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Abstract—Bounded model checking (BMC) is a well-known
and successful technique for finding bugs in software. k-induction
is an approach to extend BMC-based approaches from falsifica-
tion to verification. Automatically generated auxiliary invariants
can be used to strengthen the induction hypothesis. We improve
this approach and further increase effectiveness and efficiency
in the following way: we start with light-weight invariants and
refine these invariants continuously during the analysis. We
present and evaluate an implementation of our approach in
the open-source verification-framework CPACHECKER. Our experi-
ments show that combining k-induction with continuously-refined
invariants significantly increases effectiveness and efficiency, and
outperforms all existing implementations of k-induction-based
software verification in terms of successful verification results.

I. INTRODUCTION

Advances in software verification in the recent years have
lead to increased efforts towards applying formal verification
methods to industrial software, in particular operating-systems
code [3, 27]. One model-checking technique that is imple-
mented by more than half of the verifiers that participated in
the 2014 Competition on Software Verification [6] is bounded
model checking (BMC) [13]. For unbounded systems, BMC
can be used only for falsification, not for verification [12].
This limitation to falsification can be overcome by combining
BMC with mathematical induction and thus extending it to
verification [20]. Unfortunately, inductive approaches are not
always powerful enough to prove the required verification
conditions, because not all program invariants are inductive [2].
This problem can be mitigated by using the more general
k-induction instead of the standard induction [30], an approach
which has already been implemented in the DMA-race analysis
tool SCRATCH [21] and in the software verifier ESBMC [29].
Nevertheless, additional supportive measures are often required
to guide k-induction and take advantage of its full potential [19].
Our goal is to provide a powerful and competitive approach for
reliable, general-purpose software verification based on BMC
and k-induction, implemented in a state-of-the-art software
verification framework.

Our contribution is a new combination of k-induction-based
model checking with automatically-generated continuously-
refined invariants that are used to strengthen the induction
hypothesis, which increases the effectiveness of the approach.
BMC and k-induction are combined in an algorithm that
iteratively increments the induction parameter k. The invariant
generation runs in parallel to the k-induction proof construction,
starting with relatively weak (but inexpensive to compute)

invariants, and increasing the strength of the invariants over
time as long as the analysis continues. The k-induction-based
proof construction adopts the currently known set of invariants
in every new proof attempt. This approach can verify easy
problems quickly (with a small initial k and weak invariants),
and is able to verify complex problems by increasing the
effort (by incrementing k and searching for stronger invariants).
Thus, it is both efficient and effective. In contrast to previous
work [29], the new approach is sound. We implemented
our approach as part of the open-source software-verification
framework CPACHECKER [10], and we perform an extensive
experimental comparison of our implementation against the two
existing tools that use similar techniques and against another
successful software-verification approach.

Availability of Data and Tools. Our experiments are based
on benchmark verification tasks from the 2015 Competition
on Software Verification. All benchmarks, tools, and results of
our evaluation are available on a supplementary web page 1.

Contributions. We make the following novel contributions:
We develop an approach for providing continuously refined
invariants to k-induction by using configurable program anal-
ysis with precision refinement. We also present an extensive
evaluation where we compare various different approaches and
implementations against the implementation of our proposed
approach and show that our technique outperforms other
approaches to software verification with k-induction.

Example. We illustrate the open problem of k-induction that
we address, and the strength of our approach, on two example
programs. Both programs encode an automaton, which is
typical, e.g., for software that implements a communication
protocol. The automaton has a finite set of states, which is
encoded by variable s, and two data variables x1 and x2.
There are some state-dependent calculations (lines 5 and 6 in
both programs) that alternatingly increment x1 and x2, and a
calculation of the next state (lines 8 and 9 in both programs).
The state variable cycles through the range from 1 to 4. These
calculations are done in a loop with a non-deterministic number
of iterations. Both programs also contain a safety property
(the label ERROR should not be reachable). The program
example-safe in Fig. 1 checks that in every fourth state,
the values of x1 and x2 are equal; it satisfies the property.
The program example-unsafe in Fig. 2 checks that when

1http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/
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1 int main() {
2 unsigned int x1 = 0, x2 = 0; int s = 1;
3

4 while (nondet()) {
5 if (s == 1) x1++;
6 else if (s == 2) x2++;
7

8 s++;
9 if (s == 5) s = 1;

10

11 if ((s == 1) && (x1 != x2)) {
12 // Valid safety property
13 ERROR: return 1;
14 }
15 }
16 }

Fig. 1: Safe example program example-safe, which cannot
be proven with existing k-induction-based approaches

1 int main() {
2 unsigned int x1 = 0, x2 = 0; int s = 1;
3

4 while (nondet()) {
5 if (s == 1) x1++;
6 else if (s == 2) x2++;
7

8 s++;
9 if (s == 5) s = 1;

10 }
11

12 if (s >= 4) {
13 // Invalid safety property (s may be 4)
14 ERROR: return 1;
15 }
16 }

Fig. 2: Unsafe example program example-unsafe, where
ESBMC produces a wrong proof

the loop exits, the value of state variable s is not greater or
equal to 4; it violates the property.

First, note that the program example-safe is difficult or
impossible to prove with other software-verification approaches:
(1) BMC cannot prove safety for this program because the
loop may run arbitrarily long. (2) Explicit-state model checking
fails because of the huge state space (x1 and x2 can get
arbitrarily large). (3) Predicate analysis with counterexample-
guided abstraction refinement (CEGAR) and interpolation is
able to prove safety, but only if the predicate x1 = x2 gets
discovered. If the interpolants contain instead only predicates
such as x1 = 1, x2 = 1, x1 = 2, etc., the analysis will not
terminate. Which predicates get discovered is hard to control
and usually depends on internal interpolation heuristics of
the satisfiability-modulo-theory (SMT) solver. (4) Traditional
1-induction is also not able to prove the program safe because
the assertion is checked only in every fourth loop iteration
(when s is 1). Thus, the induction hypothesis is too weak (the
program state s = 4, x1 = 0, x2 = 1 is a counterexample
for the step case in the induction proof).

Intuitively, this program should be provable by k-induction
with a k of at least 4. However, for every k, there is a
counterexample to the inductive-step case that refutes the proof.
For such a counterexample, set s = −k, x1 = 0, x2 = 1
at the beginning of the loop. Starting in this state, the program
would increment s k times (induction hypothesis) and then
reach s = 1 with property-violating values of x1 and x2
in iteration k + 1 (inductive step). It is clear that s can
never be negative, but this fact is not present in the induction
hypothesis, and thus the proof fails. This illustrates the general
problem of k-induction-based verification: safety properties
often do not hold in unreachable parts of the state space of a
program, and k-induction alone does not distinguish between
reachable and unreachable parts of the state space. If ESBMC with
k-induction analyzes program example-safe, the analysis
—as expected— iteratively increments k and loops infinitely,
failing to prove safety.

This program could of course be verified more easily if
it were rewritten to contain a stronger safety property such

as s ≥ 1 ∧ s ≤ 4 ∧ (s = 2 ⇒ x1 = x2 + 1) ∧ (s 6= 2 ⇒
x1 = x2 ) (which is a loop invariant and allows a proof by
1-induction without auxiliary invariants). However, our goal is
to automatically verify real programs, and programmers usually
neither write down trivial properties such as s ≥ 1 nor too
complex properties such as s 6= 2⇒ x1 = x2 .

With our approach of combining k-induction with invariants,
the program is proved safe with k = 4 and the invariant
s ≥ 1. This invariant is easy to find automatically using an
inexpensive static analysis, such as an interval analysis. For
bigger programs, a more complex invariant might be necessary,
which might get generated at some point by our continuous
strengthening of the invariant. Furthermore, stronger invariants
can reduce the k that is necessary to prove a program. For
example, the invariant s ≥ 1 ∧ s ≤ 4 ∧ (s 6= 2 ⇒ x1 = x2 )
(which is still weaker than the full loop invariant above) allows
to prove the program with k = 2. Thus, our strengthening of
invariants can also shorten the inductive proof procedure and
lead to better performance.

ESBMC [29] tries to solve this problem of a too-weak induction
hypothesis by initializing only the variables of the loop-
termination condition to a non-deterministic value in the step
case, and initializing all other variables to their initial value
in the program. However, this approach is not strong enough
for the program example-safe and even produces a wrong
proof (unsound result) for the program example-unsafe.
This second example program contains a different safety
property about s, which is violated. Because the variable s
does not appear in the loop-termination condition, it is not
set to an arbitrary value in the step case as it should be, and
the inductive proof wrongly concludes that the program is
safe because the induction hypothesis is too strong. ESBMC

misses the bug in this program and claims it is correct. Our
approach does not suffer from this unsoundness, because we
only add invariants to the induction hypothesis that the invariant
generation had proven to hold.

Related Work. The use of auxiliary invariants is a common
technique in software verification [15], [22], [24], and tech-
niques combining abstract interpretation and SMT solvers also
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exist [25]. In most cases, the purpose is to speed up the
analysis. For k-induction, however, the use of invariants is
crucial in making the analysis terminate at all (cf. Fig. 1).
There are several approaches to software verification using
BMC in combination with k-induction.

Split-Case Induction. We use the split-case k-induction tech-
nique [20, 21], where the base case and the step case are
checked in separate steps. Due to the fact that this technique is
only able to handle one loop at a time, another similarity to the
approach of the earlier versions of SCRATCH [21] is the trans-
formation of programs with multiple loops into programs with
only one single monolithic loop using a standard approach [1].
The alternative of recursively applying the technique to nested
loops is discarded by the authors of SCRATCH [21], because
the experiments suggested it was less efficient than checking
the single loop that is obtained by the transformation. SCRATCH

also supports combined-case k-induction [19], for which all
loops are cut by replacing them with k copies each for the
base and the step case, and setting all loop-modified variables
to non-deterministic values before the step case. That way,
both cases can be checked at once in the transformed program
and no special handling for multiple loops is required. When
using combined-case k-induction, SCRATCH requires loops to
be manually annotated with the required k values, whereas
its implementation of split-case k-induction supports iterative
deepening of k as in our implementation. Contrary to SCRATCH,
we do not focus on one specific problem domain [20, 21],
but want to provide a solution for solving a wide range of
heterogeneous verification tasks.

Auxiliary Invariants. While both the split-case and the
combined-case k-induction supposedly succeed with weaker
auxiliary invariants than for example the inductive invariant
approach [4], the approaches still do require auxiliary invariants
in practice, and the tool SCRATCH requires these invariants
to be annotated manually [19, 21]. There are techniques for
automatically generating invariants that may be used to help
inductive approaches to succeed [2, 7, 16]. These techniques,
however, are not guaranteed to justify their additional effort
by providing the required invariants on time, especially if
strong auxiliary invariants are required. Based on previous
ideas of supporting k-induction with invariants generated by
lightweight static analysis [18], we therefore strive to leverage
the power of the k-induction approach to succeed with auxiliary
invariants generated by a static analysis based on intervals.
However, to handle cases where it is necessary to invest more
effort into invariant generation, we increase the precision of
these invariants over time. A verification tool using a strategy
similar to ours is PKIND [22, 26], a model checker for Lustre
programs based on k-induction. In PKIND, there is a parallel
computation of auxiliary invariants, where potential invariants
derived by templates are iteratively checked via k-induction
and, if successful, added to the set of known invariants. While
this allows for strengthening the induction hypothesis over
time, the template-based approach lacks the flexibility that is
available to an invariant generator using dynamic precision

refinement [9], and the required additional induction proofs
are potentially expensive.

Unsound Strengthening of Induction Hypothesis. ESBMC does
not require additional invariants for k-induction, because it
assigns non-deterministic values only to the loop-termination
condition variables before the inductive-step case [29] and
thus retains more information than our as well as the SCRATCH

implementation [19, 21], but k-induction in ESBMC is therefore
potentially unsound. Our goal is to perform a real proof of
safety by removing all pre-loop information in the step case,
thus treating the unrolled iterations in the step case truly as "any
k consecutive iterations", as is required for the mathematical
induction. Our approach counters this lack of information by
employing incrementally improving invariant generation.

Parallel Induction. In PKIND, base case and step case are
checked in parallel, and the latest version of ESBMC, version
1.23, supports parallel execution of the base case, the forward
condition, and the inductive-step case. In contrast, our base
case and inductive-step case are checked sequentially, while
our invariant generation runs in parallel to the aforementioned
base- and step-case checks.

II. BACKGROUND

We briefly explain existing concepts that our approach uses.

Programs. We use the same notion of programs to describe
the theoretical aspects of our ideas as in previous work [8]. The
presentation of our work is restricted to a simple imperative
programming language that contains only assume operations
and assignments. All variables are assumed to be integers 2.
Programs are represented by control-flow automata. A control-
flow automaton (CFA) consists of a set L of program locations,
modeling the program counter l, the initial program location l0,
modeling the program entry, and a set G ⊆ L×Ops× L of
control-flow edges, each of which models the operation that is
executed during the flow of control from one program location
to another. The variables that occur in operations from Ops are
contained in the set X of program variables. In our presentation,
we assume that each program contains at most one loop. In
our implementation, we handle programs with multiple loops
by transforming all loops into a single monolithic loop [1].

Configurable Program Analysis. We use the concepts of con-
figurable program analysis (CPA) [8] with dynamic precision
adjustment [9]. A CPA defines an abstract domain and a transfer
relation, together with a merge operator to specify what happens
at meet points in the control-flow and a stop operator to specify
the fixed-point conditions. The software-verification framework
CPACHECKER allows plugging in CPAs as components, and
CPAs can be reused and combined, such that common tasks
like tracking the program counter or the call stack do not need
to be considered in every single analysis. The CPA algorithm
optionally merges (as defined by the merge operator) newly-
discovered abstract states with previously existing abstract

2Our implementation is based on CPACHECKER, which supports C programs.
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states to produce an abstract state covering both states, over-
approximating them. This over-approximation may result in a
loss of information, but reduces the amount of states in favor
of efficiency. Each abstract state is paired with a precision,
which specifies how fine-grained the analysis should work (to
find a compromise between being efficient and precise).
Bounded Model Checking. The technique of bounded model
checking (BMC) [14] was originally introduced as alternative to
binary decision diagrams (BDD) in symbolic model checking,
to produce counterexamples more quickly, and to speed up
verification in general. Classic BMC reduces model checking
to propositional satisfiability (SAT): Only counterexamples
up to a given length k are considered and a propositional
formula f is constructed such that f is satisfiable iff such a
counterexample exists. A SAT solver can be used to check the
satisfiability of f and, if f is satisfiable, the counterexample can
be reconstructed from the model for f , which is provided by the
SAT solver. However, if f is unsatisfiable, no counterexample
with a length smaller than or equal to k exists. Thus, unless it
is known that all reachable states are covered by BMC with
length k, the absence of longer counterexamples cannot be
guaranteed. Therefore, BMC is often classified as a technique
for falsification, not for verification. Nowadays, BMC is based
on solvers for satisfiability modulo theories (SMT) [17].
k-Induction. BMC-based approaches can be extended from
falsification to verification by induction. Consider a program
that contains a loop, and a safety property P . BMC with k = 1
may show that no counterexample (a violation of P ) of length
k = 1 exists (a), but a longer counterexample might still exist.
If, however, we are able to prove that for any given iteration
through the loop where P holds before, P also holds after the
iteration (b), the program is verified by induction, where (a) is
the base case and (b) is the inductive-step case. Consider as
a more formal example the standard induction principle over
natural numbers:

(P (0) ∧ ∀n : (P (n)⇒ P (n+ 1)))⇒ ∀n : P (n)

This can be extended to greater values of k by asserting the
safety property P for not only 1 but k consecutive predecessors
in the step case, which is known as k-induction. k-induction
over natural numbers can be written as:(
k−1∧
i=0

P (i) ∧ ∀n :

((
k−1∧
i=0

P (n+i)

)
⇒ P (n+k)

))
⇒ ∀n : P (n)

Intuitively, the induction proof is more likely to succeed for
higher values of k, because the inductive-step case asserts
the safety property for more consecutive predecessors, thus
a less general case is checked. It holds that for k > 1,
(k − 1)-induction implies k-induction and that therefore (k−1)-
induction must always be at least as hard as k-induction [31].
Invariants. An assertion p is called an invariant of a program
if p is true for all states of that program [28]. If p is an assertion
that specifies the safety property of a program and p is invariant,
then the program is safe. Proving the invariance of an assertion
is therefore a method of software verification. An assertion ϕ

is called inductive, if it is provable by induction [16]. However,
not every invariant assertion is inductive. One solution to this
problem is trying to find an inductive assertion ϕ that is stronger
than p, i.e., ϕ ⇒ p. Trivially, if ϕ is invariant then p is also
invariant. This strengthening of assertions can be achieved by
creating the conjunction of p and an auxiliary invariant p′ such
that ϕ := p ∧ p′ [2]. By choosing the auxiliary invariant in a
way that excludes those unreachable "good" states that have
transitions to "bad" successor states, the stronger invariant may
be inductive where the weaker one was not.

III. K-INDUCTION WITH INVARIANTS

Our verification approach consists of two algorithms that run
concurrently. One algorithm is responsible for the generation
of program invariants, starting with imprecise invariants that
are continuously refined (strengthened). The other algorithm
is responsible for finding counterexamples with BMC and
constructing safety proofs with k-induction, for which it peri-
odically picks up the invariants that the former algorithm has
constructed so far. The k-induction algorithm uses information
from the invariant analysis, but not vice versa.
Iterative-Deepening k-Induction. Algorithm 1 shows our
extension of the k-induction algorithm to a combination with
continuously-refined invariants. Starting with an initial value for
the bound k, e.g., 1, we iteratively increase the value of k after
each unsuccessful attempt at finding a specification violation
or proving correctness of the program using k-induction. The
following description of our approach to k-induction is based
on split-case k-induction [19], where for the propositional state
variables s and s′ within a state transition system representing
the program, the predicate I(s) denotes that s is an initial state,
T (s, s′) states that a transition from s to s′ exists, and P (s)
asserts the safety property for the state s.
Base Case. Lines 3 to 5 show the base case, which consists of
running BMC with the current bound k. This means that starting
from an initial program state, all paths of the program up to
a maximum loop bound k are explored. (As an optimization,
one can omit checking for property violations which have been
checked in previous iterations with lower values of k already.)
Formally, there exists a counterexample of length at most k if
the following holds:

I(s0) ∧
k−1∨
n=0

(
n−1∧
i=0

T (si, si+1) ∧ ¬P (sn)

)
If a counterexample is found, the algorithm terminates.
Forward Condition. Otherwise we check whether there exists
a path with length k′ > k in the program, or whether we have
already fully explored the state space of the program (lines 6
to 8). In the latter case the program is safe and the algorithm
terminates. This check is called the forward condition [23].
Formally, the program was fully explored and is safe if the
following is unsatisfiable:

I(s0) ∧
k−1∧
i=0

T (si, si+1)
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Algorithm 1 Iterative-Deepening k-Induction

Input:
the initial value kinit ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N→ N with ∀n ∈ N : inc(n) > n

for increasing the bound k,
the initial states defined by the predicate I ,
the transfer relation defined by the predicate T , and
a safety property P

Output: true if P holds, false otherwise
1: k := kinit
2: while k ≤ kmax do

3: base_case := I(s0)∧
k−1∨
n=0

(
n−1∧
i=0

T (si, si+1) ∧ ¬P (sn)
)

4: if sat(base_case) then
5: return false

6: forward_condition := I(s0) ∧
k−1∧
i=0

T (si, si+1)

7: if ¬ sat(forward_condition) then
8: return true

9:
step_casen :=

n+k−1∧
i=n

(P (si) ∧ T (si, si+1))

∧ ¬P (sn+k)
10: repeat
11: Inv := get_currently_known_invariant()

12: if ¬ sat(∃n ∈ N : Inv(sn) ∧ step_casen) then
13: return true
14: until Inv = get_currently_known_invariant()

15: k := inc(k)
16: return unknown

Inductive Step. Checking the forward condition can, however,
only prove safety for programs with finite (and short) loops.
Therefore the algorithm also attempts an inductive proof (lines 9
to 14). The base case for induction was already checked before.
The inductive-step case checks that, after any sequence of
k loop iterations without a property violation, there is also no
property violation in loop iteration k + 1. For model checking
of software, however, this would often fail. The reason for this
is that by induction we try to prove the property for every part
of the state space of the program. Typically, a program has
large parts of the state space that are unreachable, for which
the property might not hold but which are irrelevant for the
safety of the program. As an example, a typical loop in a
program uses a loop counter which has only positive values,
and with induction we would try to prove the property for all
possible values of the loop counter, including negative values.
The key to success for using induction for safety proofs of
programs is thus to exclude as many unreachable parts of the
state space as possible from the proof. This can be done by
adding assumptions about program variables to the induction
hypothesis. In our approach, we make use of the fact that

Algorithm 2 Continuous Invariant Generation

Input:
a configurable program analysis with dynamic precision
adjustment D,
the initial states defined by the predicate I ,
a coarse initial precision π0,
a safety property P

Output: true if P holds
1: π := π0
2: Inv := true
3: loop
4: reached := CPAAlgorithm(D, I(s), π)
5: if ∀s ∈ reached : P (s) then
6: return true

7: Inv := Inv ∧
∨

s∈ reached

s

8: π := RefinePrec(π)

the invariants that were generated so far by the concurrently-
running invariant-generation algorithm hold, and conjunct these
facts to the induction hypothesis. Thus, the inductive-step case
can prove a program as safe if the following is unsatisfiable:

∃n ∈ N : Inv(sn)∧
n+k−1∧
i=n

(P (si) ∧ T (si, si+1))∧¬P (sn+k)

where Inv are the currently available program invariants. If
this formula is satisfiable, the induction check is inconclusive,
and the program cannot be proved as safe or unsafe with the
current value of k and the current invariants. If during the time
of the satisfiability check of the step case a new (stronger)
invariant has become available (condition in line 14 is false),
we immediately recheck the step case with the new invariant.
This can be done efficiently using an incremental SMT solver
for the repeated satisfiability checks in line 12. Otherwise we
start over with an increased value of k.

Note that the inductive-step case is similar to BMC
that checks for the presence of counterexamples of exactly
length k + 1. However, as the step case needs to consider
any consecutive k + 1 loop iterations, and not only the first
such iterations, it does not assume that the execution of the
loop iterations begins in the initial state. Instead, it assumes
that there is a sequence of k iterations without any property
violation (this is the induction hypothesis).

Continuous Invariant Generation. Our continuous invariant
generation incrementally produces stronger and stronger pro-
gram invariants. It is based on an invariant-generation procedure
that is run in a loop, each time with an increased precision.
Each time the invariant has been strengthened, it can be used
as auxiliary invariant by the k-induction procedure. It may
happen that this analysis proves safety of the program all by
itself, but this is not its main purpose in our application.
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Algorithm. Algorithm 2 shows our continuous invariant gen-
eration. The initial program invariant is represented by the
formula true. We start with running the invariant-generation
analysis once with a coarse initial precision. After each run of
the program-invariant generation, we strengthen the previously-
known program invariants with the newly-generated invariants
(line 7) and announce it globally (such that the k-induction
algorithm can use it). If the analysis was able to prove safety of
the program, the algorithm terminates (lines 4 to 5). Otherwise,
the analysis is restarted with a higher precision.

Our approach works with any kind of invariant generation
procedure, as long as its precision, i.e., its level of abstraction, is
configurable. We use the reachability algorithm CPAAlgorithm
for configurable program analysis with dynamic precision
adjustment [9]. It takes as input a configurable program
analysis (CPA), an initial abstract state, and a precision. It
returns a set of reachable abstract states that form an over-
approximation of the reachable program state. This algorithm
works with any abstract domain that can be formalized as
a CPA. Depending on the used CPA and the precision, the
analysis done by CPAAlgorithm can be efficient and abstract
like data-flow analysis as well as expensive and precise like
model checking.

Abstract Domain. For the invariant generation we use an
abstract domain based on expressions over intervals. Note
that this is not a requirement of our approach, which works
with any kind of domain. Our choice is based on the high
flexibility of this domain, which can be fast and efficient as
well as precise.

The analysis is formalized and implemented as a CPA [8]
with dynamic precision adjustment [9]. An abstract state of our
invariant-generation domain consists of a mapping M : X →
Expr from program variables to arithmetic expressions, where
Expr is the set of expressions and X is the set of variables. The
set Expr of expressions consists of binary expressions, unary
expressions, program variables, and disjunctions of intervals,
and is defined recursively as Expr ⊆ ((Expr×B×Expr)∪
(U ×Expr) ∪X ∪ I), where B is the set of supported binary
operators B = {+, ∗, /,%,=, <,^, |,∨,&,∧,�,�,∪}, U is
the set of supported unary operators U = {¬,∼,−}, and I
is the set of disjunctions of intervals of the form [u, l] with
u, l ∈ Z∪∞. The disjunctions of intervals allow for an efficient
representation of ranges, and, unlike in single-interval-based
approaches, gaps between ranges can also be represented.

Precision. In our CPA, the precision is a triple (Y, n, w), where
Y ⊆ X is a specific selection of important program variables,
n is the maximal nesting depth of expressions in the abstract
state, and w is a boolean specifying whether widening should
be used. Those variables that are considered important will not
be over-approximated by merging abstract states. With a higher
nesting depth, more precise relations between variables can be
represented. The use of widening ensures timely termination
(at the expense of a lower precision) even for programs with
loops with many iterations, like those in the examples 1 and 2.

Merge. Our CPA merges two abstract states if both states do
not differ in the expressions that are stored for the important
program variables from the set Y of the precision. This way,
the loss of information resulting from merging two abstract
states does not affect the selected variables in Y . Naturally,
the more variables are in the precision, the fewer merges
occur, resulting in a more precise but slower analysis. To
guarantee timely termination of the analysis even over loops
with many iterations, like those shown in the examples 1 and
2, a widening strategy for over-approximating variable values
may be used when merging abstract states. Formally, for two
abstract states e1, e2 and a precision π = (Y, n, w) the merge
operator is defined as

merge(e1, e2, π) =


widen(e1, e2) if w ∧ ¬differπ(e1, e2)

union(e1, e2) if ¬w ∧ ¬differπ(e1, e2)

e2 if differπ(e1, e2)

with differπ(e1, e2) = ∃v ∈ Y : e1(v) 6= e2(v). The operation
union(e1, e2) returns an abstract state where for each variable
the union of the values for this variable in e1 and e2 is used.
The operation widen(e1, e2) over-approximates by assigning
to each variable only a single (potentially infinite) interval.

Precision Refinement. The initial precision (∅, 1, true) for
this analysis specifies an empty set of variables as important
variables, i.e., abstract states belonging to the same program
location are always merged (by applying widening). The
maximum expression-nesting depth of n = 1 means that
abstract states map program variables to a single variable or
to a disjunction of intervals (no arithmetic operators allowed).

Our main refinement strategy is to add variables to the
set Y of important program variables, first adding one variable,
and then doubling the size of the set in each refinement step.
When choosing variables for this step, we visit the control-
flow automaton backwards from the error location and pick
variables that appear in assume edges, such that variables
appearing in conditions close to the error location get added
first. This refinement strategy is property-guided, rather than
counterexample-guided like CEGAR.

Additionally, we have a refinement step that increments
the expression-nesting depth to 2, allowing more complex
expressions, such as an addition of a variable with a disjunction
of intervals; this refinement is helpful if an invariant x = y+1 is
required, but the values of x and y cannot be over-approximated
precisely enough. The third refinement strategy is to disable
the use of widening. Thus, the precision and the efficiency
of the analysis is dynamically adjusted during the analysis.
The maximal precision we use for our CPA is (X, 2, false)
which tracks all program variables almost fully precisely. Of
course, any other precision-refinement strategy applicable for
the chosen CPA can be used for our continuous invariant
generation, too.
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IV. EXPERIMENTAL EVALUATION

We compare our approach with other k-induction-based
approaches implemented in the same tool as well as with other
k-induction-based tools.

Benchmark Verification Tasks. As benchmark set we use ver-
ification tasks from the 2015 Competition on Software Verifica-
tion (SV-COMP’15) 3. We took all 2 814 verification tasks from
the categories ControlFlow, DeviceDrivers64, HeapManipu-
lation, Sequentialized, and Simple. The remaining categories
were excluded because they use features (such as bitvectors,
concurrency, and recursion) that not all configurations of our
evaluation support. 742 verification tasks in the benchmark set
contain a known specification violation. Although we cannot
expect an improvement for these verification tasks when using
auxiliary invariants, we did not exclude them because this
would unfairly benefit our approach (which spends some effort
generating invariants which are not helpful when proving
existence of a counterexample).

Experimental Setup. All experiments were conducted on
computers with two 2.6 GHz 8-Core CPUs (Intel Xeon E5-
2560 v2) with 135 GB of RAM. The operating system was
Ubuntu 14.04 (64 bit), using Linux 3.13 and OpenJDK 1.7.
Each verification task was limited to two CPU cores, a CPU
run time of 15 min and a memory consumption of 15 GB.

Presentation. All benchmarks, tools, and the full results of
our evaluation are available on a supplementary web page 4.

All reported times are rounded to two significant digits. We
use the scoring scheme of SV-COMP’15 to calculate a score for
each configuration. For every real bug found, 1 point is assigned,
for every correct safety proof, 2 points are assigned. A score
of 6 points is subtracted for every wrong alarm (false positive)
reported by the tool, and 12 points are subtracted for every
wrong proof of safety (false negative). This scoring scheme
values proving safety higher than finding counterexamples, and
significantly punishes wrong answers, which is in line with
the community consensus [6] on difficulty of verification vs.
falsification and importance of correct results. We consider
this a good fit for evaluating an approach such as k-induction,
which targets at producing safety proofs.

In Fig. 3 and 5, we present experimental results using a plot
of quantile functions for accumulated scores as introduced by
the Competition on Software Verification [5], which shows
the score and CPU time for successful results and the score
for wrong answers. A data point (x, y) of a graph means that
for the respective configuration the sum of the scores of all
wrong answers and the scores for all correct answers with
a run time of less than or equal to y seconds is x. For the
left-most point (x, y) of each graph, the x-value shows the
sum of all negative scores for the respective configuration and
the y-value shows the time for the fastest successful result. For
the right-most point (x, y) of each graph, the x-value shows
the total score for this configuration, and the y-value shows the

3http://sv-comp.sosy-lab.org/2015/
4http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/

maximal run time. A configuration can be considered better,
the further to the right (the closer to 0) its graph begins (fewer
wrong answers), the further to the right it ends (more correct
answers), and the lower its graph is (less run time).

Comparison of k-induction-based approaches. To allow a
meaningful evaluation of our approach, we implemented it
together with other existing approaches in the same tool.
We used the JAVA-based open-source software-verification
framework CPACHECKER [10], which is available online 5 under
the Apache 2.0 license. For benchmarking, we used revi-
sion 15 499 from the trunk of the CPACHECKER repository,
with MATHSAT5 6 as SMT solver. The k-induction algorithm of
CPACHECKER was configured to increment k by 1 after each try
(in Alg. 1, inc(k) = k + 1). The precision refinement of the
continuous invariant generation was configured to increment the
number of important program variables in the first, third, fifth,
and any further precision refinements. The second precision
refinement increments the expression-nesting depth, and the
fourth precision refinement disables the widening operator.

We evaluated the following k-induction-based configura-
tions: (1) without any auxiliary invariants, (2) with statically-
generated invariants of different precisions, (3) with unsound
invariants using a reimplementation of the heuristic of ES-
BMC [29], (4) with our new continuously-refined invariants.

The k-induction-based configuration using no
auxiliary invariants is an instance of Alg. 1 where
get_currently_known_invariant() always returns an empty set
of invariants and Alg. 2 does not run at all.

The configurations using statically-generated invariants are
also instances of Alg. 1. Here, Alg. 2 runs in parallel,
however, it terminates after one loop iteration. We denote
these configurations with triples (s, n, w) which represent the
precision (Y, n, w) of the invariant generation with s being the
size of the set of important program variables (s = |Y |). The
first of these configuration is (0, 1, true), which means that no
variables are in the set Y of important program variables (i.e.,
all variables get over-approximated by the merge operator),
the maximum nesting depth of expressions in the abstract
state is 1, and the widening operator is used. The second
configuration is (16, 2, true), which means that 16 variables
are in the set Y , the nesting depth of expressions in the abstract
state is limited to 2, and the widening operator is used. The
third configuration is (16, 2, false), where 16 variables are in
the set Y , the maximum nesting depth of expressions in the
abstract state is 2, and the widening operator is not used. These
configurations were selected because they represent some of
the extremes of the precisions used during dynamic invariant
generation. It is, however, impossible to cover every possible
valid configuration within the scope of this paper.

The heuristic of ESBMC is to preserve information about
variable values before the loop to help the step-case check to
succeed. A sound technique for using pre-loop information in
the step-case is to havoc the loop-modified variables, i.e., to

5http://cpachecker.sosy-lab.org
6http://mathsat.fbk.eu
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TABLE I: Results of k-induction-based configurations in
CPACHECKER for all 2 814 verification tasks with different
approaches for generation of auxiliary invariants

Invariant none static ESBMC cont.-
generation (0, 1, t) (16, 2, t) (16, 2, f) heuristic refined

Score 1 557 3 184 3 263 3 177 204 3 464
Correct results 1 036 1 852 1 893 1 849 1 827 1 981
Wrong proofs 2 1 1 2 263 1
Wrong alarms 12 10 11 9 8 7
CPU time (h) 400 200 190 200 140 170
Wall time (h) 380 150 130 120 130 100

Times for correct results only:
CPU time (h) 7.1 14 15 13 8.8 17
Wall time (h) 5.7 8.4 8.9 7.6 6.9 9.4

k-Values for correct safe results only:
Max. final k 101 101 101 119 120 88
Avg. final k 2.4 2.0 2.3 2.3 2.0 2.4

remove all information about these loop-modified variables,
but keep all other information [19], effectively propagating con-
stants to the step case. ESBMC, however, heuristically selects only
those variables for havocing that appear in loop-termination
conditions [29]. This technique is easier and computationally
cheaper than generating sound auxiliary invariants, but may
lead to wrong verification results, as shown in Sec. I for our
Example 2.

Score. Using the unsound heuristic of ESBMC for invariant
generation produces 263 wrong proofs, which shows that
this is not a suitable approach for proving program safety.
In contrast, the few wrong proofs produced by the other
configurations are not due to conceptual problems, but only
due to incompletenesses in the analyzer’s handling of certain
constructs such as unbounded arrays and pointer aliasing.

The configuration with no invariant generation receives the
second-lowest score of 1 557, and (as expected) can verify only
1 036 programs successfully, producing more than 800 results
less than any of the configurations that use sound auxiliary
invariants. This shows that it is indeed important in practice to
enhance k-induction-based software verification with invariants.

The configurations using static invariant generation pro-
duce 1 852, 1 893, and 1 849 correct results and achieve scores
of 3 184, 3 263, and 3 177 points, respectively. These results are
close to each other, but improve upon the results of the plain
k-induction without auxiliary invariants by a score of 1 600
to 1 700.

This observation explains the high score of 3 464 points
achieved by our approach using continuously-refined invariant
generation. By combining the advantages of fast and coarse
precisions with those of slow but fine precisions, it correctly
solves 1 981 verification tasks, which is 88 more correct results
than the best of the chosen static configurations. It is thus clearly
the best of all evaluated k-induction-based approaches.

Performance. Table I shows that the fastest configuration in
terms of CPU time is the unsound approach, which is easily
explained by the fact that it often produces incorrect proofs
after analyzing a low number of loop iterations of the program.

Due to the vast amount of wrong results, the speed of the
approach can hardly be considered a success.

By far the highest amount of time is spent by the con-
figuration using no auxiliary invariants, because for those
programs that cannot be proved without auxiliary invariants,
the k-induction procedure loops incrementing k until the time
limit is reached. For the sound configurations, the wall times
for the correct results correlate with the amount of correct
results, i.e., on average about the same amount of time is spent
on correct verifications, whether or not invariant generation
is used. This shows that the overhead of generating auxiliary
invariants is well-compensated.

The configurations with static and continuously-refined
invariant generation have a relatively higher CPU time com-
pared to their wall time because these configurations spend
some time generating invariants in parallel to the k-induction
algorithm. The results show, however, that the time spent for
the continuously-refined invariant generation clearly pays off
as this configuration is not only the one with the most correct
results, but at the same time the fastest sound configuration
with only 170 h in total (20 h less than the second-fastest sound
configuration). The fact that the accumulated wall time (9.4 h)
it spent on correct results is slightly higher than for most of the
other sound configurations is simply because it produced more
correct results. The accumulated CPU time (17 h) spent on
correct results is higher than for most of the other configurations
partly due to the same reason, but also because of the multiple
iterations of the invariant-generation algorithm as opposed to
only one iteration for the configurations using static invariant
generation or even zero iterations for the configuration using
no invariant generation and the unsound configuration using the
ESBMC heuristic. Even though it produced much more correct
results, the configuration using continuous invariant generation
did not exceed the times of the chosen configurations using
static invariant generation (> 170 h).

These results show that the additional effort invested in
generating sound auxiliary invariants is well-spent, as it even
decreases the overall time due to the fewer timeouts. As
expected, the continuously-refined invariants solve many tasks
quicker than the configurations using invariant generation with
high static precisions.

Final value of k. The bottom of Table I shows some statistics
about the final values of k for the correct safety proofs. There
is no difference between the maximum k values for the config-
uration using no auxiliary invariants, the configuration (0, 1, t)
using low-precision invariants, and the configuration (16, 2, t)
using medium-precision invariants. The configuration using
static invariant generation with high-precision and the unsound
configuration using the ESBMC heuristic have higher maximum
final values of k, with 119 for the high-precision configura-
tion (16, 2, f) and 120 for the unsound configuration. The logs
revealed that this unique deviation of the high-precision static
invariant-generation configuration was caused by a situation
where the static invariant generation completed only shortly
before the timeout (k = 119 instead of k = 101). For the
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TABLE II: Results of k-induction-based tools for all 2 814 ver-
ification tasks

Tool CBMC ESBMC CPACHECKER

Configuration sequential parallel cont. refined

Score −971 1 659 2 027 3 464
Correct results 1 216 2 214 2 137 1 981
Wrong proofs 261 184 137 1
Wrong alarms 4 28 24 7
CPU time (h) 350 100 130 170
Wall time (h) 350 100 76 100

Times for correct results only:
CPU time (h) 1.9 34 25 17
Wall time (h) 1.9 34 14 9.4

k-Values for correct safe results only:
Max. final k 50 100 100 88
Avg. final k 1.1 8.4 7.4 2.4

unsound configuration, there was one case where due to
the low overhead of the approach, the iterative deepening
of k progressed quickly up until the value 120, where the
k-induction proof then succeeded. The configuration using
continuously-refined invariants, on the other hand, has a
significantly lower maximum final k-value than the other
configurations. This is due to the following two reasons:
First, with continuously-refined invariants, less time is wasted
on generating unnecessarily strong invariants than for static
high-precision configurations, and the proofs terminate before
high values of k are reached. Second, the dynamicity of the
approach allows for generating stronger invariants than static
low-precision configurations, thus reducing the value of k
required for the proof to succeed.

Comparison with other tools. For comparison with other
k-induction-based tools, we evaluated ESBMC and CBMC, two
other successful software model checkers with support for
k-induction. The CPACHECKER configuration in this comparison
is the same as the one above using continuously-refined invari-
ants. For CBMC, we used the latest version 5.0 in combination
with a wrapper script for split-case k-induction provided by
Michael Tautschnig. For ESBMC we used the latest version 2.24.1
in combination with the wrapper script of their submission
to the 2013 Competition on Software Verification [29] (the
script configures ESBMC to use k-induction). We also provide
results for the experimental parallel k-induction of ESBMC, but
note that our benchmark setup is not focused on parallelization
(using only two CPU cores and a CPU-time limit instead
of a wall-time limit). Table II summarizes the results; Fig. 3
shows the quantile functions of the accumulated scores for each
configuration. The results for CBMC are not competitive, which
may be attributed to the experimental nature of its k-induction
support.

Score. Both configurations of ESBMC produce a significant
number of wrong results. All tools do produce some wrong
answers, which are probably related to unsoundness and
imprecision in the handling of some C features. CPACHECKER

with k-induction and sound invariants has only 1 missed bug
(i.e, wrong claim of safety), whereas ESBMC, in the sequential
version, has 184 wrong safety proofs. This large number of
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Fig. 3: Quantile functions of k-induction-based tools for
accumulated scores showing the CPU time for the successful
results; linear scale between 0 s and 1 s, logarithmic scale
beyond

wrong results must be attributed to the unsound heuristic of
ESBMC for strengthening the induction hypothesis, where it
retains potentially incorrect information about loop-modified
variables. The large number of wrong proofs reduces the
confidence in the soundness of the correct proofs. Consequently,
the score achieved by CPACHECKER with continuously-refined
invariants is much higher than the score of ESBMC (3 464 instead
of 2 027 points). This clear advantage is also visible in Fig. 3.

When comparing the results of ESBMC to CPACHECKER with
a reimplemention of the unsound heuristic of ESBMC, we
see that ESBMC produces fewer wrong results. The reason
for this difference is that the heuristic only works well if
relevant variables are identified on loop-exit conditions. Due to
CPACHECKER’s encoding of multiple loops in a program into a
single loop for k-induction, the number of loop-exit conditions
is smaller than in the original program, and the heuristic
performs worse. However, even with the implementation in
ESBMC, this unsound heuristic produces so many wrong results
that it is not suited for verifying program safety.

The parallel version of ESBMC performs somewhat better than
its sequential version, and misses fewer bugs. This is due to
the fact that the base case and the step case are performed in
parallel, and the loop bound k is incremented independently
for each of them. The base case is usually easier to solve for
the SMT solver, and thus the base-case checks proceed faster
than the step-case checks (reaching a higher value of k sooner).
Therefore, the parallel version manages to find some bugs by
reaching the relevant k in the base-case checks earlier than
in the step-case checks, which would produce a wrong safety
proof at reaching k. However, the number of wrong proofs is
still much higher than with our approach, which is conceptually
sound. Thus, our score is more than 1 400 points higher.

Performance. Table II shows that, if only the times for correct
results are considered, our approach is considerably faster than
ESBMC (CBMC has so few correct results that the time for them is
even less). This indicates that due to our invariants, we succeed
more often with fewer loop unrollings and thus in less time. It
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Fig. 4: Scatter plot of the final value of k for all safe programs
verified successfully by both CPACHECKER (continuously-refined
invariants) and ESBMC (sequential) with k-induction; the color
of each data point indicates the number of programs solved
with this value of k

also shows that the effort invested for generating the invariants
is well spent. If considering the total time for the analysis of
all results, CPACHECKER needs more time. This is due to the
fact that these measurements are dominated by those programs
for which the tool runs into a timeout, and CPACHECKER has
more timeouts, whereas ESBMC has more wrong results (for
which less time is spent). A timeout is generally preferable to
a wrong result, though.

Final value of k. The bottom of Table II contains some statistics
on the final value of k that was needed to verify a program.
Figure 4 shows a scatter plot comparing the values of the loop
bound k for CPACHECKER with continuously-refined invariants
and ESBMC in its sequential version. Both axes and the color
range have a logarithmic scale. Data points are shown only
for those 1 460 verification tasks that can be proved safe by
both configurations. A point in the lower right half means that
CPACHECKER needed a lower k (fewer loop unrollings) than
ESBMC for the same verification task. The color of each data
point gives an indication of how many verification tasks are
represented by the data point. For example, the dark point
at (2, 1) signifies that there are 845 programs that can be
verified by CPACHECKER with a final value of k = 1, whereas
ESBMC needs k = 2 for these programs.

The table shows that for safe programs, CPACHECKER only
needs a loop bound that is (on average) less than a third of the
loop bound that ESBMC needs. The bottom of the plot shows
that there are many programs (including the 845 programs at
(2, 1)) that CPACHECKER verifies with only one loop unrolling,
but for which ESBMC needs to unroll the loops more often. To
the right of the plot, there is also a group of programs for which
ESBMC needs a k between 45 and 65 to verify the program,
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and CPACHECKER succeeds with significantly smaller k. There
are only four programs for which CPACHECKER needs a k larger
than 32 (one program for k = 40, k = 45, k = 50, and k = 88
each). For ESBMC, the largest number of loop unrollings is 100,
which is necessary for 71 programs. These advantages are due
to the use of generated invariants, which make the induction
proofs easier and likely to succeed with a smaller number of k.
There is also a group of programs where ESBMC succeeds with
2 loop unrollings but CPACHECKER needs up to 16. However,
the number of such programs is relatively small (note that
the data points with a green-to-orange color only represent
1 to 9 programs) and there is only a single program where
CPACHECKER unrolls the loops more than 10 times more than
ESBMC (while there are many with the reverse being true).
The reason why ESBMC needs fewer loop unrollings for some
programs is its (unsound) heuristic of keeping information
about some program variables from the initial program state
in the inductive-step case.

Comparison with other approaches. We also compare with
the predicate-abstraction implementation of CPACHECKER [11],
which uses the same framework (parser, formula encoding, etc.)
and SMT solver as our implementation of k-induction. The
score-based quantile functions for our k-induction approach
and the existing predicate abstraction in Fig. 5 show that
the latter is somewhat faster and achieves a higher score.
It is surprising that even the well-tuned CPACHECKER imple-
mentation of the mature predicate-abstraction approach only
slightly outperforms our novel k-induction implementation.
The difference in performance and score between these two
configurations is much smaller than the improvement of our
approach compared to existing k-induction-based approaches
(cf. Fig. 3). This is a promising result, considering that there is
room for improvement in our approach. Especially the invariant
generation could be further enhanced, e.g., by tailoring the
invariant generation to the special needs of the k-induction
proof, and a more targeted invariant-refinement procedure.

Acknowledgments. We would like to thank M. Tautschnig and
L. Cordeiro for explaining the optimal available configuration
for k-induction, for the verifiers CBMC and ESBMC, respectively.
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V. CONCLUSION

We have presented the novel idea of combining k-induction
with continuously-refined invariants, and contribute a publicly
available implementation of our idea within the software-
verification framework CPACHECKER. Our extensive experiments
show that our approach outperforms all existing implementa-
tions of k-induction for software verification, and that it is
competitive compared to other, more mature techniques for
software verification. We showed that a sound, effective, and
efficient k-induction approach to general purpose software
verification is possible, and that the additional resources
required to achieve these combined benefits are negligible
if invested judiciously. At the same time, there is still room
for improvement of our technique. In the future, we plan to
integrate successful features of other approaches to k-induction
such as the parallel algorithm of ESBMC. The experiments
with ESBMC show that we can avoid more timeouts on unsafe
programs by running the iteratively-deepening BMC decoupled
from the slower inductive-step case. We are also interested
in adding an information flow between the two cooperating
algorithms in the reverse direction. If the k-induction procedure
could tell the invariant generation which facts it misses to prove
safety, this could lead to a more efficient and effective approach
that generates invariants that are specifically tailored to the
needs of the k-induction proof. Already now, CPACHECKER is
parsimonious in terms of unrollings, compared to other tools.
The low k-values required to prove many programs show that
even our current invariant generation is powerful enough to
produce invariants that are strong enough to help cut down the
necessary number of loop unrollings. k-induction-guided pre-
cision refinement might direct the invariant generation towards
providing weaker but still useful invariants for k-induction
more efficiently.
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