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Abstract. k-induction is a promising technique to extend bounded model check-
ing from falsification to verification. In software verification, k-induction works
only if auxiliary invariants are used to strengthen the induction hypothesis. The
problem that we address is to generate such invariants (1) automatically without
user-interaction, (2) efficiently such that little verification time is spent on the
invariant generation, and (3) that are sufficiently strong for a k-induction proof.
We boost the k-induction approach to significantly increase effectiveness and effi-
ciency in the following way: We start in parallel to k-induction a data-flow-based
invariant generator that supports dynamic precision adjustment and refine the
precision of the invariant generator continuously during the analysis, such that
the invariants become increasingly stronger. The k-induction engine is extended
such that the invariants from the invariant generator are injected in each iteration
to strengthen the hypothesis. The new method solves the above-mentioned prob-
lem because it (1) automatically chooses an invariant by step-wise refinement,
(2) starts always with a lightweight invariant generation that is computationally in-
expensive, and (3) refines the invariant precision more and more to inject stronger
and stronger invariants into the induction system. We present and evaluate an
implementation of our approach, as well as all other existing approaches, in
the open-source verification-framework CPACHECKER. Our experiments show that
combining k-induction with continuously-refined invariants significantly increases
effectiveness and efficiency, and outperforms all existing implementations of
k-induction-based verification of C programs in terms of successful results.

1 Introduction

Advances in software verification in recent years have lead to increased efforts towards
applying formal verification methods to industrial software, in particular operating-
systems code [3, 4, 34]. One model-checking technique that is implemented by half of
the verifiers that participated in the 2015 Competition on Software Verification [7] is
bounded model checking (BMC) [16, 17, 22]. For unbounded systems, BMC can be
used only for falsification, not for verification [15]. This limitation to falsification can
be overcome by combining BMC with mathematical induction and thus extending it to
verification [26]. Unfortunately, inductive approaches are not always powerful enough
to prove the required verification conditions, because not all program invariants are
inductive [2]. Using the more general k-induction [38] instead of standard induction
is more powerful [37] and has already been implemented in the DMA-race analysis

A preliminary version of this article appeared as technical report [8].



tool SCRATCH [27] and in the software verifier ESBMC [35]. Nevertheless, additional
supportive measures are often required to guide k-induction and take advantage of its full
potential [25]. Our goal is to provide a powerful and competitive approach for reliable,
general-purpose software verification based on BMC and k-induction, implemented in a
state-of-the-art software-verification framework.

Our contribution is a new combination of k-induction-based model checking with
automatically-generated continuously-refined invariants that are used to strengthen the
induction hypothesis, which increases the effectiveness and efficiency of the approach.
BMC and k-induction are combined in an algorithm that iteratively increments the induc-
tion parameter k (iterative deepening). The invariant generation runs in parallel to the
k-induction proof construction, starting with relatively weak (but inexpensive to compute)
invariants, and increasing the strength of the invariants over time as long as the analysis
continues. The k-induction-based proof construction adopts the currently known set of
invariants in every new proof attempt. This approach can verify easy problems quickly
(with a small initial k and weak invariants), and is able to verify complex problems by
increasing the effort (by incrementing k and searching for stronger invariants). Thus, it
is both efficient and effective. In contrast to previous work [35], the new approach is
sound. We implemented our approach as part of the open-source software-verification
framework CPACHECKER [12], and we perform an extensive experimental comparison of
our implementation against the two existing tools that use k-induction and against other
common software-verification approaches.

Contributions. We make the following contributions:

• a novel approach for providing continuously-refined invariants from data-flow anal-
ysis with precision adjustment in order to repeatedly inject invariants to k-induction,
• an effective and efficient tool implementation of a framework for software verification

with k-induction that allows to express all existing approaches to k-induction in a
uniform, module-based, configurable architecture, and

• an extensive experimental evaluation of (a) all approaches and their implementations
in the framework, (b) the two existing k-induction tools CBMC and ESBMC, and (c) the
two different approaches predicate analysis and value analysis; the result being that
the new technique outperforms all existing k-induction-based approaches to software
verification.

Availability of Data and Tools. Our experiments are based on benchmark verification
tasks from the 2015 Competition on Software Verification. All benchmarks, tools, and
results of our evaluation are available on a supplementary web page 1.

Example. We illustrate the problem of k-induction that we address, and the strength of
our approach, on two example programs. Both programs encode an automaton, which is
typical, e.g., for software that implements a communication protocol. The automaton
has a finite set of states, which is encoded by variable s, and two data variables x1
and x2. There are some state-dependent calculations (lines 6 and 7 in both programs)
that alternatingly increment x1 and x2, and a calculation of the next state (lines 9

1 http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/
(successfully evaluated by the CAV 2015 Artifact Evaluation Committee)

http://www.sosy-lab.org/~dbeyer/cpa-k-induction/


1 int main() {
2 unsigned int x1 = 0, x2 = 0;
3 int s = 1;
4

5 while (nondet()) {
6 if (s == 1) x1++;
7 else if (s == 2) x2++;
8

9 s++;
10 if (s == 5) s = 1;
11

12 if ((s == 1) && (x1 != x2)) {
13 // Valid safety property
14 ERROR: return 1;
15 }
16 }
17 }

Fig. 1: Safe example program
example-safe, which cannot be proven
with existing k-induction-based approaches

1 int main() {
2 unsigned int x1 = 0, x2 = 0;
3 int s = 1;
4

5 while (nondet()) {
6 if (s == 1) x1++;
7 else if (s == 2) x2++;
8

9 s++;
10 if (s == 5) s = 1;
11 }
12

13 if (s >= 4) {
14 // Violation: s may be 4
15 ERROR: return 1;
16 }
17 }

Fig. 2: Unsafe example program
example-unsafe, where some ap-
proaches may produce a wrong proof

and 10 in both programs). The state variable cycles through the range from 1 to 4.
These calculations are done in a loop with a non-deterministic number of iterations.
Both programs also contain a safety property (the label ERROR should not be reachable).
The program example-safe in Fig. 1 checks that in every fourth state, the values of
x1 and x2 are equal; it satisfies the property. The program example-unsafe in Fig. 2
checks that when the loop exits, the value of state variable s is not greater or equal to 4;
it violates the property.

First, note that the program example-safe is difficult or impossible to prove with
many classical software-verification approaches other than k-induction: (1) BMC cannot
prove safety for this program because the loop may run arbitrarily long. (2) Explicit-state
model checking fails because of the huge state space (x1 and x2 can get arbitrarily large).
(3) Predicate analysis with counterexample-guided abstraction refinement (CEGAR) and
interpolation is able to prove safety, but only if the predicate x1 = x2 gets discovered. If
the interpolants contain instead only predicates such as x1 = 1, x2 = 1, x1 = 2, etc., the
predicate analysis will not terminate. Which predicates get discovered is hard to control
and usually depends on internal interpolation heuristics of the satisfiability-modulo-
theory (SMT) solver. (4) Traditional 1-induction is also not able to prove the program
safe because the assertion is checked only in every fourth loop iteration (when s equals 1).
Thus, the induction hypothesis is too weak (the program state s = 4, x1 = 0, x2 = 1
is a counterexample for the step case in the induction proof).

Intuitively, this program should be provable by k-induction with a k of at least 4.
However, for every k, there is a counterexample to the inductive-step case that refutes the
proof. For such a counterexample, set s = −k, x1 = 0, x2 = 1 at the beginning of the
loop. Starting in this state, the program would increment s k times (induction hypothesis)
and then reach s = 1 with property-violating values of x1 and x2 in iteration k+ 1
(inductive step). It is clear that s can never be negative, but this fact is not present in the
induction hypothesis, and thus, the proof fails. This illustrates the general problem of
k-induction-based verification: safety properties often do not hold in unreachable parts of



the state space of a program, and k-induction alone does not distinguish between reach-
able and unreachable parts of the state space. Therefore, approaches based on k-induction
without auxiliary invariants will fail to prove safety for program example-safe.

This program could of course be verified more easily if it were rewritten to contain a
stronger safety property such as s≥ 1∧s≤ 4∧(s= 2⇒ x1= x2+1)∧(s 6= 2⇒ x1= x2)
(which is a loop invariant and allows a proof by 1-induction without auxiliary invariants).
However, our goal is to automatically verify real programs, and programmers usually
neither write down trivial properties such as s≥ 1 nor more complex properties such as
s 6= 2⇒ x1 = x2.

Our approach of combining k-induction with invariants proves the program safe
with k = 4 and the invariant s ≥ 1. This invariant is easy to find automatically using
an inexpensive data-flow analysis, such as an interval analysis. For larger programs,
a more complex invariant might be necessary, which might get generated at some
point by our continuous strengthening of the invariant. Furthermore, stronger invariants
can reduce the k that is necessary to prove a program. For example, the invariant
s ≥ 1∧ s ≤ 4∧ (s 6= 2⇒ x1 = x2) (which is still weaker than the full loop invariant
above) allows to prove the program with k = 2. Thus, our strengthening of invariants
can also shorten the inductive proof procedure and lead to better performance.

An existing approach tries to solve this problem of a too-weak induction hypothesis
by initializing only the variables of the loop-termination condition to a non-deterministic
value in the step case, and initializing all other variables to their initial value in the pro-
gram [35]. However, this approach is not strong enough for the program example-safe
and even produces a wrong proof (unsound result) for the program example-unsafe.
This second example program contains a different safety property about s, which is
violated. Because the variable s does not appear in the loop-termination condition, it
is not set to an arbitrary value in the step case as it should be, and the inductive proof
wrongly concludes that the program is safe because the induction hypothesis is too
strong, leading to a missed bug and a wrong result. Our approach does not suffer from
this unsoundness, because we add only invariants to the induction hypothesis that the
invariant generation has proven to hold.

Related Work. The use of auxiliary invariants is a common technique in software
verification [2, 9, 10, 18, 19, 20, 23, 30, 36], and techniques combining data-flow analysis
and SMT solvers also exist [28, 31]. In most cases, the purpose is to speed up the analysis.
For k-induction, however, the use of invariants is crucial in making the analysis terminate
at all (cf. Fig. 1). There are several approaches to software verification using BMC in
combination with k-induction.

Split-Case Induction. We use the split-case k-induction technique [26, 27], where the
base case and the step case are checked in separate steps. Earlier versions of SCRATCH [27]
that use this technique transform programs with multiple loops into programs with only
one single monolithic loop using a standard approach [1]. The alternative of recursively
applying the technique to nested loops is discarded by the authors of SCRATCH [27],
because the experiments suggested it was less efficient than checking the single loop that
is obtained by the transformation. We also experimented with single-loop transformation,
but our experimental results suggest that checking all loops at once in each case instead of
checking the monolithic transformation result (which also encodes all loops in one) has



no negative performance impact, so for simplicity, we omit the transformation. SCRATCH

also supports combined-case k-induction [25], for which all loops are cut by replacing
them with k copies each for the base and the step case, and setting all loop-modified
variables to non-deterministic values before the step case. That way, both cases can
be checked at once in the transformed program and no special handling for multiple
loops is required. When using combined-case k-induction, SCRATCH requires loops to be
manually annotated with the required k values, whereas its implementation of split-case
k-induction supports iterative deepening of k as in our implementation. Contrary to
SCRATCH, we do not focus on one specific problem domain [26, 27], but want to provide
a solution for solving a wide range of heterogeneous verification tasks.
Auxiliary Invariants. While both the split-case and the combined-case k-induction sup-
posedly succeed with weaker auxiliary invariants than for example the inductive invariant
approach [5], the approaches still do require auxiliary invariants in practice, and the
tool SCRATCH requires these invariants to be annotated manually [25, 27]. There are
techniques for automatically generating invariants that may be used to help inductive
approaches to succeed (e.g. [2, 9, 20]. These techniques, however, do not justify their
additional effort because they are not guaranteed to provide the required invariants on
time, especially if strong auxiliary invariants are required. Based on previous ideas of
supporting k-induction with invariants generated by lightweight data-flow analysis [24],
we therefore strive to leverage the power of the k-induction approach to succeed with
auxiliary invariants generated by a data-flow analysis based on intervals. However, to
handle cases where it is necessary to invest more effort into invariant generation, we
increase the precision of these invariants over time.
Invariant Injection. A verification tool using a strategy similar to ours is PKIND [28, 33],
a model checker for Lustre programs based on k-induction. In PKIND, there is a parallel
computation of auxiliary invariants, where candidate invariants derived by templates
are iteratively checked via k-induction and, if successful, added to the set of known
invariants [32]. While this allows for strengthening the induction hypothesis over time,
the template-based approach lacks the flexibility that is available to an invariant generator
using dynamic precision refinement [11], and the required additional induction proofs are
potentially expensive. We implemented checking candidate invariants with k-induction
as a possible strategy of our invariant generation component.
Unsound Strengthening of Induction Hypothesis. ESBMC does not require additional
invariants for k-induction, because it assigns non-deterministic values only to the loop-
termination condition variables before the inductive-step case [35] and thus retains more
information than our as well as the SCRATCH implementation [25, 27], but k-induction in
ESBMC is therefore potentially unsound. Our goal is to perform a real proof of safety by
removing all pre-loop information in the step case, thus treating the unrolled iterations in
the step case truly as "any k consecutive iterations", as is required for the mathematical
induction. Our approach counters this lack of information by employing incrementally-
refined invariant generation.
Parallel Induction. PKIND checks the base case and the step case in parallel, and ESBMC

supports parallel execution of the base case, the forward condition, and the inductive-step
case. In contrast, our base case and inductive-step case are checked sequentially, while
our invariant generation runs in parallel to the base- and step-case checks.



2 k-Induction with Continuously-Refined Invariants

Our verification approach consists of two algorithms that run concurrently. One algorithm
is responsible for generating program invariants, starting with an imprecise invariant,
continuously refining (strengthening) the invariant. The other algorithm is responsible
for finding error paths with BMC, and for constructing safety proofs with k-induction, for
which it periodically picks up the new invariant that the former algorithm has constructed
so far. The k-induction algorithm uses information from the invariant generation, but not
vice versa. In our presentation, we assume that each program contains at most one loop;
in our implementation, we handle programs with multiple loops by checking all loops
together.
Iterative-Deepening k-Induction. Algorithm 1 shows our extension of the k-induction
algorithm to a combination with continuously-refined invariants. Starting with an initial
value for the bound k, e.g., 1, we iteratively increase the value of k after each unsuccessful
attempt at finding a specification violation or proving correctness of the program using
k-induction. The following description of our approach to k-induction is based on split-
case k-induction [25], where for the propositional state variables s and s′ within a
state-transition system that represents the program, the predicate I(s) denotes that s is an
initial state, T (s,s′) states that a transition from s to s′ exists, and P(s) asserts the safety
property for the state s.
Base Case. Lines 3 to 5 implement the base case, which consists of running BMC with
the current bound k. This means that starting from an initial program state, all paths of
the program up to a maximum path length k−1 are explored. If an error path is found,
the algorithm terminates.
Forward Condition. Otherwise we check whether there exists a path with length k′> k−1
in the program, or whether we have already fully explored the state space of the program
(lines 6 to 8). In the latter case the program is safe and the algorithm terminates. This
check is called the forward condition [29].
Inductive Step. Checking the forward condition can, however, only prove safety for
programs with finite (and short) loops. Therefore, the algorithm also attempts an inductive
proof (lines 9 to 14). The inductive-step case checks if, after every sequence of k loop
iterations without a property violation, there is also no property violation before loop
iteration k+1. For model checking of software, however, this check would often fail
inconclusively without auxiliary invariants [8]. In our approach, we make use of the
fact that the invariants that were generated so far by the concurrently-running invariant-
generation algorithm hold, and conjunct these facts to the induction hypothesis. Thus,
the inductive-step case proves a program safe if the following condition is unsatisfiable:

Inv(sn)∧
n+k−1∧

i=n

(P(si)∧T (si,si+1))∧¬P(sn+k)

where Inv is the currently available program invariant, and sn, . . . ,sn+k is any sequence
of states. If this condition is satisfiable, then the induction check is inconclusive, and
the program is not yet proved safe or unsafe with the current value of k and the current
invariant. If during the time of the satisfiability check of the step case, a new (stronger)
invariant has become available (condition in line 14 is false), we immediately re-check



Algorithm 1 Iterative-Deepening k-Induction
Input:

the initial value kinit ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N→ N with ∀n ∈ N : inc(n)> n for increasing the bound k,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T , and
a safety property P

Output: true if P holds, false otherwise
1: k := kinit
2: while k ≤ kmax do

3: base_case := I(s0)∧
k−1∨
n=0

(
n−1∧
i=0

T (si,si+1)∧¬P(sn)

)
4: if sat(base_case) then
5: return false

6: forward_condition := I(s0)∧
k−1∧
i=0

T (si,si+1)

7: if ¬sat(forward_condition) then
8: return true

9: step_casen :=
n+k−1∧

i=n
(P(si)∧T (si,si+1))∧¬P(sn+k)

10: repeat
11: Inv := get_currently_known_invariant()
12: if ¬sat(Inv(sn)∧ step_casen) then
13: return true
14: until Inv = get_currently_known_invariant()

15: k := inc(k)
16: return unknown

Algorithm 2 Continuous Invariant Generation using Configurable Program Analysis
Input:

a configurable program analysis with dynamic precision adjustment D,
the initial states defined by predicate I,
a coarse initial precision π0,
a safety property P

Output: true if P holds
1: π := π0
2: Inv := true
3: loop
4: reached := CPAAlgorithm(D, I,π)
5: if ∀s ∈ reached : P(s) then
6: return true
7: Inv := Inv∧

∨
s∈reached

s

8: π := RefinePrec(π,reached)



the step case with the new invariant. This can be done efficiently using an incremental
SMT solver for the repeated satisfiability checks in line 12. Otherwise, we start over
with an increased value of k.

Note that the inductive-step case is similar to a BMC check for the presence of error
paths of length exactly k+1. However, as the step case needs to consider any consecutive
k+1 loop iterations, and not only the first such iterations, it does not assume that the
execution of the loop iterations begins in an initial state. Instead, it assumes that there is
a sequence of k iterations without any property violation (induction hypothesis).

Continuous Invariant Generation. Our continuous invariant generation incrementally
produces stronger and stronger program invariants. It is based on iterative refinement,
each time using an increased precision. After each strengthening of the invariant, it
can be used as injection invariant by the k-induction procedure. It may happen that this
analysis proves safety of the program all by itself, but this is not its main purpose here.

Our k-induction module works with any kind of invariant-generation procedure, as
long as its precision, i.e., its level of abstraction, is configurable. We implemented two
different invariant-generation approaches: KI and DF, described below.

Invariant Generation

k-induction (KI)
Alg. 1

Data-Flow Analysis (DF)
Alg. 2

injects

Fig. 3: Configurable design of a k-induction
framework

We use the design of Fig. 3 to ex-
plain our flexible and modular frame-
work for k-induction: k-induction
is a verification technique, i.e., an
invariant generation. In this pa-
per, the main algorithm is thus the
k-induction, as defined in Alg. 1. We
denote the algorithm by KI. If invari-

ants are generated and injected into KI, we denote this injection by KI←. Thus, the use
of generated invariants that are produced by a data-flow analysis (DF) are denoted by
KI←DF. If the invariant generator continuously refines the invariants and repeatedly
injects those invariants into KI, this is denoted by KI 			←−, more specifically, if data-flow
analysis with dynamic precision adjustment (our new contribution) is used, we have
KI 			←−DF, and if the PKIND approach is used, i.e., KI is used to construct invariants,
we have KI 			←−KI. Now, since the second KI, which constructs invariants for injection
into the first KI, can again get invariants injected, we can further build an approach
KI 			←−KI 			←−DF that combines all approaches such that the invariant-generating KI
benefits from the invariants generated with DF, and the main KI algorithm that tries to
prove program safety benefits from both invariant generators.

KI. PKIND [33] introduced the idea to construct invariants for injection in parallel, using
a template-based method that extracts candidate invariants from the program and verifies
their validity using k-induction [32]. If the candidate invariants are found to be valid, they
are injected to the main k-induction procedure. We re-implemented the PKIND approach
in our framework (KI 			←−KI), using a separate instance of k-induction to prove candidate
invariants. Being based on k-induction, the power of this technique is continuously
increased by increasing k. We derive the candidate invariants by taking the negations
of assumptions on the control-flow paths to error locations. Similar to our Alg. 2, each
time this k-induction algorithm succeeds in proving a candidate invariant, the previously-
known invariant is strengthened with this newly generated invariant. In our tool, we used



an instance of Alg. 1 to implement this approach. We are thus able to further combine
this technique with other auxiliary invariant-generation approaches.
DF. As a second invariant-generation approach (our contribution), we use the reachabil-
ity algorithm CPAAlgorithm for configurable program analysis with dynamic precision
adjustment [11]. Algorithm 2 shows our continuous invariant generation. The initial
program invariant is represented by the formula true. We start with running the invariant-
generating analysis once with a coarse initial precision (line 4). After each run of the
program-invariant generation, we strengthen the previously-known program invariant
with the newly-generated invariant (line 7, note that the program invariant Inv is not
a safety invariant) and announce it globally (such that the k-induction algorithm can
inject it). If the analysis was able to prove safety of the program, the algorithm termi-
nates (lines 5 to 6). Otherwise, the analysis is restarted with a higher precision. The
CPAAlgorithm takes as input a configurable program analysis (CPA), a set of initial
abstract states, and a precision. It returns a set of reachable abstract states that form an
over-approximation of the reachable program states. Depending on the used CPA and
the precision, the analysis by CPAAlgorithm can be efficient and abstract like data-flow
analysis or expensive and precise like model checking.

For invariant generation, we choose an abstract domain based on expressions over
intervals [8]. Note that this is not a requirement of our approach, which works with any
kind of domain. Our choice is based on the high flexibility of this domain, which can
be fast and efficient as well as precise. For this CPA, the precision is a triple (Y,n,w),
where Y ⊆ X is a specific selection of important program variables, n is the maximal
nesting depth of expressions in the abstract state, and w is a boolean specifying whether
widening should be used. Those variables that are considered important will not be
over-approximated by joining abstract states. With a higher nesting depth, more precise
relations between variables can be represented. The use of widening ensures timely
termination (at the expense of a lower precision), even for programs with loops with
many iterations, like those in the examples of Figs. 1 and 2. An in-depth description of
this abstract domain is presented in a technical report [8].

3 Experimental Evaluation

We implemented all existing approaches to k-induction, compare all configurations with
each other, and the best configuration with other k-induction-based software verifiers, as
well as to two standard approaches to software verification: predicate and value analysis.
Benchmark Verification Tasks. As benchmark set we use verification tasks from the
2015 Competition on Software Verification (SV-COMP’15) [7]. We took all 3 964
verification tasks from the categories ControlFlow, DeviceDrivers64, HeapManipulation,
Sequentialized, and Simple. The remaining categories were excluded because they use
features (such as bit-vectors, concurrency, and recursion) that not all configurations of
our evaluation support. A total of 1 148 verification tasks in the benchmark set contain
a known specification violation. Although we cannot expect an improvement for these
verification tasks when using auxiliary invariants, we did not exclude them because this
would unfairly give advantage to the new approach (which spends some effort generating
invariants, which are not helpful when proving existence of an error path).



Experimental Setup. All experiments were conducted on computers with two 2.6 GHz
8-Core CPUs (Intel Xeon E5-2560 v2) with 135 GB of RAM. The operating system was
Ubuntu 14.04 (64 bit), using Linux 3.13 and OpenJDK 1.7. Each verification task was
limited to two CPU cores, a CPU run time of 15 min, and a memory usage of 15 GB.
The benchmarking framework BENCHEXEC2 ensures precise and reproducible results.

Presentation. All benchmarks, tools, and the full results of our evaluation are available
on a supplementary web page.3 All reported times are rounded to two significant digits.
We use the scoring scheme of SV-COMP’15 to calculate a score for each configuration.
For every real bug found, 1 point is assigned, for every correct safety proof, 2 points
are assigned. A score of 6 points is subtracted for every wrong alarm (false positive)
reported by the tool, and 12 points are subtracted for every wrong proof of safety (false
negative). This scoring scheme values proving safety higher than finding error paths, and
significantly punishes wrong answers, which is in line with the community consensus [7]
on difficulty of verification vs. falsification and importance of correct results. We consider
this a good fit for evaluating an approach such as k-induction, which targets at producing
safety proofs.

In Fig. 4 and Fig. 5, we present experimental results using a plot of quantile functions
for accumulated scores as introduced by the Competition on Software Verification [6],
which shows the score and CPU time for successful results and the score for wrong
answers. A data point (x,y) of a graph means that for the respective configuration the
sum of the scores of all wrong answers and the scores for all correct answers with a run
time of less than or equal to y seconds is x. For the left-most point (x,y) of each graph,
the x-value shows the sum of all negative scores for the respective configuration and the
y-value shows the time for the fastest successful result. For the right-most point (x,y)
of each graph, the x-value shows the total score for this configuration, and the y-value
shows the maximal run time. A configuration can be considered better, the further to the
right (the closer to 0) its graph begins (fewer wrong answers), the further to the right it
ends (more correct answers), and the lower its graph is (less run time).

Comparison of k-induction-based approaches. We implemented all approaches in
the JAVA-based open-source software-verification framework CPACHECKER [12], which
is available online 4 under the Apache 2.0 License. For the experiments, we used ver-
sion 1.4.5-cav15 of CPACHECKER, with SMTINTERPOL [21] as SMT solver (using un-
interpreted functions and linear arithmetic over integers and reals). The k-induction
algorithm of CPACHECKER was configured to increment k by 1 after each try (in Alg. 1,
inc(k) = k+1). The precision refinement of the DF-based continuous invariant genera-
tion (Alg. 2) was configured to increment the number of important program variables in
the first, third, fifth, and any further precision refinements. The second precision refine-
ment increments the expression-nesting depth, and the fourth disables the widening.

We evaluated the following groups of k-induction approaches: (1) without any
auxiliary invariants (KI), (2) with auxiliary invariants of different precisions generated
by the DF approach (KI←DF), and (3) with continuously-refined invariants (KI 			←−).

2 https://github.com/dbeyer/benchexec
3 http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/
4 http://cpachecker.sosy-lab.org

https://github.com/dbeyer/benchexec
http://www.sosy-lab.org/~dbeyer/cpa-k-induction/
http://cpachecker.sosy-lab.org


Table 1: Results of k-induction-based configurations in CPACHECKER for all 3 964 verifi-
cation tasks with different approaches for generating auxiliary invariants

Approach KI
KI←DF

KI 			←−KI KI 			←−DF KI 			←−KI 			←−DF
(0,1, t) (8,2, t) (16,2, t) (16,2, f )

Score 2246 3944 4117 4062 3992 3535 4249 4 282
Correct results 1531 2377 2462 2428 2392 2169 2507 2 519
Wrong proofs 1 1 2 1 1 1 1 1
Wrong alarms 30 30 30 30 30 30 26 25
CPU time (h) 530 330 330 340 340 380 320 320
Wall time (h) 440 240 210 210 210 270 190 170

Times for correct results only:
CPU time (h) 17 32 39 36 36 28 36 41
Wall time (h) 13 19 22 20 20 18 20 22

k-Values for correct safe results only:
Max. final k 101 101 100 100 126 101 112 111
Avg. final k 1.7 1.4 1.7 1.8 1.8 1.8 1.8 1.9

The k-induction-based configuration using no auxiliary invariants (KI) is an instance
of Alg. 1 where get_currently_known_invariant() always returns true as invariant and
Alg. 2 does not run at all.

The configurations using generated invariants (KI←DF) are also instances of Alg. 1.
Here, Alg. 2 runs in parallel, however, it terminates after one loop iteration. We denote
these configurations with triples (s,n,w) that represent the precision (Y,n,w) of the
invariant generation with s being the size of the set of important program variables
(s = |Y |). For example, the first of these configuration, (0,1, true), has no variables in
the set Y of important program variables (i.e., all variables get over-approximated by the
merge operator), the maximum nesting depth of expressions in the abstract state is 1,
and the widening operator is used. The remaining configurations we use are (8,2, true),
(16,2, true), and (16,2, false). These configurations were selected because they represent
some of the extremes of the precisions that are used during dynamic invariant generation.
It is impossible to cover every possible valid configuration within the scope of this paper.

There are three configurations using continuously-refined invariants: (1) using the
k-induction approach similar to PKIND to generate invariants, refining by increasing k,
denoted as KI 			←−KI, (2) using the DF-based approach to generate invariants, refining by
precision adjustment, denoted as KI 			←−DF, and (3) using both approaches in parallel
combination, denoted as KI 			←−KI 			←−DF. All configurations using invariant generation
run the generation in parallel to the main k-induction algorithm, an instance of Alg. 1.

Score and Reported Results. The configuration KI with no invariant generation receives
the lowest score of 2246, and (as expected) can verify only 1531 programs successfully.
This shows that it is indeed important in practice to enhance k-induction-based software
verification with invariants. The configurations KI←DF using invariant generation
produce similar numbers of correct results (around 2400), improving upon the results
of the plain k-induction without auxiliary invariants by a score of 1700 to 1800. Even
though these configurations solve a similar number of programs, a closer inspection



reveals that each of the configurations is able to correctly solve significant amounts of
programs where the other configurations run into timeouts. This observation explains the
high score of 4249 points achieved by our approach of injecting the continuously-refined
invariants generated with data-flow analysis into the k-induction engine (configuration
KI 			←−DF). By combining the advantages of fast and coarse precisions with those
of slow but fine precisions, it correctly solves 2507 verification tasks, which is 45
more than the best of the chosen configurations without dynamic refinement. Using a
k-induction-based invariant generation as done by PKIND (configuration KI 			←−KI) is
also a successful technique for improving the amount of solvable verification tasks, and
thus, combining both invariant-generation approaches with continuously refining their
precision and injecting the generated invariants into the k-induction engine (configuration
KI 			←−KI 			←−DF) is the most effective of all evaluated k-induction-based approaches,
with a score of 4282, and 2519 correct results. The few wrong proofs produced by the
configurations are not due to conceptual problems, but only due to incompleteness in the
analyzer’s handling of certain constructs such as unbounded arrays and pointer aliasing.

Performance. Table 1 shows that by far the largest amount of time is spent by the
configuration KI (no auxiliary invariants), because for those programs that cannot be
proved without auxiliary invariants, the k-induction procedure loops incrementing k until
the time limit is reached. The wall times and CPU times for the correct results correlate
roughly with the amount of correct results, i.e., on average about the same amount of
time is spent on correct verifications, whether or not invariant generation is used. This
shows that the overhead of generating auxiliary invariants is well-compensated.

The configurations with invariant generation have a relatively higher CPU time
compared to their wall time because these configurations spend some time generating
invariants in parallel to the k-induction algorithm. The results show, however, that the
time spent for the continuously-refined invariant generation clearly pays off as the
configuration using both data-flow analysis and k-induction for invariant generation is
not only the one with the most correct results, but at the same time one of the two fastest
configurations with only 320 h in total. Even though they produced much more correct
results, the configurations KI 			←−KI 			←−DF and KI 			←−DF did not exceed the times of
the chosen configurations using invariant generation without continuous refinement. The
configuration KI 			←−KI using only k-induction to continuously generate invariants is
slower, but produces results for some programs where the configuration KI 			←−DF fails.
The results show that the combination of the techniques reaps the benefits of both.

These results show that the additional effort invested in generating auxiliary invariants
is well-spent, as it even decreases the overall time due to the fewer timeouts. As expected,
the continuously-refined invariants solve many tasks quicker than the configurations
using invariant generation with high precisions and without refinement.

Final value of k. The bottom of Table 1 shows some statistics about the final values of k
for the correct safety proofs. There are only small differences between the maximum
k values of most of the configurations. Interestingly, the configuration using non-dynamic
invariant generation with high precision has a higher maximum final value of k than
the others, because for the verification task afnp2014_true-unreach-call.c.i, a
strong invariant generated only with this configuration allowed the proof to succeed.
This effect is also observable in the continuously-refined configurations using invariants



Table 2: Results of k-induction-based tools for all 3 964 verification tasks
Tool CBMC ESBMC CPACHECKER

Configuration sequential parallel KI 			←−KI 			←−DF

Score −4372 1674 1716 4 282
Correct results 1949 2050 2059 2 519
Wrong proofs 666 156 152 1
Wrong alarms 5 9 13 25
CPU time (h) 360 290 370 320
Wall time (h) 360 290 200 170

Times for correct results only:
CPU time (h) 3.9 16 26 41
Wall time (h) 3.9 16 13 22

k-Values for correct safe results only:
Max. final k 50 2048 1952 111
Avg. final k 1.1 5.3 7.1 1.9

generated by data-flow analysis: They are also able to solve this verification task, and, by
dynamically increasing the precision, find the required auxiliary invariant even earlier
with loop bounds 112 and 111, respectively. There is also a verification task in the
benchmark set, gj2007_true-unreach-call.c.i, where most configurations need
to unroll a loop with bound 100 to prove safety, while the strong invariant generation
technique allows the proof to succeed earlier, at a loop bound of 16. The continuously-
refined configurations benefit from the same effect: KI 			←−DF and KI 			←−KI 			←−DF solve
this task at loop bounds 22 and 19, respectively.
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Fig. 4: Quantile functions of k-induction-based tools
(CPACHECKER in configuration KI 			←−KI 			←−DF) for ac-
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Comparison with other
tools. For comparison with
other k-induction-based tools,
we evaluated ESBMC and
CBMC, two software model
checkers with support for
k-induction. For CBMC, we
used version 5.1 in combi-
nation with a wrapper script
for split-case k-induction
provided by M. Tautschnig.
For ESBMC we used ver-
sion 1.25.2 in combination
with a wrapper script that
enables k-induction (based
on the SV-COMP’13 submis-
sion [35]). We also provide
results for the experimental

parallel k-induction of ESBMC, but note that our benchmark setup is not focused on
parallelization (using only two CPU cores and a CPU-time limit instead of wall time).



The CPACHECKER configuration in this comparison is the one with continuously-refined
invariants and both invariant generators (KI 			←−KI 			←−DF). Table 2 gives the results;
Fig. 4 shows the quantile functions of the accumulated scores for each configuration.
The results for CBMC are not competitive, which may be attributed to the experimental
nature of its k-induction support.
Score. CPACHECKER in configuration KI 			←−KI 			←−DF successfully verifies almost
500 tasks (20 %) more than ESBMC. Furthermore, it has only 1 missed bug, which
is related to unsoundness in the handling of some C features, whereas ESBMC has more
than 150 wrong safety proofs. This large number of wrong results must be attributed
to the unsound heuristic of ESBMC for strengthening the induction hypothesis, where it
retains potentially incorrect information about loop-modified variables [35]. We have
previously also implemented this approach in CPACHECKER and obtained similar re-
sults [8]. The large number of wrong proofs reduces the confidence in the soundness of
the correct proofs. Consequently, the score achieved by CPACHECKER in configuration
KI 			←−KI 			←−DF is much higher than the score of ESBMC (4 282 compared to 1 674
points). This clear advantage is also visible in Fig. 4. The parallel version of ESBMC

performs somewhat better than its sequential version, and misses fewer bugs. This is
due to the fact that the base case and the step case are performed in parallel, and the
loop bound k is incremented independently for each of them. The base case is usually
easier to solve for the SMT solver, and thus the base-case checks proceed faster than the
step-case checks (reaching a higher value of k sooner). Therefore, the parallel version
manages to find some bugs by reaching the relevant k in the base-case checks earlier
than in the step-case checks, which would produce a wrong safety proof at reaching k.
However, the number of wrong proofs is still much higher than with our approach,
which is conceptually sound. Thus, the score of the new, sound approach is more than
2 500 points higher.
Performance. Table 2 shows that our approach needs only 10 % more CPU time than the
sequential version of ESBMC for solving a much higher number of tasks, and even needs
less CPU and wall time than the parallel version of ESBMC. This indicates that due to our
invariants, we succeed more often with fewer loop unrollings, and thus in less time. It
also shows that the effort invested for generating the invariants is well spent.
Final value of k. The bottom of Table 2 contains some statistics on the final value of k that
was needed to verify a program. The table shows that for safe programs, CPACHECKER

needs a loop bound that is (on average) only about one third of the loop bound that
ESBMC needs. This advantage is due to the use of generated invariants, which make the
induction proofs easier and likely to succeed with a smaller number of k. The verification
task array_true-unreach-call2.i is solved by ESBMC after completely unwinding
the loop, therefore reaching the large k-value 2048. In the parallel version, the (quicker)
detached base case hits this bound while the inductive step case is still at k = 1952.
Comparison with other approaches. We also compare our combination of k-induction
with continuously-refined invariants with other common approaches for software verifi-
cation. We use for comparison two analyses based on CEGAR, a predicate analysis [13]
and a value analysis [14]. Both are implemented in CPACHECKER, which allows us to
compare the approaches inside the same tool, using the same run-time environment,
SMT solver, etc., and focus only on the conceptual differences between the analyses.
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Fig. 5 shows a quantile
plot to compare the con-
figuration KI 			←−KI 			←−DF
with CPACHECKER’s predicate
analysis and value analysis.
The predicate analysis solves
2463 verification tasks in a
total of 280 CPU hours, and
achieves a score of 4201.
The value analysis solves
2367 verification tasks in
a total of 303 CPU hours,
and achieves a score of 4216
because it has a few wrong
results less. The higher num-
ber of solved tasks (2519)
and the higher score (4282)
of the k-induction-based

configuration show that k-induction is clearly competitive with the state-of-the-art in
software verification, if it is boosted by injecting continuously-refined invariants.
Acknowledgments. We thank M. Tautschnig and L. Cordeiro for explaining the optimal
available parameters for k-induction, for the verifiers CBMC and ESBMC, respectively.

4 Conclusion

We have presented the novel idea of injecting invariants into k-induction that are gen-
erated using data-flow analysis with dynamic precision adjustment, and contribute a
publicly available implementation of our idea within the software-verification framework
CPACHECKER. Our extensive experiments show that the new approach outperforms all
existing implementations of k-induction for software verification, and that it is competi-
tive compared to other, more mature techniques for software verification. We showed
that a sound, effective, and efficient k-induction approach to general-purpose software
verification is possible, and that the additional resources required to achieve these com-
bined benefits are negligible if invested judiciously. At the same time, there is still
room for improvement of our technique. An interesting improvement would be to add
an information flow between the two cooperating algorithms in the reverse direction.
If the k-induction procedure could tell the invariant generation which facts it misses
to prove safety, this could lead to a more efficient and effective approach to generate
invariants that are specifically tailored to the needs of the k-induction proof. Already
now, CPACHECKER is parsimonious in terms of unrollings, compared to other tools. The
low k-values required to prove many programs show that even our current invariant
generation is powerful enough to produce invariants that are strong enough to help cut
down the necessary number of loop unrollings. k-induction-guided precision refinement
might direct the invariant generation towards providing weaker but still useful invariants
for k-induction more efficiently.
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