
Int J Softw Tools Technol Transfer (2014) 16:457–464
DOI 10.1007/s10009-014-0337-y

INTRODUCTION

Rigorous examination of reactive systems
The RERS challenges 2012 and 2013

Falk Howar · Malte Isberner · Maik Merten ·
Bernhard Steffen · Dirk Beyer · Corina S. Păsăreanu

Published online: 3 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The goal of the RERS challenge is to evalu-
ate the effectiveness of various verification and validation
approaches on reactive systems, a class of systems that is
highly relevant for industrial critical applications. The RERS
challenge brings together researchers from different areas of
software verification and validation, including static analy-
sis, model checking, theorem proving, symbolic execution,
and testing. The challenge provides a forum for experimental
comparison of different techniques on specifically designed
verification tasks. These benchmarks are automatically syn-
thesized to exhibit chosen properties, and then enhanced to
include dedicated dimensions of difficulty, such as concep-
tual complexity of the properties (e.g., reachability, safety,
liveness), size of the reactive systems (a few hundred lines
to millions of lines), and complexity of language features
(arrays and pointer arithmetic). The STTT special section on
RERS describes the results of the evaluations and the dif-
ferent analysis techniques that were used in the RERS chal-
lenges 2012 and 2013.

Keywords Program analysis · Model checking · Verifica-
tion · Model-based testing · Competition · Reactive system ·
Event–condition–action system

An introduction to the RERS challenge 2012 was published in Proc.
ISoLA’12 [26].

F. Howar · C. S. Păsăreanu
Carnegie Mellon Silicon Valley/NASA Ames,
Mountain View, USA

M. Isberner (B) · M. Merten · B. Steffen
TU Dortmund, Dortmund, Germany
e-mail: malte.isberner@cs.uni-dortmund.de

D. Beyer
University of Passau, Passau, Germany

1 Introduction

Reactive systems are ubiquitous: for example, reactive
systems appear as web services, as decision-support sys-
tems, and as logical controllers. Especially, event–condition–
action (ECA) systems are omnipresent in industrial practice.
Notable applications include programmable logic controllers
(PLCs) [1], active databases [31], and web-service composi-
tion [4]. Moreover, ECA systems are the basis of the increas-
ingly popular rule-based systems [24], which can be regarded
as de-facto standard for dealing with permissions and access
control, and ECA systems are promoted as a means for real-
izing compliant business processes on top of rule engines like
Drools [14] or JRules [13].

Validation techniques for reactive systems are as diverse
as their appearance and structure. The used techniques com-
prise various forms of program analysis [34], symbolic exe-
cution [28], software model checking [7,16,25], statistical
model checking [11], model-based testing [15], inference of
invariants [8,18,21,22], automata learning [2,37], run-time
verification [29], and monitoring [23], often tailored to rather
special environment assumptions. Thus, it is almost impos-
sible to compare these techniques in a common setting, let
alone to establish clear application profiles as a means for
recommendation.

The RERS 1 challenge aims to overcome this situation by
providing a forum for experimental profile evaluation based
on specifically designed verification tasks. These bench-
marks are automatically synthesized to exhibit chosen prop-

1 The name RERS originally was an acronym for regular extrapolation
of reactive systems. Although the acronym remained the same, the chal-
lenge itself has evolved towards a broader focus, addressing a variety of
techniques for analyzing and inferring the behavior of reactive systems,
leading to a change of the name and scope to rigorous examination of
reactive systems.

123



458 F. Howar et al.

erties, and then enhanced to include dedicated dimensions of
difficulty, ranging from conceptual complexity of the prop-
erties (e.g., reachability, safety, liveness), over size of the
reactive systems (a few hundred lines to millions of lines),
to exploited language features (from mere assignments to
pointer arithmetics). So far, the RERS challenges focused on
functional properties only, but non-functional properties like
time, performance, and stochastic behavior are envisaged for
the future.

RERS started with an initial workshop that was held at
ISoLA 2010 and continued with two challenges on the analy-
sis of generated verification tasks in 2012 and 2013. A third
instantiation is planned for ISoLA 2014. The first RERS
challenge in 2012 2 concluded with a workshop that was co-
located with ISoLA 2012. The RERS challenge in 2013 3

concluded with a workshop at ASE 2013.
The STTT special section on RERS focuses on the results

from organizing the challenges as well as from participating
in the challenges. It consists of two papers describing the
generation of benchmarks and five contributions covering
some approaches to the challenges in 2012 and 2013. The
remainder of the introduction will give a brief overview of
the challenge setup and results for both past editions, and
discusses what sets RERS apart from other program analysis
competitions.

2 Analysis of reactive systems

RERS focuses on the analysis of event–condition–action
(ECA) systems, a particular class of reactive systems. A ver-
ification task in the challenge consists of a generated ECA
program and a reachability or LTL property. In the follow-
ing, we provide a brief description of the ECA programs and
of the properties that we use in the verification tasks. More
details and the actual verification tasks can be found on the
RERS web page. 4

2.1 ECA programs

At an abstract level, reactive systems can be seen as open
programs that read inputs and produce outputs. In event–
condition–action (ECA) systems, transitions for (input)
events are guarded by conditions, perform actions on the
internal state of the system, and produce outputs. This con-
cept is implemented in many different languages and frame-
works. To have systems that verification tools can be applied
to, the RERS challenge uses ECA programs from which all

2 http://rers-challenge.org/2012/.
3 http://rers-challenge.org/2013ase/.
4 http://www.rers-challenge.org/.

Fig. 1 Source code fragment of a challenge program

unnecessary (for the purpose of the challenge) implemen-
tation details are omitted: ECA programs consist of a main
method with a while(true) loop, in which an input is
read and passed to a method that calculates the updates on
internal states and the outputs. In the most basic form, the
programs use only primitive integer variables and no other
data types.

Figure 1 shows a snippet of source code of the C ver-
sion of an ECA program. The ECA logic is contained in a
method called calculate_output, which is a sequence
of (nested) if-then-else blocks. The state of the ECA
system is represented by a set of variables. At the bottom of
this function, a sequence of if statements checks whether
the system is in an invalid state. If this is the case, an error is
raised by a failed assertion. To identify the specific error in
the source code, the assertion is labeled with the error ID.

2.2 Properties

The properties to be verified in the RERS challenge fall into
two categories.

Reachability properties Some value assignments to inter-
nal state variables correspond to error states, which cause
the system to fail with a specific error code. Not all of
those error states are reachable, and the goal is to check
which of these error states can in fact be reached (it is not
expected to also provide a sequence of inputs for reaching

123

http://rers-challenge.org/2012/
http://rers-challenge.org/2013ase/
http://www.rers-challenge.org/


Examination of reactive systems 459

the error state). Those errors come in the form of either
an IllegalStateException (Java) or a specific error
label with a failed assertion (C). Each individual such reach-
ability problem is evaluated and ranked exactly in the same
fashion as the LTL properties. The label error23 in Fig. 1
is an example for this class of properties.

LTL properties An execution trace of an ECA system consists
of a sequence of inputs and outputs, each from a finite alpha-
bet. For each of the systems, a file is provided, containing
a set of 100 LTL properties for which the contestants have
to check whether they are satisfied by all traces, or if there
are traces that violate them (it is not expected to also provide
these traces as witness). The properties are given both as an
LTL formula and as a textual description. To allow an intu-
itive mapping from LTL expressions to textual descriptions,
the properties to be checked are closely adhering to the pat-
terns in property specifications from the literature [20]. The
LTL formulas are given in a standard syntax, based on the
following temporal operators:

– Xφ (next): φ has to hold after the next step,
– Fφ (eventually): φ has to hold at some point in the future

(or now),
– Gφ (globally): φ has to hold always (including now),
– φUψ (until): φ has to hold until ψ holds (which eventu-

ally occurs),
– φWUψ (weak until): φ has to hold until ψ holds (which

does not necessarily occur), and
– φRψ (release): φ has to hold untilψ held in the previous

step.

As usual, the boolean operators & (conjunction), | (dis-
junction) and ! (negation) are used. The atomic propositions
correspond to input and output symbols, where the prefix i
is used for input and o is used for output symbols, to allow a
clear distinction.5

For example, G (! oU)means that output U never occurs.
In other words, the expression states that it is not possible—
by any sequence of input events—to make the system pro-
duce an output action U.

2.3 Generating ECA programs and properties

All problems are generated in C and Java. Labels in the code
are used to encode reachability properties, more complex
properties are written as LTL formulas over inputs and out-
puts. The problem instances are scaled in several dimensions:
size of internal state, number of inputs, number of abstract
program states, and used data types and language constructs.

5 The more common prefixes ? and ! for inputs and outputs, respec-
tively, cause confusion with the unary negation operator !.

The generation of problems and properties was automated
and is based on generating automata for properties. These
automata are then combined to abstract systems, which in
a second step are further complicated by transformations
introducing state variables and guards (cf. [38]). How this
approach can be conceptually extended to the generation of
concurrent benchmarks is discussed in [36].

3 RERS challenge 2012

The RERS grey-box challenge for ISoLA 2012 proceeded in
two parts:

– An offline part, where the contestants had two months
to analyze all verification tasks and to carefully prepare
their results, and

– An online part during ISoLA 2012, where the contestants
had to obtain the results between the opening on Sunday,
October 14, 2012 and the presentation session on Thurs-
day, October 18, 2012 in the morning.

We used the term “grey-box” in 2012 to refer to the situa-
tion that the “usual” control flow of the program is not visible
and usable in ECA programs (it is “obfuscated” in the ECA
structure).

Springer sponsored a e500 gift certificate for Springer
books for the best solutions. The teams with the best solutions
in their categories summarize the results of the challenge and
present their solution approaches in separate articles [10,32,
35,40], respectively.

3.1 Challenge setup and rules

The contestants were confronted with a number of ECA pro-
grams given in both C and Java, ranging from structurally
simple and small to structurally complex and large, as well
as corresponding collections of properties. The contestants
had to check, for each ECA program, if each property for the
program holds; there were 60 reachability and 100 behavioral
properties for each program.

The challenge started with six ECA programs of varying
complexity. After an initial phase of four weeks, further pro-
grams of higher complexity were added (two of them for
self-evaluation purposes only), specifically tailored to dif-
ferentiate the technologies of the participating contestants.
In contrast to the first six programs, the new programs con-
tained arithmetics and linear inequalities.

Finally, during the online phase, six additional programs
were added, which were similar to those added in the second
round. For these verification tasks, the number of LTL prop-
erties to be checked was reduced to 50, while the number of
reachability properties remained at 60. In all problems, the

123



460 F. Howar et al.

Table 1 Results of the 2012 RERS challenge

Team Overall Reachability LTL

Score Answers Score Answers Score Answers
Tot. (#) Err. (#) Corr. (%) Tot. (#) Err. (#) Corr. Tot. (#) Err. (#) Corr. (%)

Twente 25,190 2,437 52 97.9 10,978 1,037 28 97.3 14,212 1,400 24 98.3

Parisa 13,104 1,486 10 99.3 6,039 671 0 100.0 7,065 815 10 98.8

Vienna 8,433 938 36 96.2 4,635 416 0 100.0 3,798 522 36 93.1

Passaua 5,382 598 0 100.0 5,382 598 0 100.0 – – – –

South.a 5,061 705 16 97.7 2,070 305 1 99.7 2,991 400 15 96.3

Best value in respective column are in bold
a Offline participation only

number of violated properties varied between about 25 and
75 %.

The challenge was free-style: the contestants were allowed
to patch the programs in any way, but the validity had,
of course, to be stated according to the original programs.
Results were computed by the contestants on their machines
and only the final results were submitted for evaluation. Solu-
tions were evaluated in two categories:

1. A purely numeric ranking, according to the amount of
correct answers that the contestants provided, as in a true
competition. To express confidence in the verification
results, the contestants had to assign to each answer a
confidence weight from 0 to 9. For each correct answer,
the weight value was added to the overall score of the con-
testant. For each wrong answer, twice the weight value
was subtracted (cf. [5]).

2. A conceptual ranking, according to the employed (com-
bination of) methods was used to emphasize the chal-
lenge aspect. In this category, solutions were reviewed
and ranked by the challenge team. Due to the possible
variety of methods, there could have been several win-
ners in this category.

For the second category, the teams were asked to write
a short summary of the chosen approach, the encountered
hurdles, the solutions, and the obtained results.

3.2 Results

The results of the five teams that participated in the RERS
challenge 2012 are shown in Table 1.6 The table shows both
the overall results as well as the results when taking into con-
sideration only reachability or LTL properties, respectively.

In the score-based ranking, the solution by the team from
Twente University, based on explicit-state, multi-core model

6 An overview of the team members, as well as more detailed statistics
can be found at http://rers-challenge.org/2012/index.php?page=results.

checking using LTSmin [12,40], emerged as the clear win-
ner in the competition. However, two of the teams did not
participate in the online part of the challenge, and thus had a
principal disadvantage. If counting only the offline phase, the
winning margin shrinks from almost 100 % to a mere 17 %.
According to the obtained score, the second-best solution was
obtained with the Frama-C program analysis framework [19].
It is followed by the solution by the team from Vienna, using
the CodeThorn program analysis and verification tool [35]
based on the ROSE [30] compiler. The team from Passau used
a BDD-based approach to symbolic model checking [9,10],
and the team from Southampton used ESBMC [32,33], an
SMT-based bounded model checker.

The variations in the score-based ranking are partially
caused by the different numbers of questions answered, and
by the different precisions that the verifiers claimed. While all
teams gave a relatively low percentage of incorrect answers,
only the team from Passau provided 100 % correct solutions,
i.e., if an answer was provided, then the answer was correct.
The second-best solution according to the precision of the
results (correctness) was the Frama-C-based solution.

The conceptual award (“Method combination prize”) was
given to the team from Vienna. Instead of relying on static
analysis techniques only, as was the case for all other partic-
ipants, they additionally employed dynamic, black-box test-
ing to validate their answers and to complement shortcom-
ings of their approach.

4 RERS challenge 2013

A goal for the 2013 challenge was to investigate potential for
synergy between source code-based (white-box) approaches
and purely testing-based (black-box) approaches: Black-
box-based testing approaches are independent of language
features, but they can only prove the presence of errors, in
general not their absence. Formal source code analysis has
the power to prove the absence of errors, but adding support
for a new language feature may require an enormous effort.

123

http://rers-challenge.org/2012/index.php?page=results


Examination of reactive systems 461

Realistic problems often require both approaches, which are
so far mostly applied in isolation.

In this spirit, the 2013 instantiation of RERS offered chal-
lenge problems that also scaled in the dimension of new lan-
guage features such as arrays: the programs also contained
guards and assignments with complex arithmetics as well as
array operations. The RERS 2013 challenge was held offline
completely, to have more time for discussions during the
workshop. As in 2012, Springer sponsored gift certificates
(e1,250 in total) for the winners.

4.1 Challenge setup and rules

The RERS challenge 2013 offered considerably more verifi-
cation tasks, compared to 2012. Alone in the white-box cat-
egory with reachability properties, there were 46 programs
and 60 reachability properties, composing a total of 2,760
verification tasks. The set of all verification tasks was parti-
tioned into three categories:

White-box As in 2012, some problems were offered as
source code, targeting static analyses. A detailed charac-
terization of all programs in category white-box can be
found in a separate article (cf. Table 1 in [10]).

Black-box. A set of verification tasks was offered as exe-
cutable binaries, targeting dynamic approaches. These
binaries were compiled from C source code, with heavy
optimizations enabled. The task for the contestants was to
observe these programs’ behavior by interaction via stan-
dard I/O, even though in principle static binary-analysis
techniques could have been applied as well.

Grey-box The grey-box category presents itself as a mix-
ture of the two above: the main part of the system is
distributed as source code. However, the code contains
calls to functions that are not provided as source code.
The source code itself is not compilable, due to these
missing function references. To complement the missing
information, the linked executable binary of the whole
program was, therefore, provided.

To not impose a preference towards a particular approach
or technology, the results are reported as boolean answers to
more than 12,000 queries on input/output reachability and
LTL properties. The contestants were ranked in three evalu-
ations.

1. For the numeric ranking, there were four rankings: white-
box, black-box, grey-box, and overall. The scores were
evaluated according to the number of correctly answered
queries. Each correct answer yields one point, and each
wrong answer costs two points (correct = +1, wrong =

−2, and unknown = 0). The ”confidence” weight from
2012 was dropped.

2. Achievements were assigned to emphasize a verifiers per-
spective: all given answers had to be correct, but it is not
required to give an answer for every verification task.
Moreover, “achievements” did only concern the easiest
verification tasks of each category.

3. The employed (combination of) methods was evaluated
by the organizing team. Due to the potential variety of
methods, several winners were allowed in this evaluation
(method combination award).

We restricted the achievement-specific evaluation as fol-
lows, to take the specific character of grey-box and black-box
problems into account.

White-box The evaluation of the reachability and LTL
problems is independent from the categories grey-box
and black-box, and follows the same scheme (incor-
rect answers forbidden): Bronze requires a 70 % score
on one problem in sub-category “small/easy”. Silver
requires a 75 % score on one problem in sub-category
“medium/easy”. Gold requires an 80 % score on one
problem in sub-category “large/easy”. Platinum requires
that all problems are solved correctly.

Grey-box and black-box In the categories grey-box and
black-box, we only consider the sub-set of verification
tasks for which the program violates the property, i.e.,
the result can be demonstrated explicitly via an appro-
priate error path as witness (i.e., reachable error labels
and violated LTL properties). These violations can be
observed via testing. Besides this restriction, the assign-
ment of Bronze, Silver, Gold, and Platinum follows the
same schema as for the category white-box.

While the achievements evaluation was new for RERS
2013, the other two evaluations essentially worked as for
RERS 2012, except that no confidence levels apply and there
are now a total of three categories: white-box, black-box, and
grey-box.

4.2 Results

In 2013, two teams competed in the final challenge: Mar-
kus Schordan and Adrian Prantl from Lawrence Livermore
National Laboratory (LNLL), USA (the Vienna team of
2012), and Jaco van de Pol (also participated 2012) and
Theo Ruys from Twente University. The tools that the two
teams used are the same as in 2012, namely, CodeThorn
and LTSmin. Their approaches are described in separate arti-
cles [35,40], respectively.

123



462 F. Howar et al.

Table 2 Results of the 2013 RERS challenge

Team Overall Reachability LTL

Score Answers Score Answers Score Answers
Tot. (#) Err .(#) Corr. (%) Tot. (#) Err. (#) Corr. (%) Tot. (#) Err. (#) Corr. (%)

Twente-Rank 7,317 7,365 16 99.78 3,144 3,180 12 99.62 4,173 4,185 4 99.90

Dortmunda 6,518 7,040 174 97.53 2,184 2,640 152 94.42 4,334 4,400 22 99.50

Twente-Achiev 5,801 5,813 4 99.93 1,628 1,628 0 100.0 4,173 4,185 4 99.90

LNLL-Achiev 341 344 1 99.71 341 344 1 99.71 – – – –

LNLL-Rank 279 282 1 99.65 277 277 0 100.0 2 5 1 80.00

Best value in respective column are in bold
a No official participation

Due to the small number of participants, they were allowed
to submit two solutions: one aimed at achieving a high over-
all score (Rank), which was considered for the main chal-
lenge ranking, and one aimed at obtaining a high number
of achievements (Achiev), i.e., cautiously avoiding incorrect
answers. This can be seen as a ”qualitative” equivalent to the
confidence weights from 2012.

In addition, a third team from TU Dortmund contributed a
solution based on active automata learning to the challenge.
Due to the black-box nature of active automata learning, this
team was the only team that approached the black-box prob-
lems. However, because there was a partial overlap with the
challenge organizers, this team did not participate officially
and was not eligible for winning one of the prizes. That
said, their solution—described separately [3]—exploited no
”secret” knowledge about the verification tasks.

The overall (i.e., combining all three categories) results
of the 2013 challenge are shown in Table 2. Once again,
the team from Twente University came first. The automata
learning-based solution scored well, but produced by far the
most incorrect answers. It should be noted that the Achiev
submissions were due one month after the deadline for the
Rank submissions. This explains the higher score of the for-
mer for the LNLL team. Results differentiated by categories
can be found on the RERS 2013 website.7 Both (external)
teams submitted detailed and thorough descriptions of their
approaches, and the Method Combination Award was given
to both teams.

5 Relation to other challenges

Competition and challenge events are well-understood in the
verification community as an effective means for technology
evaluation and exchange, for revealing the state of the art in
a tangible fashion, and to stimulate robust tool implementa-
tions. Notable examples range over various fields, for exam-

7 http://rers-challenge.org/2013ase/index.php?page=results.

ple, automatic software verification [7],8 interactive software
verification [27],9 termination checking,10 hardware model
checking,11 SAT solving,12 SMT solving [17],13 QBF solv-
ing,14 theorem proving [39],15 and planning.16 All of those
events impact the development pace and quality of the com-
peting software tools; results from theory are almost instantly
transferred to practical tool implementations.

Of the mentioned events, the competition on software ver-
ification (SV-COMP) [5–7] at TACAS is thematically closest
to the RERS grey-box challenge [26], even though it is com-
plementary in the following aspects.

The RERS challenge is characterized by

(a) A strong focus on tailored program patterns (e.g., gen-
erated ECA programs with restricted data structures),

(b) Complex properties (reachability and LTL),
(c) Unrestricted computational means, in terms of both

hardware and software, and
(d) Possible interaction of the participants with their verifi-

cation tools.

In contrast, the SV-COMP competition focuses on

(a) A wide range of program structures (including industrial
code, like Linux and Windows device drivers),

(b) Specific properties from reachability, memory safety,
and termination,

(c) Fully controlled evaluation, which is done on a dedicated
experimental environment (specific computer platform

8 http://sv-comp.sosy-lab.org.
9 http://www.verifythis.org.
10 http://termination-portal.org.
11 http://fmv.jku.at/hwmcc.
12 http://www.satcompetition.org.
13 http://www.smtcomp.org.
14 http://www.qbflib.org/competition.html.
15 http://www.cs.miami.edu/~tptp/CASC.
16 http://ipc.icaps-conference.org/.

123

http://rers-challenge.org/2013ase/index.php?page=results
http://sv-comp.sosy-lab.org
http://www.verifythis.org
http://termination-portal.org
http://fmv.jku.at/hwmcc
http://www.satcompetition.org
http://www.smtcomp.org
http://www.qbflib.org/competition.html
http://www.cs.miami.edu/~tptp/CASC
http://ipc.icaps-conference.org/


Examination of reactive systems 463

under defined environmental conditions and limited time
and memory resources), and

(d) Fully automatic verification (no interaction of partici-
pants with their verifiers, which run in isolation on a
platform to which the participants have no access).

This difference characterizes SV-COMP as a competition
with a clear ranking, and contrasts RERS as a challenge,
whose setup makes it difficult to define a global ranking.
This is why we have several rankings for different purposes,
for example, several are purely numerical, simply based on a
‘multiple choice’ test which may be solved ‘free-style’, and
one considers the approach taken, the underlying ideas, and
the concrete realization are evaluated by the challenge team
(with similarities to the competition on interactive software
verification [27]).

6 Conclusion and future plans

The RERS grey-box challenge for ISoLA 2012 [26] was the
first of a series of events in which we aim at successively
refining the challenge scenario to specifically discuss current
strengths and limitations, and to exchange implementations,
algorithms, ideas, and visions. This was continued in 2013
with RERS being a satellite event of ASE 2013, this time
focusing on the distinction between white-box, grey-box and
black-box problems.

The generated problems turned out to be very hard and
complex, in particular, also concerning the mere size of the
benchmark programs, which scared a number of potential
competitors away.

The third RERS challenge, which is part of ISoLA’s 10th
anniversary edition in 2014, specifically addresses the con-
cerns raised in 2013 to attract more competitors. In addition,
it comprises a new trail category with concurrent problems.
This category has an enormous potential and many facets.
Thus, one of the main discussion topics during RERS 2014
will be how to leverage this potential in the future.

Acknowledgments We would like to thank Rustan Leino and Jaco
van de Pol for their helpful comments, and Maren Geske for her assis-
tance in implementing the challenge infrastructure.

References

1. Almeida, E.E., Luntz, J.E., Tilbury, D.M.: Event-condition–action
systems for reconfigurable logic control. IEEE Trans. Autom. Sci.
Eng. 4(2), 167–181 (2007)

2. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987)

3. Bauer, O., Geske, M., Isberner, M.: Analyzing program behav-
ior through active automata learning. Int. J. Softw. Tools Technol.
Transf. doi:10.1007/s10009-014-0333-2 (2014)

4. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self–Serv environ-
ment for web-services composition. Internet Comput. IEEE 7(1),
40–48 (2003)

5. Beyer, D.: Competition on software verification (SV-COMP). In:
Proceedings of TACAS, LNCS 7214, pp. 504–524. Springer (2012)

6. Beyer, D.: Second competition on software verification. In: Pro-
ceedings od TACAS, LNCS 7795, pp. 594–609. Springer (2013)

7. Beyer, D.: Status report on software verification. In: Proceedings
of TACAS, LNCS 8413, pp. 373–388. Springer (2014)

8. Beyer, D., Henzinger, T. A., Majumdar, R., Rybalchenko, A.: Path
invariants. In: Proceedings of PLDI, pp. 300–309. ACM (2007)

9. Beyer, D., Stahlbauer, A.: BDD-based software model checking
with CPAchecker. In: Proceedings of MEMICS, LNCS 7721, pp.
1–11. Springer (2013)

10. Beyer, D., Stahlbauer, A.: BDD-based software verification: appli-
cations to event-condition–action systems. Int. J. Softw. Tools
Technol. Transf. doi:10.1007/s10009-014-0334-1 (2014)

11. Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-
deterministic systems. In: Proceedings of FSTTCS, LNCS 1026,
pp. 499–513. Springer (1995)

12. Blom, S.C.C., van de Pol, J.C., Weber, L.T., Smin, M.: Distributed
and symbolic reachability. In: Proceedings of CAV, LNCS 6174,
pp. 354–359. Springer (2010)

13. Boyer, J., Mili, H.: IBM WebSphere ILOG JRules. In: Agile Busi-
ness Rule Development, pp. 215–242. Springer (2011)

14. Browne, P.: JBoss Drools Business Rules: Capture, Automate, and
Reuse Your Business Processes in a Clear English Language that
Your Computer Can Understand. Packt Publishing (2009)

15. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.
(editors): Model-based testing of reactive systems. In: LNCS 3472.
Springer (2005)

16. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT
Press, Cambridge, USA (2001)

17. Cok, D. R., Griggio, A., Bruttomesso, R., Deters, M.: The 2012
SMT competition. In: Proceedings of SMT, pp. 131–142 (2012)

18. Colón, M., Sankaranarayanan, S., Sipma, H.B.: Linear invariant
generation using non-linear constraint solving. In: Proceedings of
CAV, LNCS 2725, pp. 420–432. Springer (2003)

19. Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Corren-
son, L., Monate, B., Prevosto, V., Puccetti, A.: Experience report:
OCaml for an industrial-strength static analysis framework. In: Pro-
ceedings of ICFP, pp. 281–286. ACM (2009)

20. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: Proceedings of ICSE,
pp. 411–420. ACM (1999)

21. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynam-
ically discovering likely program invariants to support program
evolution. IEEE Trans. Softw. Eng. 27(2), 99–123 (2001)

22. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based
invariant inference over predicate abstraction. In: Proceedings of
VMCAI, pp. 120–135 (2009)

23. Havelund, K., Roşu, G.: Monitoring Java programs with Java
PathExplorer. ENTCS 55(2), 200–217 (2001)

24. Hayes-Roth, F.: Rule-based systems. Commun. ACM 28(9), 921–
932 (1985)

25. Holzmann, G.J., Smith, M.H.: Software model checking: extracting
verification models from source code. Softw. Test. Verif. Reliab.
11(2), 65–79 (2001)

26. Howar, F., Isberner, M., Merten, M., Steffen, B., and Beyer, D.:
The RERS grey-box challenge 2012: analysis of event-condition-
action systems. In: Proceedings of ISoLA, LNCS 7609, pp. 608–
614. Springer (2012)

27. Huisman, M., Klebanov, V., Monahan, R.: On the organisation of
program-verification competitions. In: Proceedings of COMPARE,
CEUR Workshop Proceedings 873, pp. 50–59. CEUR-WS.org
(2012)

123

http://dx.doi.org/10.1007/s10009-014-0333-2
http://dx.doi.org/10.1007/s10009-014-0334-1


464 F. Howar et al.

28. King, J.C.: Symbolic execution and program testing. Commun.
ACM 19(7), 385–394 (1976)

29. Leucker, M., Schallhart, C.: A brief account of runtime verification.
J. Logic Alg. Progr. 78(5), 293–303 (2009)

30. Lidman, J., Quinlan, D.J., Liao, C., McKee, S.A.:
ROSE:FTTransform—a source-to-source translation frame-
work for exascale fault-tolerance research. In: Proceedings of
FTXS. IEEE (2012)

31. McCarthy, D., Dayal, U.: The architecture of an active database
management system. In: Proceedings of ICMD, pp. 215–224. ACM
(1989)

32. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Context-bounded
model checking of LTL properties for ANSI-C software. In: Pro-
ceedings of SEFM, LNCS 7041, pp. 302–317. Springer (2011)

33. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Applying sym-
bolic bounded model checking to the: RERS greybox chal-
lenge, p. 2014. J. Softw. Tools Technol. Transf. Int. doi:10.1007/
s10009-014-0335-0 (2014)

34. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program
Analysis. Springer, New York, USA (1999)

35. Schordan, M., Prantl, A.: Combining static analysis and state tran-
sition graphs for verification of event-condition-action systems in
the RERS 2012 and 2013 challenges. Int. J. Softw. Tools Technol.
Transf. doi:10.1007/s10009-014-0338-x (2014)

36. Steffen, B., Howar, F., Isberner, M., Naujokat, S., Margaria, T.:
Tailored generation of concurrent benchmarks. Int. J. Softw. Tools
Technol. Transf. doi:10.1007/s10009-014-0339-9 (2014)

37. Steffen, B., Howar, F., Merten, M.: Introduction to active automata
learning from a practical perspective. In: Proceedings of SFM,
LNCS 6659, pp. 256–296. Springer (2011)

38. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.:
Property-driven benchmark generation: synthesizing programs of
realistic structure. Int. J. Softw. Tools Technol. Transf. doi:10.1007/
s10009-014-0336-z (2014)

39. Sutcliffe, G., Suttner, C.: The state of CASC. AI Commun. 19(1),
35–48 (2006)

40. van de Pol, J., Ruys, T. C., te Brinke, S.: Thoughtful brute force
attack of the RERS 2012 and 2013 challenges. Int. J. Softw. Tools
Technol. Transf. doi:10.1007/s10009-014-0324-3 (2014)

123

http://dx.doi.org/10.1007/s10009-014-0335-0
http://dx.doi.org/10.1007/s10009-014-0335-0
http://dx.doi.org/10.1007/s10009-014-0338-x
http://dx.doi.org/10.1007/s10009-014-0339-9
http://dx.doi.org/10.1007/s10009-014-0336-z
http://dx.doi.org/10.1007/s10009-014-0336-z
http://dx.doi.org/10.1007/s10009-014-0324-3

	Rigorous examination of reactive systems
	The RERS challenges 2012 and 2013
	Abstract 
	1 Introduction
	2 Analysis of reactive systems
	2.1 ECA programs
	2.2 Properties
	2.3 Generating ECA programs and properties

	3 RERS challenge 2012
	3.1 Challenge setup and rules
	3.2 Results

	4 RERS challenge 2013
	4.1 Challenge setup and rules
	4.2 Results

	5 Relation to other challenges
	6 Conclusion and future plans
	Acknowledgments
	References



