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Abstract. Verification is a complex algorithmic task, requiring large
amounts of computing resources. One approach to reduce the resource
consumption is to reuse information from previous verification runs. This
paper gives an overview of three techniques for such information reuse.
Conditional model checking outputs a condition that describes the state
space that was successfully verified, and accepts as input a condition that
instructs the model checker which parts of the system should be verified;
thus, later verification runs can use the output condition of previous runs
in order to not verify again parts of the state space that were already
verified. Precision reuse is a technique to use intermediate results from
previous verification runs to accelerate further verification runs of the
system; information about the level of abstraction in the abstract model
can be reused in later verification runs. Typical model checkers provide
an error path through the system as witness for having proved that a
system violates a property, and a few model checkers provide some kind
of proof certificate as a witness for the correctness of the system; these
witnesses should be such that the verifiers can read them and —with less
computational effort— (re-) verify that the witness is valid.

1 Introduction

Algorithms for automatic verification require large amounts of computing re-
sources [2, 18]. Furthermore, one verification run of a single verification tool is
often not sufficient to completely solve practical verification problems. The ver-
ifier might fail to give an answer for various reasons, for example due to the
lack of resources (time and memory), an architectural weakness or a missing
feature, or simply due to a bug in the verifier. In such cases, the verification
process would often be continued on a more powerful engine or using a differ-
ent verification approach. Sometimes automatic verifiers report wrong answers,
and thus, in safety-critical applications it might be desired to rely not only on
a single tool, but instead repeat the verification using several other verifiers in
order to increase the confidence in the result. A verification run might also be
repeated because it was run by an untrusted third party, and the result needs to
be re-checked. Some systems consist of many connected components that are ver-
ified independently (compositional verification), or of a series of similar products
that differ in the set of features that they contain (product-line verification) [1].
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When a system is developed, it is desired to detect specification violations soon
after they are introduced in order to support early bug fixing; thus, verifica-
tion should be applied on each new version of the system (regression verifica-
tion) [21, 30], and even after each single change. This requires a large number
of verification runs and enormous computing resources. Regression checking is
state-of-the-art in testing, and regression test selection is a well-known and estab-
lished technique to reduce the number of tests [27]. Verification tools themselves
are also under development, and a regression-checking test suite consisting of
many verification tasks with known verification result [4] can be used to detect
new bugs in current versions of the verifier.

In all of the above-mentioned verification tasks it would be possible and ben-
eficial to store information from previous verification runs to reduce the compu-
tational effort, or to increase the quality of the verification result. More research
projects are necessary to provide solutions for more reuse of (intermediate) verifi-
cation results, and for making the existing verification technology more successful
in industrial applications.

We identified three categories in which information from a previous verifi-
cation run should be used in order to spare computational effort that would
otherwise be necessary: (1) the use of partial results of verification runs that
were not able to completely verify the system; (2) the reuse of auxiliary infor-
mation that was computed during previous verification runs in order to speed
up later verification runs; (3) the use of witnesses for verifying the correctness
of previous results.

For each of these categories we present one example from software verification
and illustrate the effectiveness of the approach by some experimental evaluation.
First, conditional model checking [8] is an approach in which a verifier takes as
input a condition that specifies which parts of the program should be verified,
and produces an output condition that specifies which parts of the state space
were successfully verified. The output condition of one verification run can be
used as the input condition of a subsequent run such that the latter can skip
the already-verified parts of the state space and focus on the remaining state
space. Second, many approaches that are based on CEGAR [17] use some form
of precision that specifies the level of abstraction of the abstract model that gets
constructed for the analysis of the system (e.g., predicate abstraction [3,7,19,20]).
This information about the precision can be dumped after a verification run and
read in before starting another run (e.g., [13]), reducing the verification time
of the latter run because the precision is already computed and many refine-
ment steps are automatically omitted. Third, model checkers typically provide
a counterexample (an error path) if a violation of the specification is found in
the system, in order to help the user identifying and eliminating the bug. Such
counterexamples can also be used —if exported in a machine-readable format—
for (re-)verifying if the result of the model checker is (still) correct.

Related Work. We restrict our discussion of related work to automated soft-
ware verification. Conditional model checking [8] allows to start the overall veri-
fication process using one verifier (depending on the abilities of the verifier, the
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result might be partial), and later use another verifier to further increase the ver-
ification coverage, i.e., check the remaining state space. For example, if model
checkers are not able to verify certain properties of the system, (guided) testing
tools can be used in a second step to increase confidence of correctness for the
remaining, not yet verified parts of the state space [16].

Reusing information from a successful verification run for previous versions
of a modified system is the basis of many approaches for regression verifica-
tion [30]. Different forms of information have been proposed for reuse: state-space
graphs [23,24,33], constraint-solving results [31,34], function summaries [29], and
abstraction precisions [13]. Some of the data can become quite large compared to
the system under investigation, and in most cases there needs to be a validation
check on whether it is sound to reuse the information (i.e., whether the infor-
mation still applies to a new version of the system). Precisions are concise and
can be reused by the same algorithm that produces them, without a separate
validation step.

Most state-of-the-art model checkers produce a counterexample for inspection
by the user if the system violates the property, in order to guide the user in the
defect-identification process. However, only a few verifiers support witnesses for
verification runs showing that the property holds: more verifiers should provide
witnesses for correctness. Well-known forms of witnesses for the correctness of
a program are proof-carrying code [26], program invariants [22], and abstract
reachability graphs [23]. A program for which a safety proof has been found
can also be transformed into a new program that is substantially easier to re-
verify [32], although verifying the transformed program does not guarantee that
the original program is correct.

Experimental Setup. In order to show that reusing verification results is ben-
eficial in many cases, we perform a series of experiments using the open-source
software-verification framework CPAchecker1. We use revision 7952 from the
trunk of the project’s SVN repository. CPAchecker integrates many successful
verification approaches. In particular, we use its predicate analysis [11] and its
explicit-value analysis [12]. Both are based on CEGAR and lazy abstraction.

The benchmark set that we use in this paper consists of the C programs from
the 2nd Competition on Software Verification 2 [5], except for the categories
“Concurrency” and “Memory Safety”, for which CPAchecker has no support.
Thus, our benchmark set contains a total of 2250 C programs, 480 of which
contain a known specification violation.

We use machines with an Intel Core i7-2600 3.4 GHz quad-core CPU and
32 GB of RAM, allowing the verifier to use two cores (plus two hyper-threading
cores) and 15 GB of RAM. The time limit is set to 15 minutes of CPU time.
We run two independent instances of the verifier in parallel on each machine,
in order to speed up the benchmarking. The operating system of the machines
is Ubuntu 12.04 with Linux 3.2 as kernel and OpenJDK 1.7 as Java virtual
machine.

1 http://cpachecker.sosy-lab.org
2 http://sv-comp.sosy-lab.org

http://cpachecker.sosy-lab.org
http://sv-comp.sosy-lab.org
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The CPU time is measured and reported in seconds with two significant digits.
The memory consumption is measured including the Java VM that CPAchecker
uses as well as the memory that all other components of the verification process
(e.g., the SMT solver) need and is given in megabyte with two significant digits.

We present our results using scatter plots that compare a configuration with-
out information reuse versus a configuration with information reuse. Each data
point in such a plot represents the performance results of one verification task,
where the x-value reports the verification time that is needed in the initial run,
and the y-value reports the verification time that is needed in the second run, in
which some information from the first run was reused. Thus, data points in the
lower-right triangle (with the x-value greater than the y-value) show a speedup
through information reuse, with the performance benefit increasing with the dis-
tance of the data point from the diagonal. Instances that cannot be verified due
to a timeout of the verifier are shown with a time of 900 s and are drawn at the
right or top of the plots.

2 Conditional Model Checking

In traditional model checking, the outcome of a verification run is either “safe”
or “unsafe”. However, it may also happen that a model checker fails and pro-
duces no result at all, for example due to resource exhaustion. In such cases, the
computational effort that was invested is lost. Conditional model checking [8]
redefines model checking in order to solve this problem. A conditional model
checker gives as output a condition Ψ that states under which condition the an-
alyzed program satisfies the given specification. This condition is produced even
in case of a failure, and thus, the consumed resources are not wasted because
every run produces some useful result. The previous outcome “safe” translates
to Ψ = true, and the outcome “unsafe” translates to Ψ = false, however, the
condition allows for more flexible outcomes. For example, in case of a timeout, a
conditional model checker would summarize the already verified part of the state
space in the condition, stating that the program is safe, as long as its execution
stays within this part. In case of an unsound analysis like bounded model check-
ing with a fixed loop bound, or an algorithm with an incomplete pointer-alias
analysis, these assumptions for program safety would also be explicitly given in
the output condition, e.g., the program is safe under the assumption “pointers p
and q are not aliased”.

Furthermore, a conditional model checker also takes as input a condition that
specifies parts of the state space that are already verified, i.e., which the model
checker can omit and should not verify again. This can be used to restrict the
analysis, e.g., to at most k loop unrollings (well-known as bounded model check-
ing [14]), to paths not longer than n states, or to some maximum amount of
time or memory.

Conditional model checking makes it possible to combine two (or more) ver-
ifiers and leverage the power of both. Figure 2 illustrates two example combi-
nations, sequential combination with information passing and combination by
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Fig. 1. Combination strategies using conditional model checkers; left: sequential com-
bination with information passing; right: combination by partitioning (compositional
verification)

partitioning; for more application examples, we refer the reader to the full arti-
cle [8]. In contrast to previous combinations of different techniques (e.g., reduced
product for combining different abstract domains [9, 15]), the techniques that
are combined using conditional model checking can be implemented in different
tools, can run on different platforms, even at different locations, or in the cloud;
because the interaction and information exchange is realized via implementation-
independent conditions.

Sequential Combination with Information Passing. Conditional model
checking supports a sequential combination of two verifiers, such that the output
condition of the first verifier (describing the successfully verified state space) can
be used as input condition for the second verifier. This way, the second verifier
will not attempt to verify the state space that was already proven safe by the
first verifier. The left part of Fig. 2 illustrates how information can be passed
from the first to the second model checker through condition Ψ1; per default, the
first model checker starts with false as input condition, i.e., nothing is already
verified. The condition Ψ1 represents the state space that the first model checker
was able to verify. The second model checker starts with Ψ1 as input and tries
to verify the state space outside of Ψ1, i.e., tries to weaken the condition. If
the second model checker terminates with output condition Ψ2 = true, then
the sequential combination was successful in completely solving the verification
problem. If already the first model checker returns Ψ1 = true, then the second
model checker has nothing to do; otherwise, the sequential combination is reusing
information from the first verification run in the second verification run, making
the analysis more powerful than any of them alone.

It is well known that different verification techniques have different strengths
and weaknesses on different kinds of programs; the same applies to program parts.
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For example, consider a program that contains loops with many iterations as well
as non-linear arithmetic. An explicit-state analysis might fail on the loops due
to resource exhaustion, whereas a predicate-based analysis might not be able
to reason about non-linear arithmetic, and thus, none of the two techniques is
able to verify the program on its own. Given an implementation of each analysis
as conditional model checker, and a setup that reuses the output condition of
one as the input condition for the other, verification of such a program becomes
possible. One could run the (conditional) explicit-value analysis first, specifying a
maximum path length as input condition. Thus the analysis would not waste all
available resources on endlessly unwinding loops, but instead verify the rest of the
program, and summarize the results in the output condition. If the subsequent
run of the predicate analysis gets this information as input condition, it can focus
on the still-missing parts of the state space (the loops), and skip the rest (which
in this case, the predicate analysis would not be able to verify due to the non-
linear arithmetic). Thus, the complete analysis might prove the program safe,
although the same sequential combination without information reuse would not
be able to verify the program.

Combination by Partitioning. Conditional model checking also supports
compositional verification, which can be set up as a combination where the
state space is partitioned into two partitions and two verifiers are started each
with an input condition that represents its (negation of the) partition. This way,
each verifier concentrates on different aspects of the verification task. If both
verifiers succeed to relax the condition to true, then the verification task is com-
pletely solved. Otherwise, the output condition φ1∧φ2 represents the state space
that was successfully verified. This concept allows a convenient construction of
compositional verification strategies. In this paper, in which we focus on reuse
of verification results, we now concentrate on experiments with the sequential
composition.

Experimental Evaluation. We refer to previous experimental results
from 2012 [8] to give evidence that conditional model checking, and the combi-
nation of verifiers that it makes possible, can verify more programs in less time.
For those experiments, we used a benchmark set that consists of 81 programs
created from the programs in the categories “SystemC” and “DeviceDrivers64”
(two categories that were considered particularly hard) of the Competition on
Software Verification 2012 (SVCOMP’12) [4].

As an example for conditional model checking we show the results for a configu-
ration that combines two verifiers sequentially with information passing between
the verifiers. The first verifier that is used is an explicit-value analysis that is
quite fast for some programs but inefficient for other, more complex programs
due to state-space explosion. This analysis is configured to stop itself after at
most 100 s. If it terminates without a complete result “safe” or “unsafe” (due
to the timeout, or due to imprecision), it dumps a summary of the successfully
verified state space as an output condition. The second verifier, which uses a
powerful predicate analysis based on CEGAR, lazy abstraction, and adjustable-
block encoding [11], continues the verification for the remaining time up to the
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Fig. 2. Scatter plot comparing the verification time of a predicate analysis with the ver-
ification time of a conditional-model-checking configuration that uses both an explicit-
value analysis and a predicate analysis

global time limit of 900 s. This analysis takes the output condition that was pro-
duced by the first verifier as input condition such that it will ignore the already
verified state space and focus on the remaining parts. We compare this instance
of conditional model checking against a stand-alone predicate analysis, in the
configuration that was submitted to SVCOMP’12 [25].

The stand-alone predicate analysis is able to solve 58 of the 81 verification
tasks in 31 000 s. The configuration based on conditional model checking instead
verified 75 programs in only 14 000 s. Figure 2 presents the verification times for
both configurations for 78 out of the 81 benchmark verification tasks (excluding
3 cases where one verifier ran out of memory and aborted prematurely). The
majority of the data points is positioned in the lower-right triangle, which shows
the performance advantage of conditional model checking. In some cases, the ver-
ification time for conditional model checking is just over 100 s and the predicate
analysis alone needs only a few seconds. These are verification tasks for which
the explicit-value analysis, which is started first in our setup of conditional model
checking, is not able to solve the program in its time limit of 100 s, and the pred-
icate analysis that is started subsequently verifies the programs in a short time.
Note that there is a significant amount of data points to the right-most area of
the plot: these are the verification tasks on which the predicate analysis alone
times out. Some of these programs even take more than 100 s when verified with
conditional model checking, which means that they were successfully verified by
the predicate analysis after the explicit-value analysis terminated, although the
predicate analysis alone could not successfully verify them. The verification of
these programs is only possible by information reuse, that is, by restricting the
predicate analysis to the state space that the explicit-value analysis could not
successfully verify. A simple sequential combination of both analyses without
information passing would not have been able to verify those programs.
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3 Precision Reuse

There are many applications for re-verifying a program that was already verified.
Common to all these cases is the fact that information from previous verifica-
tion runs for the same program would in principle be available, and could be
used to speedup subsequent verification runs. Thus, it seems worthwhile to save
such information in a machine-readable way after each verification run for the
program, for later reuse.

Several successful software-verifiers are based on CEGAR, and continuously
refine an abstract model of the program to be analyzed, until the model is strong
enough to prove safety or find a violation of the property. The precision (level of
abstraction) that is used for constructing and verifying the abstract model is cru-
cial information for the success of such CEGAR-based analyses, and discovering
an appropriate precision is usually one of the most expensive tasks of the verifier
(possibly involving a large number of refinement steps). However, given the pre-
cision as input, the verifier can immediately construct an appropriate abstract
model and verify the abstract model without further refinements. Thus, such pre-
cisions are suited for being reused in subsequent verification runs, as was shown
in previous work for the application of this concept to regression verification [13].
For example, predicate analysis with CEGAR and lazy abstraction (e.g., [7]) is
a well-known analysis that uses precisions. In this case, the precision contains
the set of predicates over program variables that are tracked by the analysis,
and (in case of lazy abstraction) the program locations at which the predicates
are relevant. A precision can also be used for explicit-value model checking [12],
in which case the precision stores the program variables that are relevant for
the verification; all other program variables should be abstracted away by the
verifier. Similar precisions can be used for analyses based on other abstract do-
mains, such as intervals or octagons. Precisions are usually much smaller than
the program itself, and can be easily dumped after the verification run.

If a precision for a given program is present from a previous verification run,
it can easily be used as the initial precision of a subsequent verification run,
instead of the usual (coarse) initial precision. Thus, no refinements are necessary
anymore (given that the program was not changed). In contrast to other ap-
proaches like proof checking, where a separate algorithm is needed for verifying
the proof, precision reuse does not require a new algorithmic setup: the same
analysis and algorithm that produce the precision in a first verification run are
the components that use the precision in a subsequent verification run. Further-
more, if the provided precision does not fit to the program (for example because
the program was changed, or the user provided a wrong input file), there is no
risk of incorrect verification results. Instead, the verifier will simply detect that
the abstract model is not strong enough to verify the given property by finding
spurious counterexamples, and will use refinements to strengthen the abstract
model as it would in a verification run without a given input precision.

Experimental Evaluation. Both the predicate analysis and the explicit-value
analysis of CPAchecker are based on CEGAR and use a precision to define the
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Table 1. Results for precision reuse

Analysis Programs Without precision reuse With precision reuse

Solved CPU Memory Solved CPU Memory
Tasks Time Avg. Max. Tasks Time Avg. Max.

Explicit-Value Safe 1529 13000 270 9600 1529 6100 170 8200
Unsafe 298 23000 1400 8100 298 2000 320 3200

Predicate Safe 1518 27000 280 13000 1516 13000 210 12500
Unsafe 422 16000 480 8700 420 11000 360 8600

(a) Explicit analysis (safe programs) (b) Predicate analysis (safe programs)

(c) Explicit analysis (unsafe programs) (d) Predicate analysis (unsafe programs)

Fig. 3. Scatter plots comparing the verification time without input precision versus
with precision reuse
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level of abstraction. We used the existing implementation for writing precisions to
disk after each verification run and for reading an initial precision from disk before
the verification. We experimented with precision reuse for all 2 250 programs of
the benchmark set described in Sect. 1. A summary of all results can be found in
Table 1. Detailed results are provided on the supplementary web page 3.

Out of the 1 770 programs that are known to be safe, the explicit-value analysis
of CPAchecker successfully verified 1 529 instances in 13 000 s, using 270 MB
of memory on average. Out of the 480 unsafe programs, 298 were verified in
23 000 s, using 1 400 MB of memory on average. If we reuse the precisions that
were produced in these runs as initial precision in a second run, the verification
takes only 6 100 s, i.e., less than half of the time for the safe programs, and
2 000 s, i.e., less than 10 %, for the unsafe programs. The memory consumption
is also considerably lower if reusing a given precision, dropping (for the unsafe
programs) from 1400 MB on average to 320 MB.

The predicate analysis could successfully verify 1 518 out of 1 770 safe pro-
grams in 27 000 s. With the precisions reused, 1 516 programs can be verified in
only 13 000 s. There are two programs that were verified in the initial run in 480 s
and 680 s, respectively, but CPAchecker reached the timeout of 900 s when the
precision was given as input. Also there are three programs for which the veri-
fication with precision reuse needs significantly more time (factor 3 to 10). For
all five programs mentioned above, there was only a small number of refinements
(1 to 7) in the initial run, and only less than 4 s was spent on these refinements
per program (mostly even around only 0.5 s). This means that the potential ben-
efit was already small for these programs. Furthermore, CPAchecker uses lazy
abstraction and thus may have used different precisions on different paths of the
programs. Our implementation of precision reuse, however, assigns the same pre-
cision on all paths of the program, leading to a possibly stronger and thus more
expensive abstract model. This is not a general drawback of precision reuse.

The results for the unsafe programs are similar. The predicate analysis finds
a counterexample for 422 out of 480 unsafe programs in 16 000 s, and using the
generated precisions as input it finds 420 counterexamples in 11 000 s. Again, two
programs cannot be verified when a precision is reused, and there are a few cases
for which the necessary verification time is higher. For unsafe programs, there
are also other factors that influence the results. For example, depending on the
order in which the control-flow automaton is traversed, the analysis might find
the first counterexample sooner or later, and with more or less refinements, thus
with a different potential performance advantage by precision reuse.

Figure 3 illustrates the results using four scatter plots, one for each
CPAchecker configuration, and for the safe and the unsafe programs. Cases
in which the verifier timed out in the initial run and thus produced no reusable
precision are omitted. The graphs show that precision reuse is beneficial, because
the vast majority of data points are located in the lower-right triangle. For the
explicit-value analysis, there is no verification task for which the run time is
significantly increased by precision reuse.

3 http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/

http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/
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4 Verification Witnesses and Their Re-verification

It is common that model checkers produce a counterexample if the system vi-
olated the property, as witness of the verification result. The main purpose of
the counterexample is to convince the user of the verification result and to guide
the user in the defect-identification process. Below we argue that it is necessary
to (1) produce a counterexample in a machine-readable format, such that the
counterexample can be re-verified later, and to (2) analyze the counterexample
for feasibility not in isolation, but in relation to the program to be analyzed.

It would also be desirable to produce witnesses for verification runs that prove
that the property holds. It seems to be an open research question to achieve this,
perhaps because a witness for correctness can have a size exponential in the
size of the input program. There are important research results available on
witnesses for the correctness of a program, for example, proof-carrying code [26],
program invariants [22], and abstract reachability graphs [23]. Unfortunately, it
did not yet become state-of-the-art to support those techniques in verification
tools. Hopefully, since tools for software verification became more mature in the
last years, as witnessed by the competition on software verification [5], there will
be a need for certification of verification claims. That is, in the future, it will not
be sufficient to report a verification answer (“safe” or “unsafe”), but one has to
support the claim by a verification witness (proof certificate).

Re-verification of Counterexamples. The re-verification of previous verifi-
cation results can be supported by intermediate results, as outlined in the pre-
vious sections, but also by providing witnesses for the verification result. We
now consider the re-verification of verification results where a violation of the
property is reported and a counterexample is produced. It seems obvious that
verifying if only a single given path out of the program violates the specification
is more efficient than verifying the complete program and finding a specification-
violating path in it. Our experiments support this claim with encouraging num-
bers, showing that the benefit is indeed present, even if the counterexample
is re-verified against the original program. There are two important properties
that the witness-based re-verification has to fulfill: the use of machine-readable
counterexamples and the re-verification against the original program.

Machine-readable counterexamples. First, we need the verifier to dump informa-
tion about the found counterexample of an unsafe program in a machine-readable
format, which can later be reused in a re-verification run to restrict the verifica-
tion process to this single path (e.g., by giving the negation of the counterexam-
ple as input to a conditional model checker). One possibility would be to dump
the source code of a new program that corresponds to a single counterexample
of the original program. This new program would be free of loops and branches,
and thus hopefully easy to verify. However, in the case where the goal of re-
verifying a counterexample is increased confidence, this is not a good idea. If the
verifier that is used in the first verification run is imprecise and reports an infea-
sible counterexample, it might generate a witness program that does contain a
specification violation, but does not correspond to an actual path of the original
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CONTROL AUTOMATON PathGuidingAutomaton

INITIAL STATE s0;

STATE USEFIRST s0:
// match declaration statement of program and goto state s1
MATCH "int x;" -> GOTO s1;
// match all other statements and stop exploration of path
TRUE -> STOP;

STATE USEFIRST s1:
// match assume statement of program and signal specification violation
MATCH "[x==0]" -> ERROR;
// match all other statements and stop exploration of path
TRUE -> STOP;

END AUTOMATON

Fig. 4. Example automaton for guiding the verifier along a certain path (written in
CPAchecker’s specification language), which can be used for re-playing a previously
reported counterexample on the original program

program. In this case, the second verifier would correctly claim that the witness
program is indeed unsafe, leading the user to an incorrect conclusion about the
correctness of the original program.
“Re-playing” Counterexamples. Second, counterexamples should be re-verified
against the original program, not in isolation. This strategy is motivated by
verification results delivered from untrusted verification engines, the need to
re-verify slightly changed programs (regression verification), and excluding spu-
rious counterexamples that were reported by imprecise verification tools. For
the implementation of this strategy —using the original program as input for
the re-verification run— we propose to use a simple language for automata that
guide the verifier along a certain path, in order to have the verifier exactly re-
play the previously found counterexample. The automaton needs to be able to
match operations of the program (possibly by textual matching, or by line num-
bers), to guide the verification, preventing the exploration of unrelated paths,
and to specify a certain state of the program as a target state whose reachability
should be checked by the verifier. Previous work on specification languages based
on automata can be used to implement this strategy (e.g., [6, 10, 28]).

We can use the automaton language that the verifier CPAchecker accepts
as specification format for counterexamples without any changes. An example
for such an automaton is given in Fig. 4. An automaton for guiding the verifier
along a single path in a program consists of a set of states, where each state
has exactly one edge that matches a single program operation and leads to the
successor state. For all other program operations that cannot be matched, the
automaton instructs the verifier to stop exploring the path along that program
operation. At the end of this chain of states, the automaton switches to a special
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Table 2. Results for re-verification of counterexamples

Analysis Initial verification Re-verification

Solved CPU Memory Solved CPU Memory
Tasks Time Avg. Max. Tasks Time Avg. Max.

Explicit-Value 299 24000 1400 8400 299 870 140 890

Predicate 422 18000 490 8900 422 1300 120 590

error state, which informs the verifier that the corresponding program state is
a specification violation. If the verifier reaches this state, then it reports the
program as unsafe.

Such an automaton that matches program operations along a counterexample
path is easy to produce for all kinds of analyses that are able to reproduce a single
finite path through the control-flow of the verified program as a representation of
a counterexample. This includes analysis approaches based on creating abstract
reachability graphs (which are unrollings of the control flow), but also other
analyses like bounded model checking, if some information about the structure of
the control flow is encoded in the generated formula and a path is reconstructed
using the information from a model for the program formula.

The automaton is also easy to use as input for the re-verification step, if the
verifier is based on traversing the control-flow of the program. In this case, when-
ever the verifier follows a control-flow edge, it would also execute one edge of the
automaton and act accordingly (i.e., continue or stop exploring this path). Again,
this strategy is applicable to verifiers based on abstract reachability graphs, but
also to others. For bounded model checking, this can be implemented in the first
phase where the program is unrolled and a single formula is created representing
the program. With such an automaton, the unrolling would be restricted and the
generated formula represents only that single path, which could then be verified
by checking the formula for satisfiability as usual. The complexity of both gen-
erating and using the automaton is linear in the length of the counterexample.
Experimental Evaluation. To support experiments with re-verification
of counterexamples, we implemented the export of a counterexample as au-
tomaton in CPAchecker’s specification language. Our implementation in the
CPAchecker framework can be used with all available configurable program
analyses that are based on abstract reachability graphs and is available via the
project’s SVN repository.

We experimented again with the explicit-value analysis and the predicate
analysis. A summary of the results is presented in Table 2. Detailed results
are provided on the supplementary web page 4. The explicit-value analysis of
CPAchecker finds the bug in 299 out of the 480 unsafe programs from our
benchmark set (for the remainder, it fails or runs into a timeout). The produced
counterexample automaton can be used as verification witness, e.g., in a second
4 http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/

http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/
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(a) Explicit analysis (b) Predicate analysis

Fig. 5. Scatter plots comparing the run time for finding a counterexample in the com-
plete program vs. re-verifying a given counterexample

verification run of the original program in order to explicitly verify only this
single path. The re-verification confirms the counterexample for all verification
tasks. The run time for finding the counterexamples in the first run was 24 000 s
for the 299 programs. The run time for re-verifying the produced counterexam-
ples was only 870 s, i.e., less than 4 %. The average memory consumption was
1 400 MB for the initial runs, and 140 MB for the re-verification runs.

CPAchecker’s predicate analysis could find a counterexample for 422 pro-
grams in 18 000 s. The re-verification of these counterexamples took only 1 300 s.
There was only one verification task for which the re-verification took longer
than 13 s. For 40 verification tasks, the initial verification run to identify a coun-
terexample took longer than 100 s.

The maximum memory consumption per analyzed program, i.e., the amount
of memory that the machine needs to have available, is also lower for re-
verification. For the initial verification runs, the maximum memory consumption
was 8 400 MB (explicit-value analysis) and 8 900 MB (predicate analysis). During
the re-verification of the counterexamples, the maximum memory consumption
was 890 MB and 590 MB, respectively. This means the following: while for finding
the bugs in the complete programs, the machine needs to be powerful (more than
8 GB of RAM are still not common for developer machines), the re-verification
can be performed on practically any available machine (even machines older than
8 years and small netbooks tend to have at least 1 GB).

Scatter plots for the results of all successfully verified programs are shown in
Fig. 5. The results are interesting: the verification time for re-verifying a coun-
terexample is less than 4 s for most of the programs, regardless of the verification
time that was needed for finding the counterexample in the original program.
There are no verification tasks for which the verification time for re-verification
significantly exceeds the run time for the initial verification run.
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It is an important insight to have confirmed that the re-verification can be
performed on a much less powerful verification engine, and thus, is significantly
less expensive overall. This justifies the use of untrusted computing engines for
the verification process: it is reasonably inexpensive to confirm the correctness
of verification results that arrived with status “unreliable”.

5 Conclusion

We have shown that the reuse of verification results from previous verification
runs can save significant amounts of resources (time and memory). As exam-
ple applications, we explained three different strategies for reusing verification
results: conditional model checking, precision reuse, and verification witnesses.
We illustrated the benefits of reusing verification results by reporting on exper-
imental results. Reusing verification results from previous verification attempts
does not only improve the performance, but sometimes also the effectiveness,
i.e., more verification tasks can be solved. Systems that are currently still too
complex to be verified by one single verifier could be verified by combination
and information passing between verification runs. More such techniques need
to be developed and used in the future, in order to apply automatic verification
to large-scale industrial systems.

Important future work, in order to make information reuse practically applica-
ble, includes research on defining standardized formats. Such standard formats
are the key for combining different verification tools and for reusing (partial) ver-
ification results across different verification approaches. For example, a common
format for verification witnesses (proof certificates as well as counterexamples)
would increase the adoption of verification technology by verification engineers
in practice, by providing an easy way for re-verifying results and integrating ver-
ification within development tool chains. Besides the conditions of conditional
model checking and the witnesses, we demonstrated that intermediate results
such as precisions have a lot of potential for reuse. More research is necessary to
investigate which information is to be saved and reused.
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