables.

We can also represent the domain types IntEq \Bool and
IntEqAdd \ IntEq by the BDD domain. For domain type
IntEq \ Bool, we know from the properties of the domain
type that those variables only hold a limited and known set of
values. Therefore, we can enumerate these values and represent
them by BDD variables. To represent values of a set of size n,
we need log2(n) BDD variables. This representation can be
very efficient.

The explicit-value domain can in principle be used for all
domain types, but the more different combinations of variable
assignments need to be distinguished in the analysis, the larger
the state space grows, perhaps leading to the problem of state-
space explosion. Also, the explicit-value domain is not well-
suited for analyzing uninitialized variables.

In our experiments, we show that different domain assign-
ments have significantly different performance characteristics
for different sets of verification tasks. Automatically finding
an optimal domain assignment remains a research problem
for future work. The goal of this paper is to show that the
concepts of domain types provides a technique to approach
this problem.

IV. EXPERIMENTAL EVALUATION

To evaluate domain-type-based analysis approach, we
conduct experiments with different configurations on a
diverse set of verification tasks. The results give evidence
that the choice of the representing abstract domains for the
considered domain types has a significant impact on the
effectiveness and efficiency. We make the following statements:

Domain types. The subject systems contain a large set of
integer variables that our domain-type analysis classifies
into four specific domain types.

Variable partitioning. The verification performance signif-
icantly changes if variables are treated with different
abstract domains, compared to tracking all variables with
the same abstract domain.

Domain optimization. Using the BDD domain for variables
of domain type IntEq \ Bool and IntEqAdd \ IntEq
can improve the verification performance.

Comparison with state-of-the-art. The best combination of
the explicit-value domain and the BDD domain with
domain-type analysis performs better than a competitive
predicate-analysis approach that uses other optimization
techniques such as counterexample-guided abstraction
refinement (CEGAR).

A. Implementation

For our experiments, we extended the open verification
framework CPACHECKER [10]. CPACHECKER offers various
abstract domains and supports the concept of abstraction
precisions in a modular way, such that it is easy to extend
and configure. The tool is applicable to an extensive set
of verification benchmarks, because it participated at the
competition on software verification. This enables us to evaluate
our approach on a large set of realistic programs. We reuse one
of those abstract domains in our experiments, namely a version
of the explicit domain (without CEGAR) [12]. We extended
CPACHECKER with the domain-type analysis described in
the previous section, and we implemented a new, flexible
abstract domain that uses BDDs to represent variable values.
For comparison of our domain-type-based approach with a
stat-of-the-art verifier, we will use another configuration of
CPACHECKER that participated at the competition in the
last year. This other configuration implements a predicate
analysis with CEGAR, interpolation, and adjustable-block
encoding [11].

Explicit-Value Domain. We use the default explicit-value
domain that is already implemented in CPACHECKER. The
implementation can be used either with CEGAR or with-
out. Its basic version works similarly to the explicit-value
domain described in the background section. In this paper, we
cannot compare with a CEGAR-based configuration because
abstraction refinement is orthogonal to domain-type analysis.
Therefore, we use the explicit-value domain without CEGAR
in all experiments. It is possible to apply CEGAR to the BDD-
based analysis, but this is out of scope of this paper.

5

BDD Domain. The BDD domain uses binary decision diagrams
(BDD) to represent the values of variables, by encoding each
integer variable with one or more (boolean) BDD variables.
The BDD domain uses a different encoding of variables in the
BDD for each domain type. For domain type Bool, we use
exactly one BDD variable per program variable. For variables
of domain type IntEqAdd\IntEq, we use 32 (boolean) BDD
variables to represent on program variable. For variables of
domain type IntEq \ Bool, we know from the pre-analysis
how many different values the variable can hold. Therefore, we
can re-map the variable values to a new set of values with the
same cardinality and therefore need considerable fewer BDD
variables (compared to 32 BDD variables). We use a simple
bijective map from the original constants in the program to
a (smaller, successive) set of integer values, and need only
log2(n) bits to encode a set of n different program constants (of
arbitrary values) for a program variable. In our implementation,
we use one additional boolean variable to be able to encode
the situation that the variable is different from all program
constants for the variable.

B. Experimental Setup

We performed all experiments on an Ubuntu 11.10 system
with 16 GB RAM and an Intel i7-2600 processor (8 cores,
3.4 GHz). Each verification run was limited to 15 GB of
memory and 900 s of CPU time. We used CPACHECKER
revision 7487. Each verification task from our benchmark set
was verified using four different configurations:

Explicit-Int This configuration tracks all variables with the
explicit-value domain.

BDD-Bool This configuration uses both abstract domains,
where all variables of domain type Bool are in the
precision of the BDD domain and all other variables
are in the precision of the explicit-value analysis.

BDD-IntEq This configuration uses both abstract domains,
where all variables of domain type IntEq are in the
precision of the BDD domain and all other variables
are in the precision of the explicit-value domain.

BDD-IntEqAdd This configuration uses both abstract domains,
where all variables of domain type IntEqAdd are in the
precision of the BDD domain and all other variables are
in the precision of the explicit-value domain.

BDD-Int This configuration tracks all variables with the BDD
domain.

C. Verification Tasks

We evaluate our approach on 7 benchmark sets that, in total,
consist of 335 verification tasks to be solved. The benchmark
sets are (with number of verification tasks):

ECA (254) LOCKS (11)
NTDRIVERS (11) PRODUCT SIMULATORS (4)
SSH (17) SSH-SIMPLIFIED (13)
SYSTEMC (25)

All verification tasks of the benchmark sets have been used
in international competitions on verification tools [6], [27];

they are publicly available via the CPACHECKER repository3.
Overall, this benchmark suite for software verification is the
most comprehensive and diverse suite of this kind that exists.
It covers various application domains, such as device drivers,
software product lines, and embedded-systems simulation.

For our experiments, we consider only the verification
tasks with expected result ‘safe’ (335 verification tasks). This
choice makes it necessary that the model checker explores the
whole state space. If we also included ‘unsafe’ verification
tasks, the runtime would largely depend on which program
path is explored first. Since we focus on differences between
combinations of abstract domains, the influence of the path
precedence algorithm would merely blur the results.

The description of the systems that follows is partly taken
from the report on the 2012 competition on software verifica-
tion [6]. Unless stated otherwise the systems are taken from this
competition. The set NTDRIVER-SIMPLIFIED contains verifica-
tion tasks that are based on device drivers from the Windows NT
kernel. The sets SSH and SSH-SIMPLIFIED contain verification
tasks that represent the connection-handshake protocol between
SSH server and clients. The verification tasks ssh-simplified
have been manually pre-processed to remove heap accesses.
Each file checks a protocol-specific safety property. The set
lock contains files from the CPACHECKER repository that were
designed to investigate scalability properties of model-checking
optimizations. The files in the set SYSTEMC are provided by the
SyCMC project [19] and were taken (with some changes) from
the SystemC distribution. The benchmark set ECA contains
event-condition-action (ECA) programs, a kind of systems that
is often used in industry. The files in our benchmark set have
been used in the RERS Grey-Box Challenge 2012 [27] on
verification of ECA systems. The benchmark set PRODUCT
SIMULATORS has been used in the competition on software
verification 2013. They model the variability of some product
lines [3].

Domain Types. Considering Fig. 7, an immediate observation
is that the number of Int \ IntEqAdd variables is usually the
lowest. An exception to this observation are the benchmark sets
SSH and NTDRIVERS, in which the number of Int\IntEqAdd
variables is extremely high compared to all other domain types.
In the other benchmark sets, we note that there is a significant
number of variables that do not fall into the domain type Int\
IntEqAdd. This confirms the basic premise of our approach,
that there are enough variables in each class of variables, in
order to explore the optimization potential. In most benchmark
sets, the domain type with the largest number of variables is
either Bool or IntEq \Bool. We expect that optimizations for
the domain types Bool and IntEq\Bool pay off, especially in
the benchmark sets ECA, LOCKS, and SYSTEMC, because these
domain types cover a large part of the variables in those sets.
The benchmark set SSH-SIMPLIFIED also has a high number
of IntEqAdd \ IntEq variables, so we expect a difference
between configurations that use different abstract domains for
this domain type.

3http://cpachecker.sosy-lab.org/

6

http://cpachecker.sosy-lab.org/

0
10

20
30

40
50

60

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 31 61 91 131 171 211 251

eca

● 0
5

10
15

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 2 3 4 5 6 7 8 9 11

locks

● 0
20

00
40

00
60

00

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 2 3 4 5 6 7 8 9 11

ntdrivers
●

0
50

10
0

15
0

20
0

25
0

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 2 3 4

productSimulators

●

10
20

30
40

50

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 3 5 7 9 11 13 15 17

ssh
●

0
5

10
15

20
25

30

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 3 5 7 9 11 13

ssh−simplified

●

0
20

40
60

80
10

0
12

0

File with n−th largest variable set

N
um

be
r

of
 v

ar
ia

bl
es

 p
er

 d
om

ai
n

ty
pe

1 4 7 10 13 16 19 22 25

systemc

●

●

Bool
IntEq \ Bool
IntEqAdd \ IntEq
Int \ IntEqAdd

Fig. 7: Domain types of variables of for all verification tasks. The diagrams show, for each benchmark set, how many variables
of each domain type the files contain (excluding variables that are already contained in a sub-type). The x-axis shows the
verification tasks, sorted by their total number of variables and the y-axis shows the absolute number of variables in each
domain type (excluding variables that are already considered for sub-types).

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 31 61 91 131 171 211 251

●

●

eca

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 11

●

●

locks

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 11

●

●

ntdrivers

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 2 3 4

●

●

product simulators

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 3 5 7 9 11 13 15 17

●

●

ssh

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 3 5 7 9 11 13

●

●

ssh−simplified

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 4 7 10 13 16 19 22 25

●

●

systemc

●

●

Explicit−Int
BDD−Bool
BDD−IntEq
BDD−IntEqAdd
BDD−Int

Fig. 8: The quantile plots show the performance of the different configurations per benchmark set. Each plot shows the data
of one benchmark set. Each data point (x, y) shows the x-fastest verification run which needed y seconds. All plots have
logarithmic y-axes. In the SSH benchmark set, the configuration BDD-Int could not solve any verification task.

7

D. Results

Due to the huge amount of verification results, we cannot
provide the raw data of all verification runs in the paper.
Instead, we show results aggregated by subject systems and
configurations. We also provide a website 4, where all results
are available in form of interactive plots. The website does
provide the raw data and the logfiles of all verification runs.
Effectiveness. Table II gives an overview of the number of
correctly solved verification tasks. Each row shows the results
for one benchmark set. For each configuration, we show which
percentage of the verification tasks could be correctly solved.

The table suggests that some verification tasks are difficult
to verify. In the benchmark set SYSTEMC, most configurations
solve less than half of the verification tasks. Most of these fail-
ures are caused by timeouts and out-of-memory terminations;
some are also due to limitations of the implemented abstract
domains. We note that the combined configurations demonstrate
very good effectiveness results. In terms of effectiveness,
there is no clear winner, which suggests to further investigate
verification based on domain-types.
Efficiency. Before we discuss the details, we briefly give an
overview over the results, based on Fig. 8. The diagrams show
the performance of the configurations in separate quantile
plots for each benchmark set. A point (x, y) in a quantile
plot states that the xth-fastest verification run of the respective
configuration took y s of CPU time. The right-most x-value of
a configuration indicates the total number of correctly solved
verification tasks. The area below the graph is proportional to
the accumulated verification time.

For the benchmark set ECA, the configurations that encode
IntEq\Bool variables in BDDs are efficient. The configuration
BDD-Bool performs similar to Explicit-Int.

The benchmark set LOCK is a very good example for
extremely good performance of BDDs encodings: the configu-
rations Explicit-Int and BDD-Bool show a significant growth
with increasing problem size, while the other configurations
(encoding all variables as BDDs) perform extremely well.

For the benchmark set PRODUCT SIMULATOR, the config-
uration BDD-IntEq is fastest, followed by the configuration
Explicit-Int and then BDD-IntEqAdd.

The benchmark SYSTEMC shows a very interesting detail:
there are only two configurations that are able to solve most
verification tasks: BDD-IntEqAdd and BDD-Int. All other
configurations fail on exactly the same verification tasks.

The plots also show that our approach does not perform well
on two benchmark sets, namely the benchmark sets NTDRIVERS
and SSH. On these benchmark sets, all combined configurations
perform worse than the explicit analysis.

E. Relating Results to Domain Types

To explain why different configurations have different
performance results on different benchmark sets, we relate
the results in Fig. 8 to the domain-type statistics in Fig. 7.

The verification tasks in benchmark set ECA contain many
variables of domain type IntEq \Bool (up to 58 variables),

4http://www.sosy-lab.org/projects/domaintypes/

and therefore, consistently, the configurations that represent
IntEq \Bool variables with the BDD domain are performing
best. This indicates that tracking IntEq \Bool variables with
BDDs is a good idea. The performance result is in line with
the results of a recent paper on BDD-based software model
checking [13], in which similar experiments are discussed. Our
analysis of the variables in Fig. 7 explains the good result in
that paper.

The benchmark set LOCKS shows similar results: The
configuration Bool shows that encoding the numerous Bool
variables in BDDs improves the performance. Also, encoding
IntEq \ Bool variables in BDDs improves the performance
further. The LOCKS benchmark set has been designed to show
the negative impact of a growing state space in analyses that
work like the explicit-value analysis (single-block encoding
without joins) [11]; therefore, this result was expected.

For the benchmark set NTDRIVERS, we observe the opposite
effect: the more variables are encoded in BDDs, the worse the
performance gets. Fig. 7 shows that the verification tasks in
this benchmark set contain many Int \ IntEqAdd variables.
Only a few variables have a simple domain type and can be
encoded in BDDs. If this is done, the BDD domain has a
negative impact on the overall performance: the configurations
Explicit-Int performs better than the BDD-based configurations.

The verification tasks in benchmark set PRODUCT SIMULA-
TOR contains many IntEq \Bool (130-256) and IntEqAdd \
IntEq variables (56-96). The performance of the configuration
BDD-IntEq is best, as expected. However, the performance of
the configuration BDD-IntEqAdd is worse than or equal to the
performance of the configuration Explicit-Int. This means that it
is too expensive to represent all variables of type IntEqAdd in
the BDD. We have to use 32 BDD variables for each program
variable and encode each operation on the program variables
as BDD operations (e.g., additions with a full adder). This
involves more complex operations on the BDDs, compared to
the IntEq\Bool variables, for which the operations are simple
assignments and comparisons. The benchmark also shows
that the configuration BDD-Int needs substantially more time
than all other configurations on two of the verification tasks,
which means that there are some Int \ IntEqAdd variables
which cannot be handled properly in the BDD domain. This
configuration can still solve the verification tasks, however, it
has to spend more time on expensive BDD operations and is
therefore slower.

Similar to the benchmark set NTDRIVERS, the configuration
Explicit-Int is the best configuration for the benchmark set SSH.
These two benchmark sets do not benefit from using the BDD
domain. The configurations that handle more variables than the
variables contained in Bool with BDDs, cannot solve many
of the verification tasks in the benchmark set. The verification
tasks contain many variables of domain type Int \ IntEqAdd.

The verification tasks of the benchmark set SSH-SIMPLIFIED
contains some variables of each domain type, but not too
many overall. Most of the variables are of domain types
Bool and IntEqAdd \ IntEq, and this is reflected by the
good performance of the configurations BDD-IntEq and BDD-
IntEqAdd. The benchmark set SSH-SIMPLIFIED has been
derived from the files in the benchmark SSH by removing

8

http://www.sosy-lab.org/projects/domaintypes/

Explicit-Int BDD-Bool BDD-IntEq BDD-IntEqAdd BDD-Int
ECA 100 100 100 100 100
LOCKS 45 91 100 100 100
NTDRIVERS 64 64 45 45 45
PRODUCT SIMULATORS 75 75 75 75 75
SSH 100 100 35 35 0
SSH-SIMPLIFIED 77 100 100 100 100
SYSTEMC 32 32 32 80 80

TABLE II: Verification statistics for each configurations; each entry states the percentage of correctly solved verification tasks
for the given configuration.

heap access operations. The effect on the variable setup is
visible in Fig. 7, where in SSH nearly all variables are of
type Int \ IntEqAdd, and in SSH-SIMPLIFIED most variables
are of simpler domain types. This has a large impact on the
effectiveness and performance of the verification: The more
variables are encoded in BDDs, the better is the performance. A
closer look at the source code of the verification tasks reveals
that during the “simplification”, some local variables were
made global. The explicit domain is inefficient in tracking all
these variables, as can be seen in Fig. 8. If these variables are
encoded in BDDs, these problems do not exist.

The benchmark set SYSTEMC has a quite interesting char-
acteristic: it contains many IntEq \ Bool variables, but the
most successful configurations are BDD-IntEqAdd and BDD-
Int. The reason for this is that many of the verification tasks
contain uninitialized variables with an inequality comparison
and an addition on one of the variables. The explicit-value
analysis is not good at tracking facts in such cases, and thus,
the configurations that use the explicit-value analysis for some
variables terminate unsuccessfully. The configurations BDD-
IntEqAdd and BDD-Int can efficiently analyze all operations
and solve the verification tasks successfully.

F. Evaluation

Our experimental study has shown that the performance
of combined approaches depends inherently on the domain
types of the variables in the program. If the verification tasks
contain variables of domain type IntEq, then representing these
variables with the BDD domain can improve the performance
significantly. If the programs contain some IntEqAdd\IntEq
variables, analyzing them with the BDD domain does also
improve performance (e.g., in the benchmark SSH-SIMPLIFIED).
However, there seems to be a threshold at about 200 variables,
above which the overhead of analyzing integer operations with
BDDs has a visible negative effect.

Analyzing variables of domain type IntEq using BDDs
is much more efficient, so we expect the threshold to be
considerably higher for this domain type. In general, it is not
(yet) possible to make a clear statement about these thresholds,
because the performance also depends on the other variables
and on the operations that are used in the program. To counter
the negative effect of large sets of variables of “expensive”
domain types, we will in the future investigate three techniques:
(1) introduce further detailed domain types such that we can
make more fine-grained decisions on the domain assignment,
(2) a prioritization function to assign only the “most profitable”
variables to the respective domain, and (3) introduce several

1
5

50
50

0

Verified subject files

C
pu

 ti
m

e
(in

 s
ec

on
ds

)

1 21 41 61 81 101 131 161 191 221 251 281 311

●

● Explicit−Int
CPAchecker−Predicate
BDD−IntEqAdd

Fig. 9: Performance of the configuration BDD-IntEqAdd
with the baseline configuration Explicit-Int and a competitive
implementation of predicate analysis; quantile plots

instances of the abstract domains in the program analysis,
where each instance handles an independent partition of the
domain type.

To give further evidence for the quality of our ap-
proach, we compared the configuration BDD-IntEqAdd with
CPACHECKER-PREDICATE, which is based on a completely
different abstract domain (predicate abstraction) and CEGAR,
interpolation, and adjustable-block encoding [11]. The con-
figuration CPACHECKER-PREDICATE has won the category
‘ControlFlowInteger’ in the SV-COMP 2012 and another
analysis, based on CPACHECKER-PREDICATE, has won the
category ‘Overall’ in the SV-COMP 2013. Therefore, this
experiment is a representative comparison with the state-of-the-
art in performance. Fig. 9 shows a quantile plot comparing the
performance of the new configuration BDD-IntEqAdd against
CPACHECKER-PREDICATE. Both approaches can successfully
solve most verification tasks, however, the new approach
performs better in terms of CPU time, compared to both
CPACHECKER-PREDICATE and configuration Explicit-Int. In
terms of solved verification tasks, CPACHECKER-PREDICATE
performs slightly better.

Evaluative Summary. To evaluate our approach, we briefly
discuss the statements that we list at the beginning of the
section, based on the results. The first statement, concerning the
domain types has already been discussed (Fig. 7). Concerning
the variable partitioning, we confirm that analyzing variables
of different domain types with different abstract domains
can make a huge difference, in terms of effectiveness and
efficiency. There are several new configurations that outperform
the existing configurations (only explicit-value domain or only
BDD domain) on several benchmark sets. The benchmark

9

sets NTDRIVERS and SSH mainly consist of variables that do
not fit in simple domain types. So the best domain for these
files is in fact the previously existing configuration Explicit-
Int. On the other benchmarks, we can assign the variables
according to their domain types to abstract domains and in
nearly all cases, the configuration that encodes the dominant
variables with BDDs and uses the explicit-value domain for
the rest performs best. The configuration BDD-Int performs
nearly as good as the combined configurations, however, on
the verification tasks from PRODUCT SIMULATORS and SSH it
is apparent that including the support of the explicit analysis
for Int \ IntEqAdd variables is critical. Our comparison with
the configuration CPACHECKER -PREDICATE shows that our
combined approach is also competitive against other, more
optimized verification approaches that use the full power of
existing technology (including CEGAR, which we eliminated
from the discussion to not blur the picture). Overall, it might
be beneficial to use the BDD domain for variables of domain
type IntEqAdd, rather than using the explicit domain. This is
confirmed by the performance of configurations BDD-IntEq,
BDD-IntEqAdd, and Explicit-Int in most benchmark sets (except
for (NTDRIVERS and SSH). The configuration BDD-IntEqAdd
can successfully solve many verification tasks of the set
SYSTEMC, for which all other configurations fail.

G. Threats to Validity

Threats to Internal Validity. Due to the large number of
benchmark verification tasks, we could not execute every
verification run several times in order to perform statistical
significance tests on the results. However, we argue that relevant
parts of our discussion do not depend on the timing results (e.g.,
successfully solved verification tasks; number of variables per
domain type) and that the performance results are convincing.
We performed several minor changes to the benchmark sets
and configurations to address technical difficulties until we had
the final setup. None of these changed the big picture of the
results.

Threats to External Validity. The major threat to external
validity is that we have used only two abstract domains
(explicit-value and BDD) to distribute variables. However, these
domains are perfectly suited for the chosen domain types and
complement each other very well. Therefore it was an intuitive
choice. Combinations with other domains have to be explored in
future work. Another threat is that our benchmark set consists of
a small number of verification tasks or of too many verification
tasks of a certain kind. We argue that the benchmark sets
have been used by well-respected international competitions
and represent programs that are used for evaluation by others
researchers. Also, we have seen that these programs contain a
diverse set of variables.

V. RELATED WORK

The two symbolic domains BDDs and Presburger formulas
were previously use as representation for boolean and integer
variables [17]. The approach was evaluated on two systems, a
control software for a nuclear reactor’s cooling system and a

simplified transport-protocol specification. In contrast to our
work, the approach is not based on a separate analysis to
determine domain types of variables, but include the type
analysis in the actual model-checking process. By performing
the domain-type analysis in advance, we avoid overhead during
the model checking process. The approach was evaluated on a
much smaller benchmark set.

We infer domain types for program variables according to
their usage in program oparations. This principle is also used
by for type- and memory-safety analysis of C programs with
liquid types [29]. A static program analysis is used to determine
for each variable a predicate that restricts the possible values
of the variable (the liquid type). In a second step, each usage of
the variable is checked for type-safety, or if it could lead to an
unsafe memory access. In contrast to domain types, liquid types
use a predicate for each variable. liquid types are fine-grained.
Domain types can be seen as coarse-grained in comparison,
but the granularity is flexible in both approaches. Our type
checker for domain types does not depend on an SMT solver.

Roles of variables are used to analyze programs submitted
by students [14]. Program slicing and data-flow analysis is
applied to determine the role of each variable (e.g., constant or
loop index). The role determined by the analysis is compared
to the role that the students have assigned to the variables. This
work falls into the area of automated program comprehension.
The rather strong behavioral variable types might be interesting
to extend our work.

Java Pathfinder [32] has an extension that combines the
standard explicit analysis with a BDD-based analysis for
boolean variables [3], [33]. In that approach, we manually
selected the variables that are to be tracked by BDDs, based
on domain knowledge. Our new approach handles a broader
set of domain types and categorizes them automatically.

BEBOP [4], a model checker for boolean programs, encodes
all program variables (only booleans in this case) in BDDs, and
use explicit-state exploration to handle the program counter.
Our domain-type analysis would correctly classify all variables
as Bool and encode them with BDDs; thus, we subsume this
approach as a special instance. A similar strategy was followed
by others [20].

A hybrid approach combining explicit and BDD-based
representations analyzes the program variables with BDDs
and the states of the property automaton explicitly [31]. In
our setting, this translates to encoding all program variables
in BDDs, because the property automaton runs separately in
parallel, in CPACHECKER. This case can be represented in our
general framework as configuration BDD-Int.

VI. CONCLUSION

We introduced the concept of domain types, which makes
it possible to assign variables to different abstract domains
based on their usage by program operations. In this paper,
we outlined the approach by introducing a type hierarchy that
splits the declared type ‘integer’ into four more detailed domain
types, which reflect the usage of variables in the program. We
performed an experimental study with two abstract domains, in
order to confirm that the domain assignment based on domain

10

types has a significant impact on the effectiveness and efficiency
of the verification process. In the experiments, we considered
five domain assignments: one for each considered abstract
domain that tracks all program variables in one single abstract
domain, without considering the different domain types, and
three with different assignments of the variables to the two
abstract domains according to the domain type.

The insight of our work is that the concept of domain types
is a simple yet powerful technique to create verification tools
that implement a better choice for the domain assignment —
state-of-the-art is to use either one single abstract domain, or
a fixed combination of abstract domains that adjust precisions
via CEGAR or otherwise dynamically, during the verification
run. We confirmed that the benchmark set contains a significant
set of variables for which we can determine different, narrower
domain types. The insight of the domain type IntEq is that this
domain type (and even more its sub-type Bool) dramatically
decreases the number of possible values of the variables in the
internal representation, and thus can yield a large speedup in
verification time. The experiments show that performance can
be improved if the variables are tracked in an abstract domain
that is suitable for the domain type of the variable.

There is still room for improvement. For example, we can
consider CEGAR as an orthogonal improvement of the overall
verification configuration. We can also combine more analyses
through the communication between different domains using
the strengthen operator — so far we use a simple cartesian
combination. This would enable even finer domain assignments
and to use more abstract domains in parallel.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] American National Standards Institute. ANSI/ISO/IEC 9899-1999:
Programming Languages — C. American National Standards Institute,
1430 Broadway, New York, NY 10018, USA, 1999.

[3] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer. Strategies
for product-line verification: Case studies and experiments. In Proc. ICSE.
IEEE, 2013.

[4] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean
programs. In Proc. SPIN, pages 113–130, 2000.

[5] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

[6] D. Beyer. Competition on software verification (SV-COMP). In Proc.
TACAS, LNCS 7214, pages 504–524. Springer, 2012.

[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–
525, 2007.

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with
dynamic precision adjustment. In Proc. ASE, pages 29–38. IEEE, 2008.

[9] D. Beyer, T. A. Henzinger, G. Théoduloz, and D. Zufferey. Shape
refinement through explicit heap analysis. In Proc. FASE, LNCS 6013,
pages 263–277. Springer, 2010.

[10] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer,
2011.

[11] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD,
2010.

[12] D. Beyer and S. Löwe. Explicit-state software model checking based
on cegar and interpolation. In Proc. FASE, LNCS 7793, pages 146–162.
Springer, 2013.

[13] D. Beyer and A. Stahlbauer. BDD-based software model checking with
CPACHECKER. In Proc. MEMICS, LNCS 7721, pages 1–11. Springer,
2013.

[14] C. Bishop and C. G. Johnson. Assessing roles of variables by program
analysis. In Conference on Computer Science Education, pages 131–136.
TUCS, 2005.

[15] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Proc. PLDI, pages 196–207. ACM, 2003.

[16] R. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[17] T. Bultan, R. Gerber, and C. League. Composite model-checking: verifi-
cation with type-specific symbolic representations. ACM Transactions
on Software Engineering and Methodology (TOSEM), 9(1):3–50, 2000.

[18] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Proc. LICS, pages
428–439. IEEE, 1990.

[19] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. Verifying
SystemC: A software model checking approach. In Proc. FMCAD,
pages 51–59. IEEE, 2010.

[20] A. Cimatti, M. Roveri, and P. Bertoli. Searching powerset automata by
combining explicit-state and symbolic model checking. In Proc. TACAS,
pages 313–327, 2001.

[21] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[22] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic Model
Checking of Software Product Lines. In Proc. ICSE, pages 321–330.
ACM, 2011.

[23] K. Dudka, P. Müller, P. Peringer, and T. Vojnar. PREDATOR: A verification
tool for programs with dynamic linked data structures. In Proc. TACAS.
Springer, 2012.

[24] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In
Proc. CAV, LNCS 1254, pages 72–83. Springer, 1997.

[25] K. Havelund and T. Pressburger. Model checking Java programs using
Java PATHFINDER. Int. J. Softw. Tools Technol. Transfer, 2(4):366–381,
2000.

[26] G. J. Holzmann. The SPIN model checker. IEEE Trans. Softw. Eng.,
23(5):279–295, 1997.

[27] F. Howar, M. Isberner, M. Merten, B. Steffen, and D. Beyer. The RERS
grey-box challenge 2012: Analysis of event-condition-action systems. In
Proc. ISoLA, LNCS 7609, pages 608–614. Springer, 2012.

[28] K. L. McMillan. The SMV system. Technical Report CMU-CS-92-131,
Carnegie Mellon University, 1992.

[29] P. M. Rondon, A. Bakst, M. Kawaguchi, and R. Jhala. Csolve: Verifying
C with Liquid Types. In Proc. CAV, pages 744–750, 2012.

[30] M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[31] Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi. Symbolic
systems, explicit properties: on hybrid approaches for ltl symbolic model
checking. In Proc. CAV, pages 350–363. Springer, 2005.

[32] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking
Programs. Automated Software Engineering, 10(2):203–232, 2003.

[33] A. von Rhein, S. Apel, and F. Raimondi. Introducing Binary
Decision Diagrams in the Explicit-State Verification of Java Code.
http://www.infosun.fim.uni-passau.de/cl/publications/docs/JPF2011.pdf,
2011.

11

	I Introduction
	II Background
	III Domain Types
	III-A Domain Types — Classification
	III-B Domain Types — Analysis
	III-C Domain Assignment

	IV Experimental Evaluation
	IV-A Implementation
	IV-B Experimental Setup
	IV-C Verification Tasks
	IV-D Results
	IV-E Relating Results to Domain Types
	IV-F Evaluation
	IV-G Threats to Validity

	V Related Work
	VI Conclusion
	References

