
Status Report on Software Verification
(Competition Summary SV-COMP 2014)

Dirk Beyer

University of Passau, Germany

Abstract. This report describes the 3rd International Competition on
Software Verification (SV-COMP 2014), which is the third edition of
a thorough comparative evaluation of fully automatic software verifiers.
The reported results represent the state of the art in automatic soft-
ware verification, in terms of effectiveness and efficiency. The verification
tasks of the competition consist of nine categories containing a total of
2 868 C programs, covering bit-vector operations, concurrent execution,
control-flow and integer data-flow, device-drivers, heap data structures,
memory manipulation via pointers, recursive functions, and sequential-
ized concurrency. The specifications include reachability of program la-
bels and memory safety. The competition is organized as a satellite event
at TACAS 2014 in Grenoble, France.

1 Introduction
Software verification is an important part of software engineering, which is re-
sponsible for guaranteeing safe and reliable performance of the software systems
that our economy and society relies on. The latest research results need to be
implemented in verification tools, in order to transfer the theoretical knowledge
to engineering practice. The Competition on Software Verification (SV-COMP) 1

is a systematic comparative evaluation of the effectiveness and efficiency of the
state of the art in software verification. The benchmark repository of SV-COMP 2

is a collection of verification tasks that represent the current interest and abil-
ities of tools for software verification. For the purpose of this competition, the
verification tasks are arranged in nine categories, according to the characteristics
of the programs and the properties to verify. Besides the verification tasks that
are used in this competition and written in the programming language C, the
SV-COMP repository also contains tasks written in Java 3 and as Horn clauses 4.

The main objectives of the Competition on Software Verification are to:

1. provide an overview of the state of the art in software-verification technology,
2. establish a repository of software-verification tasks that is widely used,
3. increase visibility of the most recent software verifiers, and
4. accelerate the transfer of new verification technology to industrial practice.
1 http://sv-comp.sosy-lab.org
2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk
3 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/java
4 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 373–388, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://sv-comp.sosy-lab.org
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/java/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/

374 D. Beyer

The large attendance at the past competition sessions at TACAS witnesses
that the community is interested in the topic and that the competition really
helps achieving the above-mentioned objectives (1) and (3). Also, objective (2)
is achieved: an inspection of recent publications on algorithms for software veri-
fication reveals that it becomes a standard for evaluating new algorithms to use
the established verification benchmarks from the SV-COMP repository.

The difference of SV-COMP to other competitions 5 6 7 8 9 10 11 12 13 is that we
focus on evaluating tools for fully automatic verification of program source code
in a standard programming language [1, 2]. The experimental evaluation is per-
formed on dedicated machines that provide the same limited amount of resources
to each verification tool.

2 Procedure

The procedure for the competition was not changed in comparison to the previ-
ous editions [1,2], and consisted of the phases (1) benchmark submission (collect
and classify new verification tasks), (2) training (teams inspect verification tasks
and train their verifiers), and (3) evaluation (verification runs with all competi-
tion candidates and review of the system descriptions by the competition jury).
All systems and their descriptions were again archived and stamped for identifi-
cation with SHA hash values. Also, before public announcement of the results,
all teams received the preliminary results of their verifier for approval. After the
competition experiments for the ‘official’ categories were finished, some teams
participated in demonstration categories, in order to experiment with new cate-
gories and new rules for future editions of the competition.

3 Definitions and Rules

As a new feature of the competition and to streamline the specification of the
various properties, we introduced a syntax for properties (described below). The
definition of verification tasks was not changed (taken from [2]).

Verification Tasks. A verification task consists of a C program and a property.
A verification run is a non-interactive execution of a competition candidate on
a single verification task, in order to check whether the following statement is
correct: “The program satisfies the property.” The result of a verification run is
a triple (answer, witness, time). answer is one of the following outcomes:

5 http://www.satcompetition.org
6 http://www.smtcomp.org
7 http://ipc.icaps-conference.org
8 http://www.qbflib.org/competition.html
9 http://fmv.jku.at/hwmcc12

10 http://www.cs.miami.edu/~tptp/CASC
11 http://termination-portal.org
12 http://fm2012.verifythis.org
13 http://rers-challenge.org

http://www.satcompetition.org
http://www.smtcomp.org
http://ipc.icaps-conference.org
http://www.qbflib.org/competition.html
http://fmv.jku.at/hwmcc12
http://www.cs.miami.edu/~tptp/CASC
http://termination-portal.org
http://fm2012.verifythis.org
http://rers-challenge.org

Status Report on Software Verification 375

TRUE: The property is satisfied (i.e., no path that violates the property exists).
FALSE: The property is violated (i.e., there exists a path that violates the

property) and a counterexample path is produced and reported as witness.
UNKNOWN: The tool cannot decide the problem, or terminates by a tool

crash, or exhausts the computing resources time or memory (i.e., the compe-
tition candidate does not succeed in computing an answer TRUE or FALSE).

For the counterexample path that must be produced as witness for the result
FALSE, we did not require a particular fixed format. (Future editions of SV-
COMP will support machine-readable error witnesses, such that error witnesses
can be automatically validated by a verifier.) The time is measured as consumed
CPU time until the verifier terminates, including the consumed CPU time of all
processes that the verifier started. If time is equal to or larger than the time
limit, then the verifier is terminated and the answer is set to ‘timeout’ (and
interpreted as UNKNOWN). The verification tasks are partitioned into nine
separate categories and one category Overall that contains all verification tasks.
The categories, their defining category-set files, and the contained programs are
explained under Verification Tasks on the competition web site.

Properties. The specification to be verified is stored in a file that is given
as parameter to the verifier. In the repository, the specifications are available
in .prp files in the main directory.

The definition init(main()) gives the initial states of the program by a call of
function main (with no parameters). The definition LTL(f) specifies that formula
f holds at every initial state of the program. The LTL (linear-time temporal logic)
operator G f means that f globally holds (i.e., everywhere during the program
execution), and the operator F f means that f eventually holds (i.e., at some
point during the program execution). The proposition label(ERROR) is true if
the C label ERROR is reached, and the proposition end is true if the program
execution terminates (e.g., return of function main, program exit, abort).
Label Unreachability. The reachability property perror is encoded in the program
source code using a C label and expressed using the following specification (the
interpretation of the LTL formula is given in Table 1):

CHECK(init(main()), LTL(G ! label(ERROR)))

The new syntax (in comparison to previous SV-COMP editions) allows a more
general specification of the reachability property, by decoupling the specification
from the program source code, and thus, not requiring the label to be named
ERROR.
Memory Safety. The memory-safety property pmemsafety (only used in one cat-
egory) consists of three partial properties and is expressed using the following
specification (interpretation of formulas given in Table 1):

CHECK(init(main()), LTL(G valid-free))
CHECK(init(main()), LTL(G valid-deref))
CHECK(init(main()), LTL(G valid-memtrack))

http://sv-comp.sosy-lab.org/2014/benchmarks.php

376 D. Beyer

Table 1. Formulas used in the competition, together with their interpretation

Formula Interpretation
G ! label(ERROR) The C label ERROR is not reachable on any finite execution of

the program.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.

F end All program executions are finite and end on proposition end
(counterexample: infinite loop). More precisely: There exists
no execution of the program on which the program never
terminates.

Table 2. Scoring schema for SV-COMP 2013 and 2014 (taken from [2])

Reported result Points Description
UNKNOWN 0 Failure to compute verification result
FALSE correct +1 Violation of property in program was correctly found
FALSE incorrect −4 Violation reported but property holds (false alarm)
TRUE correct +2 Correct program reported to satisfy property
TRUE incorrect −8 Incorrect program reported as correct (missed bug)

The verification result FALSE for the property pmemsafety is required to include
the violated partial property: FALSE(p), with p ∈ {pvalid−free, pvalid−deref ,
pvalid−memtrack}, means that the (partial) property p is violated. According to the
requirements for verification tasks, all programs in categoryMemorySafety violate
at most one (partial) property p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack}. Per
convention, function malloc is assumed to always return a valid pointer, i.e., the
memory allocation never fails, and function free always deallocates the memory
and makes the pointer invalid for further dereferences.
Program Termination. The termination property ptermination (only used in a
demonstration category) is based on the proposition end and expressed using the
following specification (interpretation in Table 1):

CHECK(init(main()), LTL(F end))
Evaluation by Scores and Run Time. The scoring schema was not changed
from SV-COMP 2013 to 2014 and is given in Table 2. The ranking is decided
based on the sum of points and for equal sum of points according to success
run time, which is the total CPU time over all verification tasks for which the
verifier reported a correct verification result. Sanity tests on obfuscated versions
of verification tasks (renaming of variable and function names; renaming of file)

Status Report on Software Verification 377

Table 3. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Jury member Affiliation
Blast 2.7.2 [31] Vadim Mutilin ISPRAS, Moscow, Russia
Cbmc [24] Michael Tautschnig Queen Mary U, London, UK
CPAchecker [25] Stefan Löwe U Passau, Germany
CPAlien [27] Petr Muller TU Brno, Czech Republic
CSeq-Lazy [20] Bernd Fischer Stellenbosch U, South Africa
CSeq-Mu [33] Gennaro Parlato U Southampton, UK
Esbmc 1.22 [26] Lucas Cordeiro FUA, Manaus, Brazil
FrankenBit [15] Arie Gurfinkel SEI, Pittsburgh, USA
Llbmc [11] Stephan Falke KIT, Karlsruhe, Germany
Predator [9] Tomas Vojnar TU Brno, Czech Republic
Symbiotic 2 [32] Jiri Slaby Masaryk U, Brno, Czech Rep.
Threader [29] Corneliu Popeea TU Munich, Germany
Ufo [14] Aws Albarghouthi U Toronto, Canada
Ultimate Automizer [16] Matthias Heizmann U Freiburg, Germany
Ultimate Kojak [10] Alexander Nutz U Freiburg, Germany

did not reveal any discrepancy of the results. Opting-out from Categories and
and Computation of Score for Meta Categories were defined as in SV-COMP
2013 [2]. The Competition Jury consists again of the chair and one member of
each participating team. Team representatives are indicated in Table 3.

4 Participating Teams

Table 3 provides an overview of the participating competition candidates. The
detailed summary of the achievements for each verifier is presented in Sect. 5.
A total of 15 competition candidates participated in SV-COMP 2014: Blast
2.7.2 14 , Cbmc 15 , CPAchecker 16 , CPAlien 17 , CSeq-Lazy 18 , CSeq-Mu,
Esbmc 1.22 19 , FrankenBit 20 , Llbmc 21 , Predator 22 , Symbiotic 2 23 ,
Threader 24 , Ufo 25 , Ultimate Automizer 26 , and Ultimate Kojak 27 .

14 http://forge.ispras.ru/projects/blast
15 http://www.cprover.org/cbmc
16 http://cpachecker.sosy-lab.org
17 http://www.fit.vutbr.cz/~imuller/cpalien
18 http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
19 http://www.esbmc.org
20 http://bitbucket.org/arieg/fbit
21 http://llbmc.org
22 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
23 https://sf.net/projects/symbiotic
24 http://www7.in.tum.de/tools/threader
25 http://bitbucket.org/arieg/ufo
26 http://ultimate.informatik.uni-freiburg.de/automizer
27 http://ultimate.informatik.uni-freiburg.de/kojak

http://forge.ispras.ru/projects/blast
http://www.cprover.org/cbmc
http://cpachecker.sosy-lab.org
http://www.fit.vutbr.cz/~imuller/cpalien
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://www.esbmc.org
http://bitbucket.org/arieg/fbit
http://llbmc.org
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
https://sf.net/projects/symbiotic
http://www7.in.tum.de/tools/threader
http://bitbucket.org/arieg/ufo
http://ultimate.informatik.uni-freiburg.de/automizer
http://ultimate.informatik.uni-freiburg.de/kojak

378 D. Beyer

Table 4. Technologies and features that the verification tools offer (incl. demo track)

Verification tool
(incl. demo
track) C

E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
ym

b
ol

ic
E
xe

cu
ti

on

B
ou

n
d
ed

M
od

el
C

h
ec

k.

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

In
te

rv
al

A
n
al

ys
is

S
h
ap

e
A

n
al

ys
is

B
it

-p
re

ci
se

A
n
al

ys
is

A
R

G
-b

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

C
on

cu
rr

en
cy

S
u
p
p
or

t

R
an

ki
n
g

F
u
n
ct

io
n
s

AProVE ✓ ✓

Blast 2.7.2 ✓ ✓ ✓ ✓ ✓

Cbmc ✓ ✓ ✓

CPAlien ✓ ✓

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CSeq-Lazy ✓ ✓

CSeq-Mu ✓ ✓

Esbmc 1.22 ✓ ✓ ✓

FuncTion ✓ ✓

FrankenBit ✓ ✓ ✓

Llbmc ✓

Predator ✓

Symbiotic 2 ✓

T2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Threader ✓ ✓ ✓ ✓ ✓

Ufo ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ultimate Automizer ✓ ✓ ✓ ✓

Ultimate Kojak ✓ ✓ ✓ ✓

Ultimate Büchi ✓ ✓ ✓ ✓ ✓

Table 4 lists the features and technologies that are used in the verification
tools. Counterexample-guided abstraction refinement (CEGAR) [8], predicate
abstraction [13], bounded model checking [6], lazy abstraction [19], and inter-
polation for predicate refinement [18] are implemented in many verifiers. Other
features that were implemented include symbolic execution [22], the construction
of an abstract reachability graph (ARG) as proof of correctness [3], and shape
analysis [21]. Only a few tools support the verification of concurrent programs.
Computing ranking functions [28] for proving termination is a feature that is
implemented in tools that participated in the demo category on termination.

Status Report on Software Verification 379

Table 5. Quantitative overview over all results — Part 1 (score / CPU time)

Competition candidate
Representing jury member B

it
V

ec
to

rs
86

po
in

ts
m

ax
.

49
ve

ri
f.

ta
sk

s

C
on

cu
rr

en
cy

13
6

po
in

ts
m

ax
.

78
ve

ri
f.

ta
sk

s

C
on

tr
ol

F
lo

w
1
26

1
po

in
ts

m
ax

.
84

3
ve

ri
f.

ta
sk

s

D
ev

ic
eD

ri
ve

rs
2
76

6
po

in
ts

m
ax

.
1
42

8
ve

ri
f.

ta
sk

s

H
ea

p
M

an
ip

.
13

5
po

in
ts

m
ax

.
80

ve
ri
f.

ta
sk

s

Blast 2.7.2 — — 508 2 682 —
V. Mutilin, Moscow, Russia 32 000 s 13 000 s

Cbmc 86 128 397 2 463 132
M. Tautschnig, London, UK 2 300 s 29 000 s 42 000 s 390 000 s 12 000 s

CPAchecker 78 0 1009 2 613 107
S. Löwe, Passau, Germany 690 s 0.0 s 9 000 s 28 000 s 210 s

CPAlien — — 455 — 71
P. Muller, Brno, Czech Republic 6 500 s 70 s

CSeq-Lazy — 136 — — —
B. Fischer, Stellenbosch, ZA 1 000 s

CSeq-Mu — 136 — — —
G. Parlato, Southampton, UK 1 200 s

Esbmc 1.22 77 32 949 2 358 97
L. Cordeiro, Manaus, Brazil 1 500 s 30 000 s 35 000 s 140 000 s 970 s

FrankenBit — — 986 2 639 —
A. Gurfinkel, Pittsburgh, USA 6 300 s 3 000 s

Llbmc 86 0 961 0 107
S. Falke, Karlsruhe, Germany 39 s 0.0 s 13 000 s 0.0 s 130 s

Predator -92 0 511 50 111
T. Vojnar, Brno, Czech Republic 28 s 0.0 s 3 400 s 9.9 s 9.5 s

Symbiotic 2 39 -82 41 980 105
J. Slaby, Brno, Czech Republic 220 s 5.7 s 39 000 s 2 200 s 15 s

Threader — 100 — — —
C. Popeea, Munich, Germany 3 000 s

Ufo — — 912 2 642 —
A. Albarghouthi, Toronto, Canada 14 000 s 5 700 s

Ultimate Automizer — — 164 — —
M. Heizmann, Freiburg, Germany 6 000 s

Ultimate Kojak -23 0 214 0 18
A. Nutz, Freiburg, Germany 1 100 s 0.0 s 5 100 s 0.0 s 35 s

380 D. Beyer

Table 6. Quantitative overview over all results — Part 2 (score / CPU time)

Competition candidate
Representing jury member M

em
or

yS
af

et
y

98
po

in
ts

m
ax

.
61

ve
ri
f.

ta
sk

s

R
ec

u
rs

iv
e

39
po

in
ts

m
ax

.
23

ve
ri
f.

ta
sk

s

S
eq

u
en

ti
al

iz
ed

36
4

po
in

ts
m

ax
.

26
1

ve
ri
f.

ta
sk

s

S
im

p
le

67
po

in
ts

m
ax

.
45

ve
ri
f.

ta
sk

s

O
ve

ra
ll

4
71

8
po

in
ts

m
ax

.
2
86

8
ve

ri
f.

ta
sk

s

Blast 2.7.2 — — — 30 —
V. Mutilin, Moscow, Russia 5 400 s

Cbmc 4 30 237 66 3 501
M. Tautschnig, London, UK 11 000 s 11 000 s 47 000 s 15 000 s 560 000 s

CPAchecker 95 0 97 67 2 987
S. Löwe, Passau, Germany 460 s 0.0 s 9 200 s 430 s 48 000 s

CPAlien 9 — — — —
P. Muller, Brno, Czech Republic 690 s

CSeq-Lazy — — — — —
B. Fischer, Stellenbosch, ZA

CSeq-Mu — — — — —
G. Parlato, Southampton, UK

Esbmc 1.22 -136 -53 244 31 975
L. Cordeiro, Manaus, Brazil 1 500 s 4 900 s 38 000 s 27 000 s 280 000 s

FrankenBit — — — 37 —
A. Gurfinkel, Pittsburgh, USA 830 s

Llbmc 38 3 208 0 1 843
S. Falke, Karlsruhe, Germany 170 s 0.38 s 11 000 s 0.0 s 24 000 s

Predator 14 -18 -46 0 -184
T. Vojnar, Brno, Czech Republic 39 s 0.12 s 7 700 s 0.0 s 11 000 s

Symbiotic 2 -130 6 -32 -22 -220
J. Slaby, Brno, Czech Republic 7.5 s 0.93 s 770 s 13 s 42 000 s

Threader — — — — —
C. Popeea, Munich, Germany

Ufo — — 83 67 —
A. Albarghouthi, Toronto, Canada 4 800 s 480 s

Ultimate Automizer — 12 49 — 399
M. Heizmann, Freiburg, Germany 850 s 3 000 s 10 000 s

Ultimate Kojak 0 9 9 0 139
A. Nutz, Freiburg, Germany 0.0 s 54 s 1 200 s 0.0 s 7 600 s

Status Report on Software Verification 381

Table 7. Overview of the top-three verifiers for each category (CPU time in s)

Rank Candidate Score CPU Solved False Missed
Time Tasks Alarms Bugs

BitVectors
1 Llbmc 86 39 49
2 Cbmc 86 2 300 49
3 CPAchecker 78 690 45

Concurrency
1 CSeq-Lazy 136 1 000 78
2 CSeq-Mu 136 1 200 78
3 Cbmc 128 29 000 76 1

ControlFlow
1 CPAchecker 1009 9 000 764 2
2 FrankenBit 986 6 300 752 2
3 Llbmc 961 13 000 783 14

DeviceDrivers
1 Blast 2.7.2 2682 13 000 1 386 2
2 Ufo 2 642 5 700 1 354 2 3
3 FrankenBit 2 639 3 000 1 383 5 5

HeapManipulation
1 Cbmc 132 12 000 78
2 Predator 111 9.5 68
3 Llbmc 107 130 66

MemorySafety
1 CPAchecker 95 460 59
2 Llbmc 38 170 31
3 Predator 14 39 43 12

Recursive
1 Cbmc 30 11 000 22 1
2 Ultimate Automizer 12 850 9
3 Ultimate Kojak 9 54 7

SequentializedConcurrency
1 Esbmc 1.22 244 38 000 187 2
2 Cbmc 237 47 000 225 10
3 Llbmc 208 11 000 191 3 3

Simple
1 CPAchecker 67 430 45
2 Ufo 67 480 45
3 Cbmc 66 15 000 44

Overall
1 Cbmc 3501 560 000 2 597 3 90
2 CPAchecker 2 987 48 000 2 421 12
3 Llbmc 1 843 24 000 1 123 3 17

382 D. Beyer

5 Results and Discussion
The results that we obtained in the competition experiments and reported in
this article represent the state of the art in fully automatic and publicly avail-
able software-verification tools. The results show achievements in effectiveness
(number of verification tasks that can be solved, correctness of the results) and
efficiency (resource consumption in terms of CPU time). All reported results
were approved by the participating teams.

The verification runs were natively executed on dedicated unloaded compute
servers with a 3.4 GHz 64-bit Quad Core CPU (Intel i7-2600) and a GNU/Linux
operating system (x86_64-linux). The machines had (at least) 16 GB of RAM, of
which exactly 15 GB were made available to the verification tools. The run-time
limit for each verification run was 15 min of CPU time. The tables report the run
time in seconds of CPU time; all measured values are rounded to two significant
digits. One complete competition run with all candidates on all verification tasks
required a total of 51 days of CPU time.

Tables 5 and 6 present a quantitative overview over all tools and all categories.
The tools are listed in alphabetical order; every table cell for competition results
lists the score in the first row and the CPU time for successful runs in the
second row. We indicated the top-three candidates by formatting their score in
bold face and in larger font size. The entry ‘—’ means that the verifier opted-
out from the respective category. For the calculation of the score and for the
ranking, the scoring schema in Table 2 was applied, the scores for meta categories
(Overall and ControlFlow; consisting of several sub-categories) were computed
using normalized scores as defined in last year’s report [2].

Table 7 reports the top-three verifiers for each category. The run time refers
to successfully solved verification tasks. The columns ‘False Alarms’ and ‘Missed
Bugs’ report the number of verification tasks for which the tool reported wrong
results: reporting a counterexample path but the property holds (false positive)
and claiming that the program fulfills the property although it actually contains
a bug (false negative), respectively.

Score-Based Quantile Functions for Quality Assessment. As described in
the previous competition report [2], score-based quantile functions are a helpful
visualization of the results. The competition web page 28 presents such a plot
for each category, while we illustrate in Fig. 1 only the category Overall (all
verification tasks). A total of eight verifiers participated in category Overall, for
which the quantile plot shows the overall performance over all categories. (Note
that the scores are normalized as described last year [2].)
Overall Quality Measured in Scores (Right End of Graph). Cbmc is the winner of
this category, because the x-coordinate of the right-most data point represents
the highest total score (and thus, the total value) of the completed verification
work (cf. Table 7; right-most x-coordinates match the score values in the table).
Amount of Incorrect Verification Work (Left End of Graph). The left-most data
points of the quantile functions represent the total negative score of a verifier
28 http://sv-comp.sosy-lab.org/2014/results

http://sv-comp.sosy-lab.org/2014/results

Status Report on Software Verification 383

Fig. 1. Quantile functions: For each competition candidate, we plot all data points (x, y)
such that the maximum run time of the n fastest correct verification runs is y and x is
the accumulated score of all incorrect results and those n correct results. A logarithmic
scale is used for the time range from 1 s to 1000 s, and a linear scale is used for the
time range between 0 s and 1 s. The graphs are decorated with symbols at every 15-th
data point.

(x-coordinate), i.e., amount of incorrect verification work. Verifiers should start
with a score close to zero; CPAchecker is best in this aspect (also the right-most
columns of category Overall in Table 7 report this: only 12 false alarms and no
missed bug for all 2 868 verification tasks).
Characteristics of the Verification Tools. The plot visualizations also help under-
standing how the verifiers work internally: (1) The y-coordinate of the left-most
data point refers to the ‘easiest’ verification task for the verifier. We can see
that verifiers that are based on a Java virtual machine need some start-up time
(CPAchecker, Ultimate). (2) The y-coordinate of the right-most data point
refers to the successfully solved verification task that the verifier spent most
time on (this is mostly just below the time limit). We can read the ranking of
verifiers in this category from right to left. (3) The area below a graph is pro-
portional to the accumulated CPU time for successfully solved tasks. We can
identify the most resource-efficient verifiers by looking at the graphs close to the
x-axis. (4) Also the shape of the graph can give interesting insights: From the two
horizontal lines just below the time limit (at 850 s and 895 s, resp.), we can see
that two of the bounded model checkers (Cbmc, Esbmc 1.22) return a result just
before the time limit is reached. The quantile plot for category DeviceDrivers64
(not available here, but on the competition web page) shows an interesting bend
at about 20 s of run time for verifier CPAchecker: the verifier gives up with
one strategy (without abstraction) and performs an internal restart for using
another strategy (with abstraction and CEGAR-based refinement).

384 D. Beyer

Table 8. Quantitative overview over results in category Termination

Competition candidate
Representing team member

Termination-crafted
89 points max.
47 verif. tasks

Termination-ext
265 points max.
199 verif. tasks

Errors
false alarms
missed bugs

AProVE [12] 58 0
J. Giesl, Aachen, Germany 360 s 0 s
FuncTion [34] 20 0
C. Urban, Paris, France 220 s 0 s
T2 [7] 46 50
M. Brockschmidt, Cambridge, UK 80 s 64 s
Tan [23] 12 23 2
C. Wintersteiger, Oxford, UK 33 s 590 s 1
Ultimate Büchi [17] 57 117
M. Heizmann, Freiburg, Germany 250 s 4 800 s

Robustness, Soundness, and Completeness. The best tools of each cate-
gory show that state-of-the-art verification technology significantly progressed
in terms of wrong verification results. Table 7 reports, in its last two columns,
the number of false alarms and missed bugs, respectively, for the best verifiers
in each category: There is a low number of false alarms (wrong bug reports),
which witnesses that verification technology can avoid wasted developer time
being spent on investigation of spurious bug reports. Also in terms of sound-
ness, the results look promising, considering that the most missed bugs (wrong
safety claims) were reported by bounded model checkers. In three categories, the
top-three verifiers did not report any wrong result.

Demonstration Categories. For the first time in SV-COMP, we performed
experiments in demonstration categories, i.e., categories for which we wanted to
try out new applications of verification, new properties, or new rules. For the
demonstration categories, we neither rank the results nor assign awards.

Termination. Checking program termination is also an important objective of
software verification. We started with two sets of verification tasks: category
Termination-crafted is a community-contributed set of verification tasks that
were designed by verification researchers for the purpose of evaluating termina-
tion checkers (programs were collected from well-known papers in the area),
and category Termination-ext is a selection of verification tasks from exist-
ing categories for which the result was determined during the demonstration
runs.

Status Report on Software Verification 385

Table 9. Re-verification of verification results using error witnesses; verification time
in s of CPU time; path length in number of edges; expected result is ‘false’ in all cases

Verification task
Cbmc

verification
Path
length

CPAchecker
re-verification

parport_false 37 179 11
eureka_01_false 0.36 42 64
Tripl.2.ufo.BOUNDED-10.pals.c 0.81 356 53
Tripl.2.ufo.UNBOUNDED.pals.c 0.80 355 44
gigaset.ko_false 44 140 120
tcm_vhost-ko–32_7a 26 197 62
vhost_net-ko–32_7a 21 89 72
si4713-i2c-ko–111_1a 430 75 12

Table 8 shows the results, which are promising: five teams participated, namely
AProVE 29 , FuncTion 30 , T2 31 , Tan 32 , and Ultimate Büchi 33 .
Also, the quality of the termination checkers was extremely good: almost all
tools had no false positive (‘false alarms’, the verifier reported the program
would not terminate although it does) and no false negative (‘missed bug’, the
verifier reported termination but infinite looping is possible).
Device-Driver Challenge. Competitions are always looking for hard problems.
We received some unsolved problems from the LDV project 34. Three teams
participated and could compute answers to 6 of the 15 problems: Cbmc found 3,
CPAchecker found 4, and Esbmc found 2 solutions to the problems.
Error-Witnesses. One of the objectives of program verification is to provide
a witness for the verification result. This is an open problem of verification
technology: there is no commonly supported witness format yet, and the verifiers
are not producing accurate witnesses that can be automatically assessed for
validity 35. The goal of this demonstration category is to change this (restricted
to error witnesses for now): in cooperation with interested groups we defined a
format for error witnesses and the verifiers were asked to produce error paths in
that format, in order to validate their error paths with another verification tool.

Three tools participated in this category: Cbmc, CPAchecker, and Esbmc.
The demo revealed many interesting insights on practical issues of using a com-
mon witness format, serving as a test before introducing it as a requirement to

29 http://aprove.informatik.rwth-aachen.de
30 http://www.di.ens.fr/~urban/FuncTion.html
31 http://research.microsoft.com/en-us/projects/t2
32 http://www.cprover.org/termination/cta/index.shtml
33 http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer
34 http://linuxtesting.org/project/ldv
35 There was research already on reusing previously computed error paths, but by the

same tool and in particular, using tool-specific formats: for example, Esbmc was
extended to reproduce errors via instantiated code [30], and CPAchecker was used
to re-check previously computed error paths by interpreting them as automata that
control the state-space search [5].

http://aprove.informatik.rwth-aachen.de
http://www.di.ens.fr/~urban/FuncTion.html
http://research.microsoft.com/en-us/projects/t2
http://www.cprover.org/termination/cta/index.shtml
http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer
http://linuxtesting.org/project/ldv

386 D. Beyer

the next edition of the competition. We will report here only a few cases to show
how this technique can help. We selected a group of verification tasks (with ex-
pected verification result ‘false’) that Cbmc could solve, but CPAchecker was
not able to compute a verification result. We started CPAchecker again on the
verification task, now together with Cbmc’s error witness. Table 9 reports the
details of eight such runs: CPAchecker can prove the error witnesses of Cbmc
valid, although it could not find the bug in the program without the hints from
the witness. In some cases this is efficient (first and last row) and sometimes it
is quite inefficient: the matching algorithm needs improvement. The matching
is based purely on syntactical hints (sequence of tokens of the source program).
This technique of re-verifying a program with a different verification tool signifi-
cantly increases the confidence in the verification result (and makes false-alarms
unnecessary).

6 Conclusion
The third edition of the Competition on Software Verification had more partic-
ipants than before: the participation in the ‘official’ categories increased from
eleven to fifteen teams, and five teams took part in the demonstration on ter-
mination checking. The number of benchmark problems increased to a total of
2 868 verification tasks (excluding demonstration categories). The organizer and
the jury made sure that the competition follows the high quality standards of the
TACAS conference, in particular to respect the important principles of fairness,
community support, transparency, and technical accuracy.

The results showcase the progress in developing new algorithms and data
structures for software verification, and in implementing efficient tools for fully-
automatic program verification. The best verifiers have shown good quality in the
categories that they focus on, in terms of robustness, soundness, and complete-
ness. The participants represent a variety of general approaches — SMT-based
model checking, bounded model checking, symbolic execution, and program anal-
ysis showed their different, complementing strengths. Also, the SV-COMP repos-
itory of verification tasks has grown considerably: it now contains termination
problems and problems for regression verification [4], but also Horn clauses and
some Java programs in addition to C programs.

Acknowledgement. We thank K. Friedberger for his support during the evalua-
tion phase and for his work on the benchmarking infrastructure, the competition
jury for making sure that the competition is well-grounded in the community,
and the teams for making SV-COMP possible through their participation.

References
1. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C.,

König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

2. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg (2013)

Status Report on Software Verification 387

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

4. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. ESEC/FSE, pp. 389–399. ACM (2013)

5. Beyer, D., Wendler, P.: Reuse of verification results - conditional model checking,
precision reuse, and verification witnesses. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer, Heidelberg (2013)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

7. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Dudka, K., Peringer, P., Vojnar, T.: Predator: A shape analyzer based on symbolic
memory graphs (Competition contribution). In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 412–414. Springer, Heidelberg (2014)

10. Ermis, E., Nutz, A., Dietsch, D., Hoenicke, J., Podelski, A.: Ultimate Kojak (Com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 421–423. Springer, Heidelberg (2014)

11. Falke, S., Merz, F., Sinz, C.: LLBMC: Improved bounded model checking of C
programs using LLVM (Competition contribution). In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 623–626. Springer, Heidelberg (2013)

12. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

13. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: Verification
with interpolants and abstract interpretation. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013. LNCS, vol. 7795, pp. 637–640. Springer, Heidelberg (2013)

15. Gurfinkel, A., Belov, A.: FrankenBit: Bit-precise verification with many bits (Com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 408–411. Springer, Heidelberg (2014)

16. Heizmann, M., Christ, J., Dietsch, D., Hoenicke, J., Lindenmann, M., Musa, B.,
Schilling, C., Wissert, S., Podelski, A.: Ultimate automizer with unsatisfiable cores
(Competition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014.
LNCS, vol. 8413, pp. 418–420. Springer, Heidelberg (2014)

17. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Heidelberg (2013)

18. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL, pp. 232–244. ACM (2004)

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

20. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A
lazy sequentialization tool for C (Competition contribution). In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 398–401. Springer, Hei-
delberg (2014)

388 D. Beyer

21. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data-flow anal-
ysis and programs with recursive data structures. In: POPL, pp. 66–74 (1982)

22. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

23. Kröning, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

24. Kröning, D., Tautschnig, M.: CBMC – C bounded model checker (Competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 389–391. Springer, Heidelberg (2014)

25. Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination
of explicit-value analyses and predicate analyses (Competition contribution). In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 392–394.
Springer, Heidelberg (2014)

26. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (Com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 405–407. Springer, Heidelberg (2014)

27. Muller, P., Vojnar, T.: CPAlien: Shape analyzer for CPAChecker (Competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 395–397. Springer, Heidelberg (2014)

28. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

29. Popeea, C., Rybalchenko, A.: Threader: A verifier for multi-threaded programs
(Competition contribution). In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 633–636. Springer, Heidelberg (2013)

30. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 128–
142. Springer, Heidelberg (2012)

31. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 525–527.
Springer, Heidelberg (2012)

32. Slaby, J., Strejček, J.: Symbiotic 2: More precise slicing (Competition contribution).
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 415–417.
Springer, Heidelberg (2014)

33. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequen-
tialization of C programs by shared memory unwindings (Competition contribu-
tion). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
402–404. Springer, Heidelberg (2014)

34. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer, Heidelberg
(2014)

	Status Report on Software Verification(Competition Summary SV-COMP 2014)
	1 Introduction
	2 Procedure
	3 Definitions and Rules
	4 Participating Teams
	5 Results and Discussion
	6 Conclusion
	References

