
Int J Softw Tools Technol Transfer (2014) 16:507–518
DOI 10.1007/s10009-014-0334-1

RERS

BDD-based software verification
Applications to event-condition-action systems

Dirk Beyer · Andreas Stahlbauer

Published online: 19 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In software model checking, most successful
symbolic approaches use predicates as representation of
the state space, and SMT solvers for computations on the
state space; BDDs are often used as auxiliary data structure.
Although BDDs are applied with great success in hardware
verification, BDD representations of software state spaces
were not yet thoroughly investigated, mainly because not
all operations that are needed in software verification are
efficiently supported by BDDs. We evaluate the use of a
pure BDD representation of integer values, and focus on a
particular class of programs: event-condition-action (ECA)
programs with limited operations. A symbolic represen-
tation using BDDs seems appropriate for ECA programs
under certain conditions. We configure a program analy-
sis based on BDDs and experimentally compare it to four
approaches to verify reachability properties of ECA pro-
grams: an explicit-value analysis, a symbolic bounded-loops
analysis, a predicate-abstraction analysis, and a predicate-
impact analysis. The results show that BDDs are efficient
for a restricted class of programs, which yields the insight
that BDDs could be used selectively for variables that are
restricted to certain program operations (according to the
variable’s domain type), even in general software model
checking. We show that even a naive portfolio approach,
in which after a pre-analysis either a BDD-based analysis
or a predicate-impact analysis is performed, outperforms all
above-mentioned analyses.

Keywords Binary decision diagram · BDD · Symbolic
model checking · Software model checking · Program

An earlier version was published in Proc. MEMICS’12 [18].

D. Beyer (B) · A. Stahlbauer
University of Passau, Passau, Germany

analysis · Event-condition-action system · RERS challenge ·
Configurable software verification · CPA

1 Introduction

The internal representation of sets of reachable abstract
states is an important factor for the effectiveness and effi-
ciency of software model checking. Binary decision dia-
grams (BDD) [24] are an efficient data structure for manipu-
lating large sets, because they store the sets in a compressed
representation, and operations are performed directly on the
compressed representation. BDDs are used, for example, to
store the state sets in tools for hardware verification [26,27],
for transition systems in general [21,43], for real-time sys-
tems [15,23,28], and push-down systems [36]. There are sys-
tems for relational programming [6] based on BDDs, and the
data structure is used for points-to program analyses [4].

In this paper, we use BDDs as representation of state sets
in the verification of C programs, with a focus on event-
condition-action (ECA) systems that use a limited set of
operations. Such ECA programs were used as benchmarks
in recent verification challenges [39,40].1 For a special sub-
class of ECA programs, BDDs seem to be a promising rep-
resentation of state sets for two reasons. First, the programs
that we consider consist of a single loop in which many con-
ditional branches occur. In each of those branches, the con-
dition is a boolean combination of equalities and negated
equalities between variables and values, and the action is
a sequence of assignments to variables. This means that
all required operations are in fact efficiently supported by
BDDs, and a symbolic representation using BDDs seems
indeed appropriate for this particular class of programs. Sec-

1 http://rers-challenge.org/.

123

http://rers-challenge.org/


508 D. Beyer, A. Stahlbauer

ond, due to the complex control and data flow of these ECA
programs, they are challenging verification tasks for tradi-
tional techniques. The formulas that are used as represen-
tation in predicate-based approaches represent many paths
with a complicated control structure, which sometimes over-
whelm the underlying SMT-solvers [14].

CPAchecker 2 [13], an open-source framework for con-
figurable software verification, provides several configurable
program analyses, including an explicit-value analysis, a
symbolic bounded-loops analysis, a predicate-abstraction
analysis, a predicate-impact analysis, and a BDD analy-
sis. We present the results of applying one enumerative
analysis and several symbolic analyses to the verification
of reachability properties of the ECA programs. We con-
figure CPAchecker in order to evaluate (1) an explicit-
value analysis (enumerative, explicit-state model check-
ing [16]), (2) a bounded-loop analysis (symbolic, bounded
model checking, cf. [20]), (3) a predicate-abstraction analy-
sis (lazy abstraction [38], Craig interpolation for predicate
extraction [37], boolean abstraction [3], adjustable-block
encoding [9,14]), (4) a predicate-impact analysis (interpola-
tion instead of predicate abstraction [19,44]), and (5) a pro-
gram analysis based on BDDs (integer variables encoded as
BDDs [18], as described in Sect. 3).

1.1 Related work

The current state-of-the-art approaches to software verifi-
cation [7,8] are either based on satisfiability (SAT) and
SAT-modulo-theories (SMT) solving, or on abstract domains
from data-flow analysis. BDD-based approaches were so
far not thoroughly evaluated in this context as main repre-
sentation for the state space of integer variables in C pro-
grams (only as auxiliary data structure). In preliminary com-
parisons, SAT-based approaches often outperformed BDD-
based approaches [41].

1.1.1 Models of software

Binary decision diagrams-based model checking is a stan-
dard technique for verifying transition systems, and several
state-of-the-art verifiers are available. SMV [43] is a tool
for checking properties (temporal logic, CTL) of finite-state
systems. SMV was developed to verify hardware designs and
has later been applied to software as well [1]. SMV uses a
BDD-based symbolic model-checking algorithm, in which
the state graph of the model is represented using BDDs.
NuSMV [30] is an alternative implementation of SMV and
additionally supports LTL model checking. NuSMV2 [29]
integrates BDD-based model checking and SAT-based model

2 http://cpachecker.sosy-lab.org/.

checking. The ImProviso algorithm [42], which was imple-
mented within NuSMV, uses BDDs and an efficient par-
tial order reduction. LTSmin [21] is a tool that uses BDDs
to check safety properties of transition systems provided
in high-level languages, such as Promela. Rabbit [15] is
a BDD-based verifier for modular timed automata [5], and
was used to model and verify controller software for real-time
systems.

1.1.2 Auxiliary use

Several software verifiers that are based on predicate abstrac-
tion [10,13] use BDDs for storing truth values of predicates.
Each predicate in the precision of the predicate-abstraction
analysis corresponds to one propositional variable. In carte-
sian and boolean predicate abstraction [9,14], the strongest
(cartesian or boolean, respectively) combination of predi-
cates is stored as a BDD over the propositional variables that
represent the predicates in the precision [12]. In data-flow
analysis, there exist algorithms for pointer-alias analyses that
store the points-to relations in BDDs [4].

1.1.3 BDD-based analysis of software

The verification tool Moped [35] can verify Java byte-code,
by constructing a boolean program (boolean variables and
integer variables with a finite range of values can be repre-
sented as BDDs) that is internally represented as a symbolic
pushdown system. A BDD-based implementation of inter-
polation [36] was integrated in the abstraction-refinement
loop of Moped. Kratos 3 [31] verifies SystemC programs
and also provides a BDD-based software-verification algo-
rithm.4 F-Soft uses a BDD-based reachability analysis for
unbounded verification of C programs [41]. The purpose of
our study is to compare different abstract domains that are
all implemented in the same verification framework (based
on the same solver, libraries, and parser).

1.1.4 Domain types

It is possible to perform a static type analysis of all program
variables and categorize the integer variables into more fine-
grained domain types [2], for example, integer variables that
are compared to zero (boolean), integer variables that are
compared with constants or with other variables (equality),
integer variables with addition, etc. It was shown that the
choice of the abstract domain per variable based on a domain-
type analysis makes a large difference in efficiency and effec-
tiveness [2]. There exists a version of Java PathFinder that

3 https://es-static.fbk.eu/tools/kratos/.
4 Personal communication with the developers.

123

http://cpachecker.sosy-lab.org/
https://es-static.fbk.eu/tools/kratos/


BDD-based software verification 509

supports the annotation of boolean variables in the program
such that the analyzer can track the specified boolean vari-
ables using BDDs, which was shown to be efficient for the
verification of software product lines [48]. This can be seen
as a domain-type-based analysis were the domain assignment
is hard-coded to boolean variables that represent the feature
selection.

1.2 Insights from the experiments

We experimentally evaluate a configurable program analysis
(CPA) based on BDDs and compare it with several state-
of-the-art techniques on verifying reachability properties of
event-condition-action (ECA) programs. The contribution
of this work is not to propose a purely BDD-based analy-
sis for software verification as replacement for alternative
approaches, but to experimentally show that using BDDs as
representation for programs of a certain category (that use
integer variables in a very restricted way: only equality com-
parisons and assignments) can be more efficient than other
(more expressive, but also more expensive) encodings. The
results of the participation at the RERS 2012 challenge with
a BDD-based model checker [18] had motivated our work on
domain types [2]. The more fine-grained domain-type analy-
sis for each variable in a pre-analysis, followed by an appro-
priate assignment of an abstract domain for each domain
type, is a promising approach to software verification.

2 Preliminaries

In order to define a configurable verifier, we need an itera-
tion algorithm and a configurable program analysis, which
defines the abstract domain, the transfer relation, as well as
the merge and stop operators. In the following, we provide the
definitions of the used concepts and notions from previous
work [11].

2.1 Programs

We consider only a simple imperative programming lan-
guage, in which all operations are either assignments or
assume operations, and all variables are of type integer.5

We represent a program by a control-flow automaton (CFA),
which consists of a set L of program locations (models the
program counter pc), an initial program location l0 (models
the program entry), and a set G ⊆ L × Ops × L of control-
flow edges (models the operation that is executed when con-
trol flows from one program location to another). The set X

5 The framework CPAchecker [13], which we use to implement the
analysis, accepts C programs and transforms them into a side-effect free
form [45]; it also supports interprocedural program analysis.

of program variables contains all variables that occur in oper-
ations from Ops. A concrete state of a program is a variable
assignment c : X ∪ {pc} → Z that assigns to each variable
an integer value. The set of all concrete states of a program
is denoted by C . A set r ⊆ C of concrete states is called a
region. Each edge g ∈ G defines a (labeled) transition rela-

tion
g→ ⊆ C × {g} × C . The complete transition relation →

is the union over all control-flow edges: → = ⋃
g∈G

g→. We

write c
g→c′ if (c, g, c′) ∈ →, and c→c′ if there exists a g

with c
g→c′. A concrete state cn is reachable from a region r ,

denoted by cn ∈ Reach(r), if there exists a sequence of
concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all
1 ≤ i ≤ n, we have ci−1→ci . Such a sequence is called
a feasible program path. In order to define an efficient pro-
gram analysis, we need to define abstract states and abstract
transitions.

2.2 Configurable program analysis (CPA)

We use the framework of configurable program analysis [11]
to formalize our program analysis. A CPA specifies the
abstract domain and a set of operations that control the pro-
gram analysis. A CPA is defined independently of the analy-
sis algorithm, and can be plugged in as a component into the
software-verification framework without development work
on program parsers, exploration algorithms, and other gen-
eral data structures. A CPA C = (D,�, merge, stop) con-
sists of an abstract domain D, a transfer relation � (which
specifies how to compute abstract successor states), a merge
operator merge (which defines how to merge abstract states
when control flow meets), and a stop operator stop (which
indicates if an abstract state is covered by another abstract
state, and is used to determine if the fixed point of the iteration
algorithm is reached). The abstract domain D = (C, E, [[·]])
consists of a set C of concrete states, a semi-lattice E over
abstract-domain elements, and a concretization function that
maps each abstract-domain element to the represented set of
concrete states. An abstract-domain element is also called
abstract state.

Using this framework, program analyses can be composed
of several component CPAs. We will now give the definition
of a location analysis; our complete analysis will be the com-
position of the location analysis with the BDD-based analysis
that we will define later.

2.3 CPA for location analysis

The CPA for location analysis L = (DL,�L, mergeL, stopL)

tracks the program counter pc explicitly [11].

1. The domain DL is based on the flat semi-lattice for the
set L of program locations: DL = (C, EL, [[·]]), with

123



510 D. Beyer, A. Stahlbauer

Algorithm 1 CPA(D, e0) (taken from [11])
Input: a CPA D = (D, �, merge, stop),

an initial abstract state e0 ∈ E , where E denotes
the set of elements of the semi-lattice of D

Output: a set of reachable abstract states
Variables: two sets reached and waitlist of abstract states
1: waitlist := {e0};
2: reached := {e0};
3: while waitlist 
= ∅ do
4: choose e from waitlist; remove e from waitlist;
5: for each e′ with e � e′ do
6: for each e′′ ∈ reached do
7: // Combine with existing abstract state.
8: enew := merge(e′, e′′);
9: if enew 
= e′′ then
10: waitlist := (

waitlist ∪ {enew}) \ {e′′};
11: reached := (

reached ∪ {enew}) \ {e′′};
12: // Add new abstract state?
13: if ¬ stop(e′, reached) then
14: waitlist := waitlist ∪ {e′};
15: reached := reached ∪ {e′};
16: return reached

EL = ((L∪{�}),), l  l ′ if l = l ′ or l ′ = �, [[�]] = C ,
and for all l in L, we have [[l]] = {c ∈ C | c(pc) = l}.

2. The transfer relation �L has the transfer l
g�Ll ′ if g =

(l, ·, l ′) ∈ G.
3. The merge operator mergeL does not combine abstract

states when control flow meets: mergeL(l, l ′) = l ′.
4. The termination check stopL returns true if the current

abstract state is already in the reached set: stopL(l, R) =
(l ∈ R).

2.4 Analysis algorithm

Algorithm 1 shows the core iteration algorithm that is used
to run a configurable program analysis, as implemented6 by
tools like CPAchecker. The algorithm is started with a CPA
and an initial abstract state e0. The algorithm terminates if the
set waitlist is empty (i.e., all abstract states were processed)
and returns the set reached. We start the algorithm with
two singleton sets that contain only the initial abstract state
(lines 1–2). In each iteration of the while loop, the algo-
rithm processes and removes one abstract state e from the
set waitlist, computes all abstract successor states for e, and
further processes the successors as e′.

Next, the algorithm checks (lines 6–11) if there is an exist-
ing abstract state in the set of reached states with which
the new state e′ has to be combined (e.g., where the con-
trol flow meets after completed branching). If this is the
case, then the new, merged abstract state is substituted for
the existing abstract state in both sets reached and waitlist.
(This operation is sound because the merge operation is
not allowed to under-approximate.) In lines 12–15, the stop

6 For ease of illustration, we show only a simplified version.

operator checks if the new abstract state is covered by a
state that is already in the set reached, and inserts the
new abstract state into the work sets only if it is not cov-
ered.

2.5 Binary decision diagrams (BDD)

A binary decision diagram [24] is (definition taken from [17])
a rooted directed acyclic graph, which consists of deci-
sion nodes and two terminal nodes (called 0-terminal and
1-terminal). Each decision node is labeled by a boolean vari-
able and has two children (called low child and high child).
A BDD is maximally reduced according to the following two
rules: (1) merge any isomorphic sub-graphs, and (2) eliminate
any node whose two children are isomorphic. Every variable
assignment that is represented by a BDD corresponds to a
path from the root node to the 1-terminal. The variable of
a node has the value 0 if the path follows the edge to the
low child, and the value 1 if it follows the edge to the high
child. A BDD is always ordered, which means that the vari-
ables occur in the same order on every path from the root
to a terminal node. For a given variable order, the BDD rep-
resentation of a set of variable assignments is unique. The
ordering of the variables affects the size of the resulting
BDD [22].

A BDD represents a set of value assignments for a set
of boolean variables, i.e., it is a compressed representation
of a truth table. In our analysis, we need to consider integer
variables: we encode integer values as bit vectors, and inte-
ger variables as vectors of boolean variables, and thus, can
represent data states of integer programs by BDDs.

3 BDD-based program analysis

For implementing the BDD-based analysis, we define a
configurable program analysis that uses BDDs to represent
abstract states. We implement this analysis in the software-
verification framework CPAchecker.

Given a first-order formula ϕ over the set X of program
variables, we use Bϕ to denote the BDD over X that is con-
structed from ϕ, and [[ϕ]] to denote all variable assignments
for X that fulfill ϕ. Given a BDD B over X , we use [[B]]
to denote all variable assignments for X that B represents
([[Bϕ]] = [[ϕ]]).

The BDD analysis is a configurable program analysis
BPA = (DBPA,�BPA, mergeBPA, stopBPA) that repre-
sents abstract states of the program symbolically, by storing
the values of variables in BDDs. The CPA consists of the
following components:

1. The abstract domain DBPA = (C, EB, [[·]]) is based on
the semi-lattice EB of BDDs, i.e., every abstract state con-
sists of a BDD. The concretization function [[·]] assigns

123



BDD-based software verification 511

(a) (b) (c)

Fig. 1 Example C program (a) with its corresponding CFA (b) and the verification certificate (c); the program locations in (b) and (c) correspond
to the line numbers in (a) before the line of code is executed. (a) Source code. (b) Control-flow automaton. (c) Abstract reachability graph

to an abstract state B the set [[B]] of all concrete states
that are represented by the BDD. Formally, the lat-
ticeEB = (B̂,)—where B̂ is the set of all BDDs,Btrue is
the BDD that represents all concrete states (1-terminal),
and Bfalse is the BDD that represents the empty set of
states (0-terminal)— is induced by the partial order 
that is defined as: B  B′ if [[B]] ⊆ [[B′]]. (The join
operator � of the lattice yields the least upper bound,
which is the disjunction ∨; Btrue is the top element � of
the lattice.)

2. The transfer relation �BPA has the transfer B g�B′ if

B′ =
⎧
⎨

⎩

B ∧ Bp if g = (l,assume(p), l ′)
and B ∧ Bp 
= Bfalse

(∃w : B) ∧ Bw=e if g = (l,w := e, l ′) .

3. The merge operator is defined by mergeBPA(B,B′) =
B � B′. (This merge is precise, not overapproximating,
because the join is the disjunction of BDDs.)

4. The termination check is defined by stopBPA(B, R) =
∃B′ ∈ R : B  B′.

We construct the composite program analysis by compos-
ing the CPA BPA for BDD-based analysis with the CPA L

for location analysis, in order to also track the program loca-
tions. The resulting composite merge-operator merge× sat-

isfies e′  merge×(e, e′): it merges two composite states
e = (l,B) and e′ = (l ′,B′) such that (l ′,B ∨ B′) is returned
if l = l ′, and (l ′,B′) is returned otherwise. For further details
on CPA composition, we refer to the literature [11]. The
abstract state of the composition analysis consists of the pro-
gram location from CPA L and the abstract data state (BDD)
from the CPA BPA.

3.1 Example

Consider the program in Fig. 1a, which is represented by the
control-flow automaton (CFA) in Fig. 1b. The error location
(location 17, indicated by label ERROR) is not reachable in
this simple example program, i.e., the program is safe. Figure
1c represents the corresponding abstract-reachability graph
(ARG), which is also called ‘verification certificate’, for this
verification task. The edges in the ARG represent successor
computations along the control-flow edges of the correspond-
ing CFA. The nodes in the ARG represent abstract states that
are stored in the set reached by Algorithm 1, which are
initial abstract states or constructed by computing abstract
successor states according to the edges of the CFA, using the
CPA algorithm and the composition of CPAs as described
above. We label each node of the ARG with the program

123



512 D. Beyer, A. Stahlbauer

location (which corresponds to the line number in Fig. 1a
before the line is executed) and the BDD that represents the
abstract data state. The set of states that are represented by
the nodes of the ARG in Fig. 1c equals the set reached after
the CPA algorithm has terminated.

The analysis starts at the initial program location l0 = 2
with the initial abstract state e0 = (2,Btrue). The analysis
then computes the abstract successor states by applying the
transfer relation �. In our example, the abstract data state for
location 3 is computed by quantifying the assigned variable in
the BDD of the previous abstract state, creating a BDD for the
constraint of control-flow edge int a = 0 (assignment),
and conjuncting it with the former BDD. The transfer along
the edge (3, int in = nondet(), 5) does not change
the abstract data state because (1) the variable that is defined
by this edge had an unknown value before, and (2) it does
not restrict the possible concrete states since the return value
of nondet() is non-deterministic, i.e., unknown. Succes-
sors for CFA edges whose operations are assumptions are
computed by conjuncting the BDD of the abstract data state
for the predecessor location with the BDD for the respective
assumption. For example, consider the CFA edge (5,[in
!= 1],6): the BDD Ba=0 for the abstract predecessor state
is conjuncted with the BDD Bin != 1 for the operation, result-
ing in the BDD Ba=0 ∧ Bin != 1 for the abstract successor
state at location 6. Assignment operations are processed by
first existential quantifying the variable that gets assigned
a new value, and then the intermediate BDD is conjuncted
with the BDD that represents the new value of the vari-
able. For example, consider location 12, which has the BDD
Ba=0 ∧ in=1 as abstract data state, and process the control-
flow edge (12,a = 3, 15) (assignment): First, the variable
a is quantified and BDD Bin=1 is obtained as intermediate
result, and then the BDD Ba=3 for the assignment operation
is conjuncted to the intermediate result such that the abstract
successor state contains the BDD Bin=1 ∧ Ba=3 (which is
merged with another BDD for location 15).

Abstract states that were computed for the same pro-
gram location are—as defined by the CPA operator merge—
joined by computing the disjunction of the BDDs; the abstract
data state B(a=0 ∧ in != 1)∨(a=3 ∧ in=1) at location 15 is such
a result of a join. After the analysis has terminated, the set
reached of reached states contains at most one abstract state
for each program location.

The successor computation of a given abstract state e
stops (the abstract state is not added to the sets waitlist
and reached for further processing), whenever an existing
abstract state covers (i.e., is implied by) the abstract state e;
this check is performed by the CPA operator stop. The analy-
sis does not add abstract states to the set reached (not pro-
duced by the transfer relation) for the locations 8 and 16,
because the BDDs evaluate to false. Thus, the error loca-
tion 17 is not reachable.

4 Evaluation

To demonstrate that a BDD-based analysis yields a signifi-
cant performance improvement on a set of C programs with
restricted operations on integer variables, we compare our
simple BDD-based analysis with other approaches for soft-
ware model checking.

4.1 Verification tasks

For the evaluation of our approach, we use the benchmark
sets of reachability verification tasks from the RERS chal-
lenges 2012 and 2013 [39,40]. Many of these programs are
in the restricted class of C programs for which a BDD-based
verification is interesting and promising. Table 1 lists all pro-
grams from the RERS benchmark collection. In total, the
collection consists of 2 760 verification tasks with reachabil-
ity properties. The verification tasks were composed from
46 programs7 and 60 reachability properties to verify.

The programs were generated automatically by a tool for
synthesizing verification problems [46,47], with the goal
of investigating the performance of different verification
approaches for event-condition-action (ECA) systems. All
programs follow the same structure: There is a number of
(state) variables (with an initial value) that model the state of
the system. The main function consists of one single while
loop; the loop has no termination condition, i.e., the program
does not necessarily terminate (reactive system). In each iter-
ation of this loop, an integer value is consumed from stan-
dard input, after which a function is called that computes
the successor state of the program, based on the input value
and the current state of the program. The safety property
(program invariant) is checked in an iteration that does not
change any state variable. Whenever an invariant check fails,
the function assert(0) is called; these calls are labeled
with different names to distinguish the different safety prop-
erties. Thus, each verification task is a pair of the program
and the C label that represents the safety property to be
verified.

Table 1 provides a detailed overview over some static and
dynamic characteristics of the programs. In the first group
of three columns, we quantify the size of the programs by
size measures: we report the length of each program (in
LOC), the number of state variables, and the number of dif-
ferent integer constants that are contained in the program.
The second group of columns gives the number of logi-
cal operators: conjunctions, disjunctions, and negations in
the program, respectively. The third group of columns gives
the number of arithmetic operators: equalities and inequali-
ties, strict and non-strict greater-than and less-than compar-

7 There are Programs 1–19 and 28–54; there is a gap from number 20
to 27, for which no programs exist.

123



BDD-based software verification 513

Table 1 Program classification and measures that characterize the programs (CPU time of gcc reported with up to two significant figures)

Size Measures Logical Operators Arithmetic Operators Domain Types [2] gcc -c -O0

P
ro

gr
am

N
um

be
r

C
la

ss
ifi

ca
ti

on

L
in

es
of

C
od

e

St
at

e
V

ar
ia

bl
es

In
te

ge
r

C
on

st
an

ts

C
on

ju
nc

ti
on

s

D
is

ju
nc

ti
on

s

N
eg

at
io

ns

=
=

,!
=

>
,=

>
,<

=
,<

+
,− ∗,
/
,%

B
o
o
l

E
q

A
d
d

O
th

er

C
P

U
T

im
e,

in
s

P
ea

k
M

em
or

y,
in

M
B

1 Eca-Eq 587 7 17 906 42 253 1 077 0 0 0 0 12 0 0 .03 58
2 Eca-Eq 608 6 18 795 50 231 993 0 0 0 0 11 0 0 .05 56
3 Eca-Eq 1 661 30 13 2 516 329 1 122 3 062 0 0 0 0 32 0 0 .11 106
4 Eca-Eq 4 809 8 19 7 369 768 1 140 8 950 0 0 0 0 22 0 0 .31 165
5 Eca-Eq 11 114 8 21 14 131 1 596 1 362 17 626 0 0 0 0 34 0 0 .58 264
6 Eca-Eq 9 463 30 19 12 525 2 295 4 402 15 922 0 0 0 0 47 0 0 .54 262
7 Eca-Eq 73 554 11 17 116 254 10 158 30 132 136 555 0 0 0 0 151 0 0 4.5 1 177
8 Eca-Eq 171 328 11 19 223 012 18 288 88 998 261 792 0 0 0 0 259 0 0 9.8 2 275
9 Eca-Eq 184 822 30 21 235 770 39 542 56 866 293 680 0 0 0 0 257 0 0 11 2 537
10 Eca-Mul 518 5 111 749 60 0 651 296 152 122 1 8 0 1 .06 64
11 Eca-Mul 891 6 336 1 296 156 78 1 025 626 450 369 0 9 0 2 .11 91
12 Eca-Mul 4 063 5 1 278 5 164 744 0 3 797 2 858 1 927 1 645 0 17 0 2 .36 178
13 Eca-Mul 4 975 6 1 914 6 168 745 421 4 302 3 516 3 247 2 825 0 18 0 2 .50 222
14 Eca-Mul 740 4 160 825 126 0 785 343 174 150 0 8 0 1 .06 69
15 Eca-Mul 1 547 4 854 1 830 240 0 622 1 774 1 252 1 122 0 9 0 3 .20 136
16 Eca-Mul 1 498 4 324 1 695 258 0 1 403 877 553 467 0 11 0 1 .11 103
17 Eca-Mul 2 294 5 1 418 3 042 360 0 804 3 070 2 181 1 835 0 9 1 3 .31 164
18 Eca-Mul 3 500 4 784 3 453 684 0 3 467 1 357 1 024 899 0 14 0 1 .25 134
19 Eca-Mul 8 273 5 3 872 9 150 1 212 0 5 376 6 503 5 333 4 796 0 22 0 3 .78 286
28 Eca-Eq 2 050 138 23 1 474 643 565 2 441 0 0 0 0 167 0 0 .11 69
29 Eca-Mul 1 737 121 394 1 478 566 404 1 694 637 459 677 0 125 2 23 .16 78
30 Eca-Mul 2 067 142 422 1 563 628 496 2 010 493 410 539 0 85 3 83 .16 81
31 Eca-Eq 7 396 227 21 3 640 1 916 1 725 6 373 0 0 0 0 330 0 0 .29 123
32 Eca-Mul 9 783 282 2 014 5 374 2 437 1 794 6 872 1 986 3 759 5 516 0 359 1 60 .86 229
33 Eca-Mul 11 030 340 1 359 5 709 2 699 2 127 7 807 1 740 2 107 3 091 0 182 1 300 .74 219
34 Eca-Eq 93 613 1 754 20 35 032 19 278 17 121 62 071 0 0 0 0 3 011 0 0 2.8 935
35 Eca-Mul 110 456 1 923 14 270 46 954 22 567 16 246 61 201 17 412 40 812 60 088 0 3 125 3 391 9.6 1 635
36 Eca-Mul 111 403 2 278 8 674 46 229 23 075 18 288 64 003 14 516 18 471 27 249 0 1 224 0 2 473 7.0 1 311
37 Eca-Eq 126 336 329 24 45 015 25 597 23 234 81 869 0 0 0 0 1 461 0 0 3.4 1 158
38 Eca-Mul 168 870 440 5 097 67 583 33 592 23 891 90 363 25 208 52 425 78 265 0 1 764 1 89 13 1 624
39 Eca-Mul 121 746 496 4 082 50 004 25 308 20 249 69 924 16 133 36 360 52 812 0 232 0 1 185 9.4 1 623
40 Eca-Eq 767 117 1 816 24 230 757 132 236 117 466 421 306 0 0 0 0 6 716 0 0 21 4 491
41 Eca-Mul 963 292 2 143 23 014 327 799 164 083 116 747 438 389 125 994 416 552 610 920 0 7 546 1 448 100 10 263
42 Eca-Mul 790 653 2 301 16 773 280 185 141 626 113 158 394 887 89 137 221 660 327 724 0 1 199 1 7 934 68 8 056
43 Eca-Eq 6 361 733 13 208 26 1 738 525 995 532 886 983 3 173 394 0 0 0 0 46 804 0 0 410 34 621
44 Eca-Eq 3 643 670 14 201 25 952 110 550 005 487 826 1 750 532 0 0 0 0 33 991 0 0 160 18 937
45 Eca-Eq 4 385 069 22 173 117 1 171 310 672 959 639 215 2 143 818 0 0 0 1 13 034 0 31 583 450 29 341
46 Eca-Eq 484 639 264 29 237 172 31 252 86 543 307 825 0 0 0 0 933 0 0 13 2 949
47 Eca-Mul 266 699 253 15 082 147 126 17 304 38 962 147 211 39 252 125 583 189 603 0 577 0 52 27 3 181
48 Eca-Mul 766 918 544 19 763 403 541 48 166 120 300 422 319 91 137 265 168 402 452 0 257 0 1 240 77 8 318
49 Eca-Eq 2 398 639 1 392 30 1 074 426 135 527 389 827 1 386 381 0 0 0 0 5 044 0 0 140 13 311
50 Eca-Mul 4 618 987 1 870 33 361 2 209 347 260 242 585 072 2 210 721 594 145 1 395 380 2 076 128 0 8 369 0 385 1 100 39 512
51 Eca-Mul 7 927 698 3 096 33 431 3 662 316 425 837 1 092 415 3 820 245 823 889 2 013 760 2 985 215 0 1 551 0 10 610 2 300 70 096
52 Eca-Eq 870 021 2 578 30 305 293 168 509 152 144 541 495 0 0 0 0 6 882 0 0 30 5 259
53 Eca-Mul 878 564 2 473 28 966 333 339 161 699 116 594 440 377 119 604 280 688 391 546 0 5 658 1 488 75 7 515
54 Eca-Mul 5 902 289 9 616 34 607 1 691 858 877 408 693 174 2 428 426 540 507 1 656 141 2 469 453 0 4 964 0 20 809 1 500 50 405

isons, addition and subtraction, and finally multiplication,
division, and modulo. These measures provide an overview
of how the designers of the benchmarks were choosing the
parameters for increasing the complexity: for example, for
Programs 1–9, the number of disjunctions monotonically
increases. Other measures (length, conjunctions, negations,
equality checks) also indicate an increase of the designated
complexity. The benchmark generation has different parame-
ters [46,47], and those were varied throughout the benchmark
set.

Considering the BDD-based representation, and mainly
the well-known insight that BDDs do not scale well for the
operation multiplication [25], we partition the set of pro-
grams into two partitions: the first partition Eca-Eq contains
all programs in which no multiplication of integer variables

occurs, and the second partition Eca-Mul contains all pro-
grams that do not have that restriction in terms of operations
on integer variables. Our partitioning is given in the (sec-
ond) column ‘Classification’. The fourth group of columns
gives the domain types that a domain-type analysis [2] would
have assigned. Domain types are assigned to individual vari-
ables; much more fine-grained than our assignment to the
two partitions Eca-Eq and Eca-Mul. Our classification can
be derived from domain types in the following way: if all
variables of a program are of domain type Bool or Eq, then
the program is in partition Eca-Eq, otherwise in partition
Eca-Mul. In other words, Eca-Eq contains all programs
whose variables are only used in equality expressions (!=
and ==) and not with other arithmetic operators. If any other
arithmetic operation is used on a program variable, then the

123



514 D. Beyer, A. Stahlbauer

program belongs to partition Eca-Mul. The classification
of the programs is done by running a simple syntactical
analysis.

Table 1 shows that some programs are extremely large
(in terms of LOC and the number of state variables), and
our verification infrastructure can not handle those. To quan-
tify the effect, we report the run time (CPU time with up to
two significant figures) and memory consumption of GCC in
the last two columns of the table. Based on those numbers,
we have excluded eight programs from the benchmark set
for our experiments, because solving them within the given
resource constraints is not feasible. We restrict ourselves to
those programs that can be compiled with a standard compiler
(GCC 4.6.3 without linking and without optimization: gcc
-c -O0) with less than 100 s of CPU time and with less than
10 GB of RAM. The excluded programs are highlighted in
the table by bold background color.

In total, we consider 2 280 (out of 2 760) verification tasks
for our experimental evaluation. The set of benchmark ver-
ification tasks and tables with detailed results are publicly
available on the supplementary web page.8

4.2 Experimental setup

All experiments were performed on machines with an Intel
Core i7-2600 3.4 GHz CPU and 32 GB of RAM. Open-
JDK 1.7.0_55 was used as the Java runtime environment
and Linux 3.2.0-64 as operating-system kernel. We restricted
the resources for each verification run to two CPU cores,
15 min of CPU time, and 15 GB of RAM. In order to
leave sufficient RAM for the SMT solver, we configured a
Java heap size to 10 GB. We assigned the subversion tag
cpachecker-1.3.4-sttt14 to the version of CPAchecker
that we have used for our experiments. The subversion repos-
itory is publicly available.9 We used MathSAT 5.2.10 [32]
as SMT solver, and JavaBDD 1.0b210 as BDD package. We
setup the JavaBDD package with an initial node table of size
100 million entries and a cache size of 500 thousand entries.

4.3 Compared verification approaches

We first compared five standard configurations based on fun-
damentally different verification techniques. The approaches
are all implemented in the same verification tool, in order to
eliminate influence of the used SMT solver, libraries, and
parser. Then, based on the results, we created a combination
analysis that first analyses the program syntactically and if
the program is suitable for a BDD-based analysis, then we

8 http://www.sosy-lab.org/~dbeyer/cpa-bdd/.
9 https://svn.sosy-lab.org/software/cpachecker/tags/.
10 http://javabdd.sourceforge.net/.

verify it using BDDs, otherwise we verify it with another
approach (selection from portfolio).

The first configuration ‘Explicit Value’ is an explicit-value
analysis with counterexample-guided abstraction refinement
(CEGAR) [16]. An abstract state of this analysis describes
the value of variables enumeratively (not symbolically) using
value assignments. CEGAR with constraint-sequence inter-
polation [16] is used in order to track only those variables that
are relevant to verify the safety property. The second con-
figuration ‘Bounded Loops (BMC)’ is a standard bounded
model-checking (BMC) configuration that unwinds loops up
to a bound of 100. This analysis does not compute abstrac-
tions. The third configuration ‘Predicate Abstraction’ is a
predicate analysis that computes boolean predicate abstrac-
tions based on adjustable-block encoding (ABE) [14]. The
analysis is configured to compute abstractions only at loop
heads. Since each program from the benchmark set contains
exactly one loop, there is only one program location for which
abstractions are computed. The predicates for the abstrac-
tion precision are derived from infeasible counterexample
paths using CEGAR [33] and Craig interpolation [34,37].
The fourth configuration ‘Predicate Impact’ uses the Impact
algorithm [19,44], which, in contrast to predicate abstraction,
does not compute strongest-post conditions and abstracts
those to more abstract formulas, but uses a conjunction of
Craig interpolants as abstract states. A detailed conceptual
and experimental comparison of ‘Predicate Abstraction’ and
‘Predicate Impact’ is available in the literature [19]. The
fifth configuration ‘BDD’ is a BDD-based analysis that was
described earlier in this paper.

The new configuration ‘BDD + Predicate Impact’ was
introduced based on the results of the first set of experiments,
and runs a different analysis depending on the program clas-
sification. If the input program belongs to class Eca-Eq, then
it performs the BDD-based analysis, otherwise it performs
the Impact-based analysis.

4.4 Results for Eca-Eq

First, we apply all five configurations to the 16 programs
of class Eca-Eq 11, which yields a total of 960 verification
tasks (16 programs × 60 properties). Table 2 presents the
results: the first column specifies the program by its program
number, for each of the five analyses, one group of columns
represents the corresponding results. In each of the column
groups, the first sub-column gives the number of solved veri-
fication tasks, the second and third sub-columns indicate the
verification time (sum and mean, respectively), where all val-
ues are given in seconds of CPU time with two significant
figures. The fourth sub-column gives the number of abstract
states in the set of reached states (in 1 000 states).

11 Four Eca-Eq programs were removed due to GCC timeout.

123

http://www.sosy-lab.org/~dbeyer/cpa-bdd/
https://svn.sosy-lab.org/software/cpachecker/tags/
http://javabdd.sourceforge.net/


BDD-based software verification 515

Table 2 Verification tasks for programs of class Eca-Eq

Analysis Explicit Value Bounded Loops (BMC) Predicate Abstraction Predicate Impact BDD
P

ro
gr

am
N

um
be

r

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

1 60 550 9.2 29.3 13 120 9.5 7.0 60 680 11 8.5 60 600 10 6.7 60 440 7.3 5.8
2 60 520 8.7 16.3 7 45 6.5 2.7 60 590 9.9 5.7 60 550 9.2 6.1 60 380 6.4 2.3
3 60 5 400 91 877.6 13 200 15 17.4 60 1 300 22 28.1 43 930 22 23.9 60 840 14 12.4
4 60 12 000 200 1 301.3 24 6 400 270 213.2 60 4 500 75 181.2 60 4 900 81 96.8 60 2 100 35 197.4
5 41 21 000 520 4 015.1 24 1 400 60 162.6 60 6 800 110 168.2 36 4 300 120 171.9 60 2 100 35 110.7
6 25 1 500 62 106.1 57 5 400 94 129.0 16 1 100 68 102.2 60 1 500 26 74.0
7 23 7 100 310 1 012.9 59 23 000 380 946.7
8
9

28 28 880 32 436.7 28 470 17 14.2 56 2 800 49 11.8 47 1 900 40 9.2 60 810 13 22.7
31 13 1 500 120 1 245.0 29 1 000 35 38.4 51 11 000 220 22.1 47 6 100 130 26.0 29 550 19 16.1
34 7 1 700 250 2 718.2 1 300 300 148.7 11 3 600 320 236.9 27 18 000 680 232.7
37 1 25 25 99.0 26 9 200 360 372.2 1 220 220 198.1 1 71 71 99.5 27 740 27 8.5
40 29 6 400 220 55.2
46 29 1 800 62 19.0
52 3 900 300 2 444.6

Total 333 44 000 130 1 059.9 212 28 000 130 219.3 466 34 000 73 70.8 440 46 000 110 171.9 561 36 000 64 61.8
solved

The last line of the table, ‘Total solved’, summarizes the
overall, solved results: The BDD-based analysis outperforms
the other analyses in both relevant measures. The analysis
is the most effective: it solves 561 verification tasks. The
analysis is also the most efficient: it has the lowest aver-
age CPU time consumption of 64 s per verification task. All
other approaches solve fewer verification tasks and need sig-
nificantly more time (on average per task).

Figure 2 illustrates the results using a quantile plot (cf. [7]
for more details on this type of plots). For each approach, we
plot a graph (a series of data points). One data point (x, y) in
such a graph indicates that x verification tasks were success-
fully verified in up to y seconds of CPU time each, by the
corresponding configuration. The integral below each graph
illustrates the accumulated verification time for all solved
verification tasks. The plot in Fig. 2 illustrates that the BDD-
based analysis outperforms the other analyses both in terms
of effectiveness and efficiency.

A more detailed picture of the results of the BDD-based
analysis is shown in Table 3. The results can be interpreted
with respect to the structure and size of the programs. In gen-
eral, the performance of the BDD-based analysis decreases
with a growing number of BDD nodes. The number of BDD
nodes depends on the number of variables that are encoded
(and on the ordering of the variables, but we do not discuss
variable orderings here). For example, Program 34 has a large
number of state variables (compared to Programs 1–7), and
thus, the BDD-based analysis needs significantly more time
for verification tasks of Program 34. Programs 34, 40, and
52 use more than 1 000 state variables. Due to the large state
space of those programs, the analysis does not succeed in

0 200 400 600 800

5
10

20
50

20
0

50
0

n−th fastest

C
P

U
 T

im
e

Explicit Value
Bounded Loops (BMC)
Predicate Abstraction
Predicate Impact
BDD

Fig. 2 Verification tasks for programs of class Eca-Eq, CPU time
given in seconds, y-axis uses logarithmic scale

correctness proofs (for which the whole state space must be
inspected). The BDD-based analysis can find violations of
properties, because it is not necessary to inspect the com-
plete state space in those cases.

Also the range of values per variable matters: one integer
variable in the program is encoded by several boolean vari-
ables in the BDD; the number of boolean variables depends
on the number of different values that a program variable
can have. Since programs from the category Eca-Eq contain
only the operators == and !=, the number of different values
can be computed from the number of different integer con-
stants that are used in combination with the variables. Also,
combining the BDD-based analysis with constant propaga-
tion might be an optimization for reducing the number of
variables to be stored in the BDDs.

123



516 D. Beyer, A. Stahlbauer

Table 3 BDD analysis: details for verification tasks for programs of type Eca-Eq

Program structure and relevant operators BDD Analysis

P
ro

gr
am

N
um

be
r

St
at

e
V

ar
ia

bl
es

In
te

ge
r

C
on

st
an

ts

=
=
,!
=

C
on

ju
nc

ti
on

s

D
is

ju
nc

ti
on

s

N
eg

at
io

ns

So
lv

ed
‘T

ru
e’

So
lv

ed
‘F

al
se

’

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

N
um

be
r

of
B

D
D

no
de

s,
in

1
00

0
no

de
s

(m
ea

n)

1 7 17 1 077 906 42 253 47 13 440 7.3 5.8 138.4
2 6 18 993 795 50 231 53 7 380 6.4 2.3 58.6
3 30 13 3 062 2 516 329 1 122 47 13 840 14 12.4 242.0
4 8 19 8 950 7 369 768 1 140 36 24 2 100 35 197.4 7 460.0
5 8 21 17 626 14 131 1 596 1 362 36 24 2 100 35 110.7 6 214.7
6 30 19 15 922 12 525 2 295 4 402 35 25 1 500 26 74.0 2 965.7
7 11 17 136 555 116 254 10 158 30 132
8 11 19 261 792 223 012 18 288 88 998
9 30 21 293 680 235 770 39 542 56 866

28 138 23 2 441 1 474 643 565 32 28 810 13 22.7 467.9
31 227 21 6 373 3 640 1 916 1 725 0 29 550 19 16.1 1 811.6
34 1 754 20 62 071 35 032 19 278 17 121 0 27 18 000 680 232.7 70 856.2
37 329 24 81 869 45 015 25 597 23 234 0 27 740 27 8.5 1 510.0
40 1 816 24 421 306 230 757 132 236 117 466 0 29 6 400 220 55.2 43 818.8
46 264 29 307 825 237 172 31 252 86 543 0 29 1 800 62 19.0 1 991.8
52 2 578 30 541 495 305 293 168 509 152 144

0 500 1000 1500 2000

5
10

20
50

20
0

50
0

n−th fastest

C
P

U
 T

im
e

Explicit Value
Bounded Loops (BMC)
Predicate Abstraction
Predicate Impact
BDD + Predicate Impact

Fig. 3 All verification tasks (all programs)

4.5 Results for Eca-Mul

The benchmark set Eca-Mul contains 1 320 verification
tasks for 22 programs12 that use multiplications among the
arithmetic operations in the programs (cf. Table 1). BDDs are
known to be inefficient for representing multiplications [25].
Therefore, we do not discuss the configuration that is ‘purely’
based on BDDs any further for programs in class Eca-
Mul.

We start presenting the overall picture: Figure 3 shows that
on the full set of all 38 programs, the configuration ‘Predicate
Impact’ is the best individual analysis, followed by ‘Pred-
icate Abstraction’. However, a configuration that chooses
an appropriate analysis technique automatically, based on
the insights from the previous experiments, can consider-

12 Four Eca-Mul programs were removed due to GCC timeout.

ably increase the effectiveness and efficiency of the verifi-
cation process (cf. right-most graph for ‘BDD + Predicate
Impact’).

Table 4 presents the details, where the column structure is
similar to Table 2, just with the new column group for ‘BDD
+ Predicate Impact’ instead of ‘BDD’. The predicate-impact
analysis can solve 1,206 verification tasks, which is 68 verifi-
cation tasks more than the predicate-abstraction-based analy-
sis can solve. The approach that is based on bounded model
checking solves 837 verification tasks, and the approach
based on explicit-state model checking with abstraction can
solve only 604 verification tasks.

The combination analysis ‘BDD + Predicate Impact’ is
superior in our context: it verifies 1,329 verification tasks
and is thus the most effective verification approach; and with
an average of 54 s of CPU time per verification task, the
analysis is also the most efficient approach.

Our results illustrate that it is beneficial to classify pro-
grams according to the operations that occur in the program
and to run an appropriate analysis that can provide the results
in the most effective and efficient way. The Impact-based
analysis performs quite well, independent from the program
class, but can be significantly improved by combining it with
the BDD-based analysis.

5 Conclusion

We implemented a BDD-based verification approach for soft-
ware model checking [18] and explored the application of a
purely BDD-based analysis to software, namely the programs
from the RERS challenge [39]. We compared the effective-

123



BDD-based software verification 517

Table 4 Overall results for all verification tasks (all programs)

Analysis Explicit Value Bounded Loops (BMC) Predicate Abstraction Predicate Impact BDD + Predicate Impact
P

ro
gr

am
N

um
be

r

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

So
lv

ed

T
im

e
(s

um
)

T
im

e
(m

ea
n)

Si
ze

of
re

ac
he

d
se

t,
in

1
00

0
st

at
es

(m
ea

n)

1 60 550 9.2 29.3 13 120 9.5 7.0 60 680 11 8.5 60 600 10 6.7 60 450 7.5 4.9
2 60 520 8.7 16.3 7 45 6.5 2.7 60 590 9.9 5.7 60 550 9.2 6.1 60 380 6.4 2.1
3 60 5 400 91 877.6 13 200 15 17.4 60 1 300 22 28.1 43 930 22 23.9 60 830 14 10.4
4 60 12 000 200 1 301.3 24 6 400 270 213.2 60 4 500 75 181.2 60 4 900 81 96.8 60 2 100 35 156.1
5 41 21 000 520 4 015.1 24 1 400 60 162.6 60 6 800 110 168.2 36 4 300 120 171.9 60 2 100 35 95.5
6 25 1 500 62 106.1 57 5 400 94 129.0 16 1 100 68 102.2 60 1 500 25 62.2
7 23 7 100 310 1 012.9 59 23 000 380 946.7
8
9

10 39 330 8.5 22.6 27 170 6.5 2.8 60 540 9.0 4.3 60 470 7.8 4.0 60 530 8.9 4.0
11 15 240 16 106.3 60 450 7.5 3.2 60 710 12 4.3 60 600 10 4.3 60 660 11 4.3
12 24 7 200 300 2 133.2 60 1 100 18 17.9 60 2 400 39 22.3 60 1 500 25 22.3 60 1 700 28 22.3
13 9 3 300 360 795.0 60 1 100 18 17.8 56 5 200 93 23.9 60 2 600 44 24.7 60 2 800 46 24.7
14 29 370 13 172.2 41 460 11 9.1 60 820 14 9.4 60 750 13 8.7 60 820 14 8.7
15 25 760 30 196.1 60 680 11 6.2 60 2 000 34 8.5 60 990 16 8.5 60 1 100 18 8.5
16 5 590 120 2 198.3 40 1 100 28 32.0 60 1 800 30 27.0 60 1 800 30 22.3 60 1 900 32 22.3
17 24 2 500 110 495.4 60 900 15 11.0 60 19 000 320 12.6 60 1 600 27 12.6 60 1 700 29 12.6
18 18 4 400 240 1 832.8 50 1 100 21 31.2 60 2 900 48 32.0 60 2 000 33 30.2 60 2 100 35 30.2
19 11 5 000 450 8 680.8 60 1 300 22 33.6 59 16 000 270 46.3 60 8 100 140 46.4 60 8 100 140 46.4
28 28 880 32 436.7 28 470 17 14.2 56 2 800 49 11.8 47 1 900 40 9.2 60 780 13 14.4
29 15 580 39 589.0 31 490 16 6.3 32 1 900 59 4.3 56 4 100 73 6.0 57 4 200 74 6.0
30 21 750 36 177.8 38 600 16 6.4 36 2 800 79 4.3 59 4 700 79 5.5 60 5 100 85 5.6
31 13 1 500 120 1 245.0 29 1 000 35 38.4 51 11 000 220 22.1 47 6 100 130 26.0 29 530 18 9.2
32 10 420 42 438.2 12 1 800 150 20.6 4 2 000 500 19.6 14 980 70 17.8 14 1 100 76 17.8
33 8 1 300 160 1 451.8 20 6 700 340 41.1 1 16 16 .2 23 1 700 74 23.3 23 1 800 80 23.3
34 7 1 700 250 2 718.2 1 300 300 148.7 11 3 600 320 236.9 27 14 000 520 118.9
35 6 270 45 422.6 6 3 900 650 172.0 6 3 800 630 172.0
36 2 200 99 1 219.3 4 2 000 490 139.7 4 1 900 480 139.7
37 1 25 25 99.0 26 9 200 360 372.2 1 220 220 198.1 1 71 71 99.5 27 720 27 4.4
38 2 810 400 39.4
39 3 78 26 .3 1 26 26 1.5 1 38 38 .1 1 38 38 .1 1 41 41 .1
40 29 6 000 210 26.5
42 3 410 140 .5 2 390 200 9.4 2 840 420 .6 2 840 420 .6 2 960 480 .6
46 29 1 800 61 10.5
47
48 3 340 110 .3 1 100 100 1.6 1 120 120 .3 1 110 110 .3 1 140 140 .3
52 3 900 300 2 444.6
53 1 170 170 639.0

Total 604 74 000 120 1 008.7 837 47 000 56 67.8 1 138 93 000 82 39.2 1 206 85 000 71 74.4 1 329 72 000 54 29.7
solved

ness and efficiency of the BDD-based symbolic analysis to
one enumerative technique and four other symbolic tech-
niques, all implemented in the state-of-the-art verification
framework CPAchecker.

The experiments show that the BDD-based approach is
the most efficient verification approach for a restricted class
of programs. Based on this insight from our first set of eval-
uations, we experimented further with a simple combina-
tion analysis, where an appropriate verification approach is
chosen based on the static characteristics of the program.
This combination analysis shows a significant improvement
in effectiveness and efficiency.

This was an important insight for related work: It is
promising to pre-analyze the program in order to find out
for each variable how it is used, and then determine—based
on its type of use—the most efficient abstract domain to track
this variable [2].

References

1. Anderson, R.J., Beame, P., Burns, S., Chan, W., Modugno, F.,
Notkin, D., Reese, J.D.: Model checking large software specifi-
cations. In: Proc. FSE, pp. 156–166. ACM (1996)

2. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., Rhein, A.V.:
Domain types: Abstract-domain selection based on variable usage.
In: Proc. HVC, LNCS 8244, pp. 262–278. Springer, Berlin (2013)

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian
abstractions for model checking C programs. In: Proc. TACAS,
LNCS 2031, pp. 268–283. Springer, Berlin (2001)

4. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-
to analysis using BDDs. In: Proc. PLDI, pp. 103–114. ACM
(2003)

5. Beyer, D.: Improvements in BDD-based reachability analysis
of timed automata. In: Proc. FME, LNCS 2021, pp. 318–343.
Springer, Berlin (2001)

6. Beyer, D.: Relational programming with CrocoPat. In: Proc. ICSE,
pp. 807–810. ACM (2006)

7. Beyer, D.: Second competition on software verification. In: Proc.
TACAS, LNCS 7795, pp. 594–609. Springer, Berlin (2013)

123



518 D. Beyer, A. Stahlbauer

8. Beyer, D.: Status report on software verification. In: Proc. TACAS,
LNCS 8413, pp. 373–388. Springer, Berlin (2014)

9. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani,
R.: Software model checking via large-block encoding. In: Proc.
FMCAD, pp. 25–32. IEEE (2009)

10. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software
model checker Blast. Int. J. Softw. Tools Technol. Transfer 9(5–
6), 505–525 (2007)

11. Beyer, D., Henzinger, T. A., Théoduloz, G.: Configurable soft-
ware verification: Concretizing the convergence of model checking
and program analysis. In: Proc. CAV, LNCS 4590, pp. 504–518.
Springer, Berlin (2007)

12. Beyer, D., Henzinger, T. A., Théoduloz, G.: Program analysis with
dynamic precision adjustment. In: Proc. ASE, pp. 29–38. IEEE
(2008)

13. Beyer, D., Keremoglu, M. E.: CPAchecker: A tool for configurable
software verification. In: Proc. CAV, LNCS 6806, pp. 184–190.
Springer, Berlin (2011)

14. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction
with adjustable-block encoding. In: Proc. FMCAD, pp. 189–197.
FMCAD (2010)

15. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-
based verification of real-time systems. In: Proc. CAV, LNCS 2725,
pp. 122–125. Springer, Berlin (2003)

16. Beyer, D., Löwe, S.: Explicit-state software model checking based
on CEGAR and interpolation. In: Proc. FASE, LNCS 7793,
pp. 146–162. Springer, Berlin (2013)

17. Beyer, D., Noack, A.: Can decision diagrams overcome state space
explosion in real-time verification? In: Proc. FORTE, LNCS 2767,
pp. 193–208. Springer, Berlin (2003)

18. Beyer, D., Stahlbauer, A.: BDD-based software model checking
with CPAchecker. In: Proc. MEMICS, LNCS 7721, pp. 1–11.
Springer, Berlin (2013)

19. Beyer, D., Wendler, P.: Algorithms for software model checking:
Predicate abstraction vs. Impact. In: Proc. FMCAD, pp. 106–113.
FMCAD (2012)

20. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model
checking without BDDs. In: Proc. TACAS, LNCS 1579, pp. 193–
207. Springer, Berlin (1999)

21. Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and
symbolic reachability. In: Proc. CAV, LNCS 6174, pp. 354–359.
Springer, Berlin (2010)

22. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs
is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)

23. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine.
S.: Kronos: A model-checking tool for real-time systems. In: Proc.
CAV, LNCS 1427, pp. 546–550. Springer, Berlin (1998)

24. Bryant, R.E.: Graph-based algorithms for boolean function manip-
ulation. IEEE Trans. Comput. C-35(8):677–691 (1986)

25. Bryant, R.E.: On the complexity of VLSI implementations and
graph representations of boolean functions with application to inte-
ger multiplication. IEEE Trans. Comput. 40(2), 205–213 (1991)

26. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential
circuit verification using symbolic model checking. In: Proc. DAC,
pp. 46–51. ACM (1990)

27. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.:
Symbolic model checking: 1020 states and beyond. In: Proc. LICS,
pp. 428–439. IEEE (1990)

28. Campos, S.V.A., Clarke, E.M.: The Verus language: represent-
ing time efficiently with BDDs. In: Proc. ARTS, LNCS 1231,
pp. 64–78. Springer, Berlin (1997)

29. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An open-
source tool for symbolic model checking. In: Proc. CAV, LNCS
2404, pp. 359–364. Springer, Berlin (2002)

30. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV:
a new symbolic model verifier. In: Proc. CAV, LNCS 1633,
pp. 495–499. Springer, Berlin (1999)

31. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.:
Kratos: A software model checker for SystemC. In: Proc. CAV,
LNCS 6806, pp. 310–316. Springer, Berlin (2011)

32. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The Math-
SAT5 SMT solver. In: Proc. TACAS, LNCS 7795, pp. 93–107.
Springer, Berlin (2013)

33. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement for symbolic
model checking. J. ACM 50(5), 752–794 (2003)

34. Craig, W.: Linear reasoning. A new form of the Herbrand–Gentzen
theorem. J. Symb. Log. 22(3), 250–268 (1957)

35. Esparza, J.: Building a software model checker. In: Proc. Formal
logical methods for system security and correctness, pp. 53–87.
IOS Press (2008)

36. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with
Craig interpolation and symbolic pushdown systems. In: Proc.
TACAS, LNCS 3920, pp. 489–503. Springer, Berlin (2006)

37. Henzinger, T. A., Jhala, R., Majumdar, R., McMillan, K.L.:
Abstractions from proofs. In: Proc. POPL, pp. 232–244. ACM
(2004)

38. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstrac-
tion. In: Proc. POPL, pp. 58–70. ACM (2002)

39. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The
RERS grey-box challenge 2012: Analysis of event–condition–
action systems. In: Proc. ISoLA, LNCS 7609, pp. 608–614.
Springer, Berlin (2012)

40. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.,
Păsăreanu, C.S.: Rigorous examination of reactive systems. The
RERS challenges 2012 and 2013. Int. J. Softw. Tools Technol.
Transfer. doi:10.1007/s10009-014-0337-y (2014)

41. Ivanc̆ić, F., Shlyakhter, I., Gupta, A., Ganai, M.K., Kahlon, V.,
Wang, C., Yang, Z.: Model checking C programs using F-Soft. In:
Proc. ICCD, pp. 297–308. IEEE (2005)

42. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of
software. Electr. Notes Theor. Comput. Sci. 89(3), 480–498 (2003)

43. McMillan, K.L.: The SMV system. Technical Report CMU-CS-
92-131. Carnegie Mellon University (1992)

44. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV,
LNCS 4144, pp. 123–136. Springer, Berlin (2006)

45. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Interme-
diate language and tools for analysis and transformation of C pro-
grams. In: Proc. CC, LNCS 2304, pp. 213–228. Springer, Berlin
(2002)

46. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.:
Property-driven benchmark generation. In: Proc. SPIN, LNCS
7976, pp. 341–357. Springer, Berlin (2013)

47. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.:
Property-driven benchmark generation: Synthesizing programs of
realistic structure. Int. J. Softw. Tools Technol. Transfer. doi:10.
1007/s10009-014-0336-z (2014)

48. von Rhein, A., Apel, S., Raimondi, F.: Introducing binary deci-
sion diagrams in the explicit-state verification of Java code. In:
Proceedings of Java Pathfinder Workshop (2011)

123

http://dx.doi.org/10.1007/s10009-014-0337-y
http://dx.doi.org/10.1007/s10009-014-0336-z
http://dx.doi.org/10.1007/s10009-014-0336-z

	BDD-based software verification
	Applications to event-condition-action systems
	Abstract 
	1 Introduction
	1.1 Related work
	1.1.1 Models of software
	1.1.2 Auxiliary use
	1.1.3 BDD-based analysis of software
	1.1.4 Domain types

	1.2 Insights from the experiments

	2 Preliminaries
	2.1 Programs
	2.2 Configurable program analysis (CPA)
	2.3 CPA for location analysis
	2.4 Analysis algorithm
	2.5 Binary decision diagrams (BDD)

	3 BDD-based program analysis
	3.1 Example

	4 Evaluation
	4.1 Verification tasks
	4.2 Experimental setup
	4.3 Compared verification approaches
	4.4 Results for Eca-Eq
	4.5 Results for Eca-Mul

	5 Conclusion
	References



