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Abstract. Counterexample-guided abstraction refinement (CEGAR) is
a property-directed approach for the automatic construction of an abstract
model for a given system. The approach learns information from infeasible
error paths in order to refine the abstract model. We address the problem
of selecting which information to learn from a given infeasible error
path. In previous work, we presented a method that enables refinement
selection by extracting a set of sliced prefixes from a given infeasible
error path, each of which represents a different reason for infeasibility
of the error path and thus, a possible way to refine the abstract model.
In this work, we (1) define and investigate several promising heuristics
for selecting an appropriate precision for refinement, and (2) propose a
new combination of a value analysis and a predicate analysis that does
not only find out which information to learn from an infeasible error
path, but automatically decides which analysis should be preferred for
a refinement. These contributions allow a more systematic refinement
strategy for CEGAR-based analyses. We evaluated the idea on software
verification. We provide an implementation of the new concepts in the
verification framework CPAchecker and make it publicly available. In a
thorough experimental study, we show that refinement selection often
avoids state-space explosion where existing approaches diverge, and that
it can be even more powerful if applied on a higher level, where it decides
which analysis of a combination should be favored for a refinement.

1 Introduction

Abstraction is a key concept to enable the verification of real-world software
(cf. [3, 4, 14, 25]) within reasonable time and resource limits. Slam [5], for example,
uses predicate abstraction [21] for creating an abstract model of the software.
The abstract model is often constructed using counterexample-guided abstraction
refinement (CEGAR) [17], which iteratively refines an (initially coarse) abstract
model using infeasible error paths (property-directed refinement). This technique
is integrated in many successful software-verification tools, e.g., Slam [5], Blast [7],
and CPAchecker [9]. In the refinement step of the CEGAR framework, Craig
interpolation [18, 26] is often used to extract the information that needs to be
tracked by the analysis [11, 22]. Formula interpolation yields for two contradicting
formulas an interpolant formula that contains less information than the first
formula, but is still expressive enough to contradict the second formula. In
verification, we can use information from interpolants over an infeasible error
path to refine the abstract model, and iteratively augment the abstraction until
it is strong enough so that the specification can be proven.



1 extern int nondet_int();
2 extern int f(int x);
3 int main() {
4 int b = nondet_int();
5 int i = 0;
6 if (b) {
7 while (i < 1000) {
8 f(i++);
9 }

10 }
11 if (i != 0) {
12 if (!b) {
13 assert(0);
14 }
15 }
16 }
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Fig. 1: From left to right, the input program, an infeasible error path, and a
“good” and a “bad” interpolant sequence for the infeasible error path

In order to avoid state-space explosion and divergence during program analysis,
we need to keep the precision of the analysis as abstract and concise as possible.
Existing approaches that use interpolation to extract precision information from
infeasible error paths assign a lot of choice to the interpolation engine, i.e., an
infeasible error path might contain several reasons for its infeasibility, some of
which might be easier to track than others and thus might be more beneficial for
the further progress of the analysis [13]. Our work addresses the choice between
different precisions — a concept that we refer to as refinement selection.

Figure 1 shows this via an example: For the given program, an analysis based
on CEGAR, with an initially empty precision, may find the shown infeasible
error path. The infeasibility of this path can be explained independently by the
valuations of the variables i and b, as shown by the two example interpolant
sequences. In general, and also in this example, it is advisable to track information
about boolean variables 1, like the variable b, rather than loop-counter variables,
such as variable i, because the latter may have far more different valuations,
and tracking loop counters would usually lead to expensive loop unrollings. The
given error path of the program can be eliminated from further exploration by
tracking the loop-counter variable i, which might force unrolling the loop in
further iterations of CEGAR. If we instead choose to track the boolean variable b,
then the path can be eliminated and it is guaranteed that the loop is not unrolled.
In the next CEGAR iteration, variable i will be added to the precision in order
to stop the exploration at line 11. After that, the program is proved correct.
In existing work, the decision which variable to track depends solely on the
interpolation engine.

For the error path in this example, we would like the verifier to refine using
the interpolant sequence shown on the left, and avoid interpolant sequences such

1 In the programming language C, a boolean variable is modeled by an integer variable b
for which b==0 represents the value false and b!=0 represents the value true (cf. [2]
for a discussion of more fine-grained types for C).



as the one on the right, which references the loop counter. However, interpolation
engines cannot distinguish between “good” or “bad” interpolant sequences, because
they do not have access to external information such as if a specific variable is
a loop counter and should therefore be avoided. Furthermore, the result of an
arbitrary interpolation query is not directly controllable from the outside, and
thus we might end up with a refinement that leads to divergence of the analysis.

It is possible instead to send several queries to the interpolation engine, each
targeted at a different reason of infeasibility, and then choose the result that is
expected to be “good” for the further construction of the abstract model. Our previ-
ous work introduced the notion of sliced prefixes [13] together with an approach to
extract a set of such infeasible sliced paths for one given infeasible error path. Each
of these infeasible sliced paths can be used for refining the abstract model, and
the choice influences the effectivity and the efficiency of the analysis significantly.
This work investigates refinement selection, yielding the following contributions:

• We present several heuristics for intra-analysis refinement selection, for which
we conduct a thorough evaluation that reveals significant effectiveness im-
provements for both a predicate analysis and a value analysis.

• We define a novel combination of analyses, where inter-analysis refinement
selection decides which analysis in the combination of analyses is refined.

• We provide an implementation that is publicly available in the open-source
software-verification framework CPAchecker.

Related Work. We categorize the related approaches into approaches that
manipulate error paths, interpolation approaches to be implemented inside the
interpolation engine, or outside the interpolation engine, approaches based on
unsat cores, and combination approaches.

Extraction of Paths. The most related approaches to refinement selection are
works that manipulate infeasible error paths. Path slicing [24] is a technique that
weakens the path constraints before interpolation by removing facts that are not
important for the infeasibility of the error path. This technique produces one
infeasible sliced path for one infeasible error path. We need several infeasible
sliced paths in order to create a space of choice for refinement selection. Sliced
path prefixes [13] is a method that produces a set of infeasible sliced paths, i.e.,
a set of infeasible sliced prefixes of the original infeasible error path. One of our
heuristics (deep pivot location) is similar to counterexample minimization [1].

Interpolant Strength. The strength of interpolants [20] can be controlled by
combining proof transformations and labeling functions, so that essentially, from
the same proof of infeasibility, different interpolants can be extracted. However,
it is not yet clear from the literature how to exactly exploit the strength of
interpolants in order to improve the performance of software verification [20, 27].
In contrast to our approach, interpolant strength is restricted to predicate analysis,
requires changes to the implementation of the underlying interpolation engine,
and no available interpolation engine provides this feature.

Exploring Interpolants. Exploring interpolants [27] in interpolant lattices is a
technique to systematically extract a set of interpolants for a given interpolation



problem, with the goal of finding the most abstract interpolant. Similar to
our proposed technique, for a single interpolation problem, the input to the
interpolation engine is remodeled to obtain not only a single interpolant for a
query, but a set of interpolants. This technique also does not require changes to
the underlying interpolation engine, but is restricted to predicate analysis. Yet,
this technique could be applied together with refinement selection to generate
first the most abstract interpolant for each infeasible sliced path and then select
the most appropriate refinement.

Unsatisfiability Cores. Satisfiability modulo theory (SMT) solvers can extract
unsatisfiability cores [16] from a proof of unsatisfiability, and there is an analogy
between a set of unsatisfiability cores extracted from a formula and a set of
infeasible sliced paths [13]. The concept of infeasible sliced paths is more general,
because it is applicable also to domains not based on SMT formulas, such as
value domains [13]. While SMT solvers typically strive for small unsatisfiability
cores [16], this alone does not guarantee a verifier to be effective. It would be
interesting to extract several unsatisfiability cores during a single refinement,
with the goal of performing refinement selection, as proposed in this work.

Combination of Value Analysis and Predicate Analysis. A CEGAR-based com-
bination of a value analysis and a predicate analysis, with refinement of the
abstract model in one of the two domains for every found infeasible error path,
has been proposed before [11]. However, so far there was no path-based selection
which domain should be refined: the strategy was to refine first, if possible, the
(supposedly cheaper) value analysis, and only refine the predicate analysis if the
value analysis could not eliminate the infeasible error path. This analysis may
diverge, if the value analysis needs to track a loop-counter variable, for example.
The predicate analysis, which might have eliminated the infeasible error path
without unrolling the loop, would have not even been considered. With our new
approach, we can systematically select the abstract domain that is the most
appropriate for refinement, for every single infeasible error path.

2 Preliminaries

Programs, Control-Flow Automata, States. We use basic definitions from
previous work [13]. We restrict the presentation to a simple imperative program-
ming language, where all operations are either assignments or assume operations,
and all variables range over integers. A program is represented by a control
flow automaton (CFA). A CFA A = (L, l0, G) consists of a set L of program
locations, which model the program counter, an initial program location l0 ∈ L,
which models the program entry, and a set G ⊆ L × Ops × L of control-flow
edges, which model the operations that are executed when control flows from
one program location to the next. The set of program variables that occur in
operations from Ops is denoted by X. A verification problem P = (A, le) consists
of a CFA A, representing the program, and a target program location le ∈ L,
which represents the specification, i.e., “the program must not reach location le”.



A concrete data state of a program is a variable assignment cd : X → Z,
which assigns to each program variable a value from the set Z of integer values.
A region φ is a formula that represents a set of concrete data states. For a
region φ and a CFA edge (l, op, l′), we write SPop(φ) to denote the strongest
postcondition. Each program analysis comes with an own implementation of SP,
each with possibly different expressive power. For example, a program analysis
that is restricted to the theory of linear arithmetics will provide a strongest
postcondition that uses formulas in the theory of linear arithmetic.

Paths, Sliced Paths, Precisions. A path σ is a sequence
〈(op1, l1), . . . , (opn, ln)〉 of pairs of an operation and a location. The path σ
is called program path if for every i with 1 ≤ i ≤ n there exists a CFA
edge g = (li−1, opi, li) and l0 is the initial program location, i.e., the path σ
represents a syntactic walk through the CFA. The semantics of a path
σ = 〈(op1, l1), . . . , (opn, ln)〉 and an initial region φ is defined as the successive
application of the strongest postcondition to each operation of the path:
SPσ(φ) = SPopn(. . . SPop1

(φ) . . .). A path σ is feasible if SPσ(true) is not
contradicting. A program path σ = 〈(op1, l1), . . . , (opn, le)〉, which ends in le, is
called error path, and a program is considered safe (the specification is satisfied)
if there is no feasible error path.

A sliced path is a path that results from a path by omitting pairs of
operations and locations from the beginning or from the end, and pos-
sibly replacing some assume operations by no-op operations. Formally, a
path φ = 〈(op′j , l ′j), . . . , (op′w, l ′w)〉 is called a sliced path of a path σ =
〈(op1, l1), . . . , (opn, ln)〉 if j ≥ 1, w ≤ n, and for all j ≤ i ≤ w, φ.l ′i = σ.li and
(φ.op′i = σ.opi or (φ.op

′
i = [true] and σ.opi is an assume operation)) holds.

The definition of sliced paths is inspired by path slicing [24] and sliced pre-
fixes [13]. To ensure that any standard interpolation-based refinement procedure
can be used, the following proposition is necessary: Let σ be an infeasible path
and φ be an infeasible sliced path of σ, then all interpolant sequences for φ are
also interpolant sequences for σ. The proof for this proposition follows directly
from the respective proof for infeasible sliced prefixes [13]. This property allows
to replace a refinement procedure that uses only the original infeasible path, by
a procedure that uses a set of infeasible sliced paths.

Previously, we introduced one possible approach to extract a set of infeasible
sliced paths from one infeasible path: generating infeasible sliced prefixes [13]. It
was only defined for a value analysis, however, it can be extended to any analysis
that provides a representation of sets of concrete data states and an operator SP
for computing strongest postconditions. The predicate analysis fulfills these
requirements, allowing us to implement Alg. ExtractSlicedPrefixes [13] and Alg. 1
(Refine+) for the predicate analysis. Other approaches for generating infeasible
sliced paths from an infeasible path are equally applicable for refinement selection.

A precision is a function π : L → 2Π , where Π depends on the abstract
domain used by the analysis. It assigns to each program location some analysis-
dependent information that defines the level of abstraction. For example, if using
predicate abstraction, the set Π is a set of predicates over program variables.



Algorithm 1 Refine+(σ), adopted from [13]
Input: an infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a precision π ∈ L → 2Π

Variables: a set Σ of infeasible sliced paths of σ,
a set τ of pairs of an infeasible sliced path and a precision

1: Σ := ExtractSlicedPaths(σ)
2: // compute precisions for each infeasible sliced path
3: for each φj ∈ Σ do
4: τ := τ ∪ (φj ,Refine(φj)) // cf. standard Alg. Refine, e. g., from [13]
5: // select a refinement based on original path, infeasible sliced paths, and resp. precisions
6: return SelectRefinement(σ, τ)

Counterexample-Guided Abstraction Refinement. CEGAR [17] is a tech-
nique used for automatic, iterative refinement of an abstract model and aims
at automatically finding a suitable level of abstraction that is precise enough to
prove the specification while being as abstract as possible to enable an efficient
analysis. It is based on the following components: a state-space exploration al-
gorithm, which computes the abstract model, a precision, which determines the
current level of abstraction, a feasibility check, which decides if an error path is
feasible, and a refinement procedure to refine the precision of the abstract model.

The state-space exploration algorithm computes the abstract state space that
is reachable according to the current precision, which initially is coarse or even
empty. If all program states have been exhaustively checked, and no error was
found, then the CEGAR algorithm terminates and reports the verdict true, i.e.,
the program is correct. Otherwise, i.e., if an error path was found in the abstract
state space, this error path is passed to the feasibility check, and if the path is
feasible, then this error path represents an actual violation of the specification
and the CEGAR algorithm terminates with verdict false. If, however, the error
path is infeasible, i.e., does not correspond to a concrete program execution, then
the precision was too coarse and needs to be refined. The refinement procedure
takes as input the infeasible error path and returns a new precision that is strong
enough that the state-space exploration algorithm will not explore that infeasible
error path again in the next CEGAR iterations. The refinement procedure is often
based on interpolation [18], which was first applied to the predicate domain [22],
and later to the value-analysis domain [11].

Extracting good precisions from the infeasible error paths is key to the CEGAR
technique. Experiments have shown that the heuristic for refinement selection
influences significantly the quality of the precision, and thus, the effectiveness of
the analysis [13]. Here, we are interested in studying such heuristics.

3 Refinement Selection using Heuristics

CEGAR needs a module Refine that takes as input an infeasible program path
and yields as output a precision that is used for refinement of the abstract model.
Instead of using an infeasible program path directly for a standard interpolation-
based refinement, and being stuck with the arbitrary and potentially “bad”
interpolants that the internal heuristics of an interpolation engine produce, we



use a new module Refine+. Algorithm 1 can be substituted for the refinement
procedure of CEGAR-based analyses. This new module first extracts a set
of infeasible sliced paths by calling method ExtractSlicedPaths, which are more
abstract than the original program path. (ExtractSlicedPrefixes [13] is one possible
implementation of method ExtractSlicedPaths.) Second, Alg. Refine+ calculates the
precision for each infeasible sliced path (using a regular refinement procedure)
and stores the pairs in set τ . Third, the algorithm selects the precision that is
the most promising from τ , i.e., which will hopefully prevent the analysis from
diverging. The selection is implemented in a method SelectRefinement and uses
details from the precisions, e.g., which variables are referenced in the precision.
Each implementation of SelectRefinement, i.e., each heuristic, receives as input
the original infeasible path as well as the set of all pairs of infeasible sliced paths
and respective precisions. The remainder of this section presents some possible
heuristics that can be used to implement SelectRefinement.

Selection by Domain-Type Score of Precision. Our first heuristic inspects
the types of variables in the resulting precisions and prefers refinements with
simpler or smaller types. In C, the type of a variable is quite coarse and distin-
guishing variables on a more fine-grained level can be beneficial for verification.
For example, the C type int is typically used even for variables with a boolean
character. For this purpose, domain types [2] have been proposed, which refine the
type system of a programming language and allow to classify program variables
according to their actual range or usage in a program. With domain types, one
can distinguish between variables that are used as booleans, variables that are
used in equality relations only, in arithmetic expressions, or in bit-level operations,
and variables that share characteristics of a loop counter [19, 28, 29].

Loop counters are a class of variables that a program analysis should ideally
omit in many cases from the abstract model of a program. Because loop-counter
variables occur in assume operations at the loop exit, they often relate to a reason
of infeasibility of a given infeasible error path. Thus, those variables are often
included in the interpolant sequence that a standard interpolation engine might
produce, forcing the program analysis to track them. Therefore, a promising
heuristic is to avoid precisions that contain loop counters, and prefer precisions
with only variables of “simpler” (e.g., boolean) types. The rationale behind this
heuristic is that variables with only a small number of different valuations have
less values to grow the state-space, and therefore are to be preferred. If, however,
reasoning about the specification demands unrolling a loop, then the termination
of the verification process may be delayed by first refining towards other, irrelevant
properties of the program.

In order to compute the domain-type score for a precision π : L 7→ 2Π , we
first define a function δ : X 7→ N \ {0} that assigns to each program variable its
domain-type score. The domain type for all program variables can be inferred
by an efficient data-flow analysis [2], and we use low score values for variables
with small ranges (e.g., boolean variables), and a specifically high value for loop
counters. Thus, we define the domain-type score of a precision as the product



of the domain-type scores of every variable that is referenced in the precision:
DomainTypeScoreOfPrecision(π, δ) =

∏
x referenced in π

δ(x).

This function, as well as the design of function δ, are mere proposals for
assessing the quality of a precision. However, we experimented with several
different implementations for both functions, and come to the conclusion that the
most important requirement to be fulfilled is that precisions with only boolean
variables should be associated with a low score, and precisions referencing loop-
counter variables should be penalized with a high score.

Selection by Depth of Pivot Location of Precision. The structure of a
refinement, i.e., which parts of the path and the state space are affected, can
also be used for refinement selection. For example, refining close to the error
location may have a different effect than refining close to the program entry. We
define the pivot location of an infeasible error path σ as the first location in σ
where the precision is not empty. If using lazy abstraction [23], this is typically
the location from which on the reached state space is pruned and re-explored
after the refinement. The depth of this pivot location can be used for comparing
possible refinements and selecting one of them. Formally, for a precision π for a
path σ = 〈(op1, l1), . . . , (opn, ln)〉, the depth of the pivot location is defined as
PivotDepthOfPrecision(π, σ) = min {i | π(li) 6= ∅}. (The minimum always exists
because there is always at least one location with a non-empty precision.)

Selecting a refinement with a deep pivot location (close to the end of the
path) is similar to counterexample minimization [1]. It has the advantage that
(if using lazy abstraction) less parts of the state space have to be pruned and
re-explored, which can be more efficient. Furthermore, the precision will specify to
track preferably information local to the error location and thus avoid unfolding
the state space in other parts of the program. However, preferring a deep pivot
location may have negative effects if some information close to the program entry
is necessary for proving program safety (e.g., initialization of global variables).
Refining at the beginning of an error path might also help to rule out a large
number of similar error paths with the same precision, which might otherwise be
discovered and refined individually.

Selection by Width of Precision. Another heuristic that is based on the
structure of a refinement is to use the number of locations in the infeasible error
path for which the precision is not empty, which we define as the width of a
precision. This corresponds to how long on a path the analysis has to track
additional information during the state-space exploration, and thus correlates
to how long the precision contributes to the state-space unfolding. Similarly
to the depth of the pivot location, this heuristic also deals with some form
of “locality”, but instead of using the locality in relation to the depth, it uses
the locality in relation to the width. Formally, for a precision π produced for
a path σ = 〈(op1, l1), . . . , (opn, ln)〉 the width of the precision is defined as
WidthOfPrecision(π, σ) = 1 +max I −min I, where I = {i | π(li) 6= ∅} is the set
of indices along the path with a non-empty precision.



It may seem that narrow precisions are in general preferable, because it means
tracking additional information only in a small part of the state space. However,
narrow precisions favor loop counters because in many loops the statements for
assigning to the loop counter are close to the loop-exit edges. Thus, selecting a
narrow precision often leads to loop unrollings.

Selection by Length of Infeasible Sliced Path. Selecting the shortest or
longest infeasible sliced path, respectively, are two simple heuristics for refinement
selection as well.

Further Heuristics. We presented and motivated several promising heuristics,
but other heuristics are possible as well. For example, in the RERS challenge 2014,
a heuristic specifically tailored to the characteristics of the event-condition-action
systems in that competition, improved the effectiveness of CPAchecker and
allowed it to obtain good results 2. This shows that using domain knowledge in
the refinement step of CEGAR is a promising direction, and a specific heuristic
for refinement selection is a suitable place to define this.

4 Refinement Selection for Combination of Analyses

A combination of different analyses, such as a value analysis and a predicate
analysis, can be beneficial because different facts necessary to prove program cor-
rectness can be handled by the analysis that can track a fact most efficiently [8, 11].
The refinement step is a natural place for choosing which of the analyses should
track new information. Thus we extend the idea of refinement selection from an
intra-analysis selection to an inter-analysis selection.

This concept, which can be broken down into four phases, is depicted in
Figure 2, which shows an example combination of a value analysis (VA) and
a predicate analysis (PA). The first phase is the standard exploration phase
of CEGAR. The composite analysis performs the state-space exploration, con-
structing the abstract model using the initial, empty precision for all component
analyses. In the figure, we refer to the precisions as πVA and πPA for the value
analysis and the predicate analysis, respectively.

If the outcome of the state-space exploration is the verdict true (the model
fulfills the specification) or the verdict false (the model contains a concrete
error path) then the analysis terminates. If the model contains an infeasible error
path σ, then the model is inconclusive and, according to the CEGAR algorithm,
a refinement is initiated.

With the refinement step, the second phase begins, which also marks the
starting point of our novel approach for inter-analysis refinement selection. There,
for all component analyses, we extract infeasible sliced paths stemming from
the infeasible error path σ. Each program analysis provides its own strongest-
postcondition SP, with each having different expressive power, and therefore, the
set of infeasible sliced paths might differ for each analysis. For example, with

2 Results available at http://www.rers-challenge.org/2014Isola/

http://www.rers-challenge.org/2014Isola/
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Fig. 2: Refinement selection for combination of analyses,
here, consisting of a value analysis and a predicate analysis

SPVA we can extract paths that are infeasible due to non-linear arithmetic, while
with SPPA we get paths that are infeasible due to contradicting range predicates.

In the third phase, for each infeasible sliced path from the previous phase, a
precision (i.e., a possible refinement) is computed by delegating to the default
refinement routine Refine of the respective analysis. At the end of the third phase,
the set τ contains the available refinements (as pairs of infeasible sliced paths
and precisions) for all of the component analyses.

In the fourth phase, one suitable precision π (in the example, either πVA

or πPA) is selected from the set τ , which is added to the respective precision
of the component analysis for state-space exploration, finishing one iteration
of CEGAR. A proper strategy for refinement selection can be crucial for the
effectiveness of the composite analysis, because there is no analysis superior to
all other analysis for any given program, but one analysis may be a good fit for
one class of programs, but less suitable for another class, while it can be the
other way around for a second analysis. Suppose, for example, an infeasible error
path that can only by excluded by tracking that a certain variable is within
some interval. Refining the value analysis would mean to enumerate all possible
values of this variable, whereas the predicate analysis could track this efficiently
using inequality predicates. The following evaluation provides evidence that inter-
analysis refinement selection can be superior to statically preferring the refinement
of one analysis, which is an improvement over our previous work [11].

5 Evaluation

In the following, we present the results of applying refinement selection to several
analyses. In order to evaluate the presented heuristics for refinement selection,
we have integrated them into the open-source software-verification framework



CPAchecker [9] 3. We also implemented refinement selection for the predicate
analysis [10] in CPAchecker, such that it is now supported for both the value
analysis [11] and the predicate analysis.

Setup. For benchmarking we used machines with two Intel Xeon E5-2650v2 eight-
core CPUs with 2.6GHz and 135GB of memory. We limited each verification run
to two CPU cores, 15min of CPU time, and 15GB of memory. BenchExec [12]
was used as benchmarking framework to ensure accurate, reproducible results.
We used the tag cpachecker-1.4.6-spin15 of CPAchecker, and provide the
tool, the benchmarks, and the full results on our supplementary web page 4.

Benchmarks. For evaluating the refinement-selection heuristics and our novel
combination of analyses, we use a subset of the 5 803 C programs from SV-
COMP’15 [6]. We select those tasks that deal with reachability properties, and
exclude the categories “Arrays”, “HeapManipulation”, “Concurrency”, and “Recur-
sion”, because they are not supported by both analyses we evaluate. Furthermore,
we present here only results for those tasks where a refinement selection is actually
possible, i. e., where at least one refinement with more than one infeasible sliced
path is performed. Thus, the set of all verification tasks in our experiments
contains 2 828 and 2 638 tasks for the predicate and value analysis, respectively.

Configuration. We use the approach of extracting infeasible sliced pre-
fixes [13] for generating infeasible sliced paths during refinement (method
ExtractSlicedPaths in Alg. 1). In order to properly evaluate the effect of the
precisions that are chosen by the refinement-selection heuristic, we configure
the analysis to interpret the precision globally, i. e., instead of a mapping from
program locations to sets of precision elements, the discovered precision elements
get used at all program locations. Note that this does not change the precision as
seen by the refinement-selection heuristic, but only the precision that is given to
the state-space exploration. For the same reason, we also restart the state-space
exploration with the refined precision from the initial program location after each
refinement. Otherwise, i.e., if we used lazy abstraction and re-explored only the
necessary part of the state space, not only the new precision but also the amount
of re-explored state space would differ depending on the selected refinement,
which would have an undesired influence on the performance.

The predicate analysis is configured to use single-block encoding [10], because
for larger blocks there is no single error path per refinement, but instead a
sequence of blocks which encode a set of potential error paths. As we do not
yet have an efficient technique to extract infeasible sliced paths from a sequence
of blocks, using refinement selection is not applicable in an ABE configuration.
The predicate analysis uses SMTInterpol [15] as satisfiability modulo theories
(SMT) solver and interpolation engine.

Refinement-Selection Heuristics. We experiment with implementations of the
procedure SelectRefinement in Alg. 1 based on the heuristics from Sec. 3, specifi-
3 Available under the Apache 2.0 License from http://cpachecker.sosy-lab.org/
4 http://www.sosy-lab.org/∼dbeyer/cpa-ref-sel/

http://cpachecker.sosy-lab.org/
http://www.sosy-lab.org/~dbeyer/cpa-ref-sel/


cally such that it returns the precision for a (1) short or (2) long infeasible sliced
path, the precision with a (3) good or (4) bad domain-type score 5, a precision
that is (5) narrow or (6) wide, or a precision with a (7) shallow or (8) deep
pivot location. For comparison, we report the results of using random choice
as heuristic for refinement selection. We also experiment with combinations of
heuristics, where at first a primary heuristic is asked, and if this does not lead
to a unique selection, a secondary heuristic is used as a tie breaker to select
one of those refinements that were ranked best by the primary heuristic. We
use the heuristics “good domain-type score” and “narrow precision” for these
combinations. In all configurations of refinement selection, if necessary, we use
the length of the infeasible sliced path as a final tie breaker, and select from
equally ranked refinements the one with the shortest infeasible sliced path 6.

In the following, we compare the potential of these selection heuristics against
each other, as well as against the case where the choice of refinement is solely left
to the interpolation engine, i. e., where no refinement selection is performed and
the precision extraction is based on the complete, original infeasible error path.

Refinement Selection for Predicate Analysis. We evaluate the presented
heuristics for refinement selection when applied to the predicate analysis. Table 1
shows the number of verification tasks that the predicate analysis could solve
without refinement selection, and with refinement selection using the heuristics
and combinations of heuristics listed above. The table lists the results for the full
set of 2 828 verification tasks (column “All Tasks”) that fit the criterion defined
above, as well as for several subsets corresponding to those categories of SV-
COMP’15 (“ControlFlowInteger”, “DeviceDrivers64”, “ECA“, “ProductLines“, and
“Sequentialized”), where refinement selection has a significant impact. Numbers
written in bold digits highlight the best configuration(s) in each column. Figure 3
shows a plot with the quantile functions for the most interesting refinement-
selection heuristics on the full set of tasks. In this figure, for each configuration
the right end of the graph marks the number of tasks that the configuration
could solve, and the area below the graph indicates the sum of the runtime for
all solved verification tasks. Thus, in general a graph that is lower and stretches
further to the right indicates a better configuration.

Refinement Selection Matters. For the full set of tasks, the analysis without
refinement selection performs worse than all other refinement selection heuristics,
even worse than the intentionally bad heuristic “bad domain-type score”. Figure 3
shows that the analysis without refinement selection scales badly. While it is
competitive for easier tasks (below 60 s of CPU time), it solves only a relatively
small number of tasks with a runtime between 60 s and 900 s. Additionally,
this configuration is not the best for any of the shown subsets, except for
“ControlFlowInteger”, where it is tied for first with others. This shows that the

5 We do not expect the precision with a bad domain-type score to be actually useful,
we report its results merely for comparison.

6 Experiments showed no relevant difference between selecting the shortest or the
longest infeasible sliced path in case of a tie in the primary selection heuristic.



Table 1: Number of solved verification tasks for predicate analysis without and
with refinement selection using different heuristics

```````````Heuristic
Tasks All Tasks ControlFlowInt. DD64 ECA ProductLines Seq.

2 828 35 679 1 140 597 244

— (No Refinement Selection) 1 142 34 473 162 325 43

Length of Sliced Path Short 1 278 34 429 261 375 78
Long 1 325 18 484 322 330 73

Domain-Type Score Good 1 291 34 493 247 339 76
Bad 1 161 23 404 259 298 79

Width of Precision Narrow 1 302 28 431 329 347 64
Wide 1 297 27 480 309 309 76

Depth of Precision Shallow 1 237 25 466 251 341 57
Deep 1 260 28 421 313 352 45

Random 1 352 34 473 303 350 86

Combinations Good&Narrow 1368 30 494 329 338 75
Narrow&Good 1 354 28 474 330 355 65
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Fig. 3: Quantile plot showing the results for predicate analysis without and with
refinement selection using different heuristics

heuristics of the interpolation engine (with which we are stuck without diligent
refinement selection) are not well-suited for verification, and that practically any
deviation away from the heuristics of interpolation engine pays off, as witnessed
by the relatively good results for the other heuristics.

Discussion. As Table 1 shows, none of the basic heuristics works best for all
classes of programs, but instead in each subset a different heuristic is the best.
In the following, we would like to highlight and explain a few interesting results
for some subsets of tasks and heuristics. Note that the following discussion is
based on the investigation of some program samples and our understanding of
the characteristics of the programs in the SV-COMP categories, and we do not
claim that our explanations are necessarily applicable to all programs.



The programs of the subset “DeviceDrivers64” contain many functions and
loops, and aspects about the specification are encoded in global boolean variables
that are checked right before the error location. Hence, the heuristic “good
domain-type score” is effective because it successfully selects precisions with the
“easy” and relevant boolean variables. The heuristics “long sliced path”, “wide
precision”, and “shallow depth” all happen to work well, too, because those
relevant variables are initialized at the beginning and read directly before the
error location, meaning that corresponding infeasible sliced paths will be long,
and resulting precisions containing them will be “shallow” and “wide“ (starting
to track information close to the program entry, and all the way to the error
location). Their opposing heuristics tend to prefer precisions about less relevant
local variables.

The subset “ECA” contains artificial programs that represent event-condition-
action systems with up to 200 000 lines of code. Most of these programs have
only a few variables, and in the majority of programs all variables have the same
domain type, and thus the heuristic using the domain-type score cannot perform
a meaningful selection here and degenerates to a heuristic about the number of
distinct variables in the precision. Note also that relying on the interpolation
heuristics of the SMT solver works particularly bad for these programs.

The programs of the subset “ProductLines” encode state machines and contain
a high amount of global variables. In case they contain a specification violation,
the bug is often rather shallow, although the full state space is quite complex.
This explains why the heuristic “short sliced path” works especially well here,
because this heuristic leads to exploring the state space as close as possible to
the initial program location, driving the verification towards shallow bugs.
Combination of Refinement-Selection Heuristics. The above results show that
it is worthwhile to experiment with combinations of heuristics in order to find
a configuration that works well for a wide range of programs. We used the two
heuristics “good domain-type score” and “narrow precision”, which are not only
two of the most successful basic heuristics for the predicate analysis, but are
also somewhat complimentary (one has a weak spot where the other is strong,
and vice versa). Indeed, regardless of the order in which the two heuristics are
combined, the combination is more successful than the basic configurations if
applied to the category of all tasks. The combination with “good domain-type
score” as primary and “narrow precision” as secondary heuristic manages to solve
226 (20%) more tasks than without refinement selection and is best or close to
best in most subsets of tasks.

Refinement Selection for Value Analysis. We now compare the different
refinement-selection heuristics if used together with a value analysis. The results
are shown in Table 2, which is structured similarly to Table 1, but contains results
only for the full set of 2 638 tasks and for the subsets corresponding to the SV-
COMP’15 categories “DeviceDrivers64”, “ECA”, and “ProductLines”, because for
the remaining categories there is no relevant difference in the results for the value
analysis. First it can be seen that the configuration without refinement selection
is comparatively good for the value analysis, as opposed to the predicate analysis,



Table 2: Number of solved verification tasks for value analysis without and with
refinement selection using different heuristics

```````````Heuristic
Tasks All Tasks DeviceDrivers64 ECA ProductLines

2 638 578 1 140 597

— (No Refinement Selection) 1 726 408 575 453

Length of Sliced Path Short 1 644 422 488 450
Long 1 627 484 508 361

Domain-Type Score Good 1 760 494 572 408
Bad 1 518 410 474 359

Width of Precision Narrow 1 685 422 507 470
Wide 1 605 483 491 355

Depth of Precision Shallow 1 658 471 518 383
Deep 1 725 414 534 488

Random 1 622 433 527 378

Combinations Good&Narrow 1767 494 569 418
Narrow&Good 1 714 492 507 428

where it is the worst configuration. This can be explained by the fact that the
interpolation engine for the value analysis is implemented in CPAchecker itself
and is thus designed and tuned specifically for software verification, whereas the
predicate analysis uses an off-the-shelf SMT solver as interpolation engine, which
is not designed specifically for software verification. However, for specific subsets
of tasks, refinement selection is also effective for the value analysis.

Similarly to the predicate analysis, none of the heuristics is the best for all
classes of programs. Again, the basic heuristic that works best on the set of all
tasks is “good domain-type score”, which is especially well-suited for the subset
“DeviceDrivers64” for the same reasons explained above. In fact, note that for the
basic heuristics and subsets of tasks presented in Tables 1 and 2, the number of
tasks solved by the value analysis often correlates closely to the number of tasks
solved by the predicate analysis. One notable exception is the subset “ECA”, for
which the heuristic “good domain-type score” works well for the value analysis,
but not for the predicate analysis. The reason for this difference is that the value
analysis solves far more instances than the predicate analysis, and for some of
the harder “ECA” problems, which the predicate analysis cannot solve, but the
value analysis can, there exist variables with different domain-types. Hence, the
heuristic “good domain-type score” is more effective.

Finally, the combination of the refinement-selection heuristics “good domain-
type score” and “narrow precision” is again the most effective configuration for
the set of all tasks, although the increase over the heuristic “good domain-type
score” alone is not as large as for the predicate analysis.

Refinement Selection for Combination of Analyses. We now evaluate the
effectiveness of using refinement selection for a combination of analyses. We
compare four different analyses: (1) a sole predicate analysis without refinement
selection, (2) a combination of a value analysis and a predicate analysis (both
without refinement selection), where refinements are always tried first with the



Table 3: Number of solved verification tasks for combinations of analyses without
and with refinement selection (PA: predicate analysis; VA: value analysis)
```````````Analysis

Tasks All Tasks DD64 ECA Loops ProductLines Seq.
3 568 1 245 1 139 120 597 261

PA 1 826 1 027 161 80 325 42
VA ‖ PA 2 288 992 495 69 421 115
VA+ ‖ PA+ 2 386 1074 517 68 404 126
(VA+ ‖ PA+)+ 2389 1 068 519 79 404 121

value analysis and the predicate analysis is refined only if the value analysis cannot
eliminate an infeasible error path, (3) the same combination of a value analysis
and a predicate analysis, but now with refinement selection used independently in
both domains, and (4) our novel combination that is defined in Sect. 4 of a value
analysis and a predicate analysis, where refinement selection is not only used
within each domain but also to decide which domain to prefer in a refinement
step. For all configurations with refinement selection, we use the combination
of the heuristics “good domain-type score” and “narrow precision”. We keep the
same setup for the experiment as before, but use a new selection criteria, namely,
we only consider verification tasks where an inter-analysis refinement selection is
actually possible, i. e., where the analysis based on our novel combination needs
to perform at least one refinement.

Results. Table 3 shows the results for this comparison. Confirming previous
results [11], even a combination of value analysis and predicate analysis without
refinement selection (row “VA ‖ PA”) is more effective than the predicate analysis
alone (row “PA”). However, this combination also has a weak spot, as it fails often
in “DeviceDrivers64” due to state-space explosion where the predicate analysis
alone succeeds. Row “VA+ ‖ PA+” shows that using refinement selection is
effective not only when applied to individual analyses, but also for combinations
of analyses. Finally, the fourth configuration (row “(VA+ ‖ PA+)+”) takes the
idea of refinement selection to the next level. While in the other combinations
the value analysis is always refined first, and the predicate analysis only if the
value analysis cannot eliminate an infeasible error path, our novel combination
uses refinement selection to decide whether a refinement for the value or for the
predicate analysis is thought to be more effective. On the full set of tasks, this
approach just barely beats the previous approach, but the encouraging results
in the subset “Loops” show that it works as intended. In this subset the plain
predicate analysis is best (row “PA”), and a naive combination is less suited for
such programs (rows “VA ‖ PA” and “VA+ ‖ PA+”). If, however, we apply inter-
analysis refinement selection to decide which analysis to refine for a given error
path, as done by our novel approach, then this does not only clearly out-perform
the plain predicate analysis on “All Tasks”, but it also matches the effectiveness
of the predicate analysis for programs where reasoning about loops is essential.



6 Conclusion

We presented refinement selection, a method that guides the construction of an
abstract model in a direction that is beneficial for the effectivity and efficiency of
the verification process. The refinement selection works as follows: We start with
a given infeasible error path as it occurs in CEGAR. Then, we extract for this
infeasible error path a set of sliced paths, and, instead of computing a refinement
precision for the original path only, we compute a refinement precision for each
sliced path. Next, we assess all refinement precisions according to some heuristics
that implement design choices of what is considered a “good” refinement precision.
Finally, we select the most promising precision for the model construction.

This paper defines a variety of heuristics for utilizing the potential of refinement
selection and we evaluated the ideas on a large benchmark set and two commonly-
used verification methods: predicate analysis and value analysis. The experimental
results demonstrate that we can improve the performance and the number of
solved tasks significantly by selecting an appropriate refinement without any
further changes to the analysis. Furthermore, if using a combination of a value
and a predicate analysis, refinement selection can now be used to systematically
select the most appropriate domain for refining the abstract model.

Refinement selection opens a fundamentally new view on verification of models
with different characteristics: Instead of using portfolio checking, or trying several
different abstract domains, we can, in one single tool, fully automatically self-
configure the verifier, according to the property to be verified and the abstract
domain that can best analyze the paths that are encountered during the analysis.
Outlook. It would be interesting to investigate heuristics that use dynamic
information from the analysis. For example, instead of penalizing a loop-counter
variable according to its domain type, we could delay the penalty until a certain
threshold is reached on the number of values for this variable, similar to dynamic
precision adjustment [8]. Especially for the predicate analysis, it is interesting to
investigate heuristics that not only look at the domain type, but also how the
variables are referenced in the precision (e.g., an equality predicate for a loop
counter usually leads to loop unrolling, an inequality might avoid loop unrolling).
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