
.

Proc. TACAS 2016, c©Springer

Reliable and Reproducible Competition Results
with BenchExec and Witnesses

(Report on SV-COMP 2016)

Dirk Beyer

University of Passau, Germany

Abstract. The 5th Competition on Software Verification (SV-COMP
2016) continues the tradition of a thorough comparative evaluation of
fully-automatic software verifiers. This report presents the results of the
competition and includes a special section that describes how SV-COMP
ensures that the experiments are reliably executed, precisely measured,
and organized such that the results can be reproduced later. SV-COMP
uses BenchExec for controlling and measuring the verification runs, and
requires violation witnesses in an exchangeable format, whenever a verifier
reports that a property is violated. Each witness was validated by two
independent and publicly-available witness validators. The tables report
the state of the art in software verification in terms of effectiveness
and efficiency. The competition used 6 661 verification tasks that each
consisted of a C program and a property (reachability, memory safety,
termination). SV-COMP 2016 had 35 participating verification systems
(22 in 2015) from 16 countries.

1 Introduction

The annual Competition on Software Verification (SV-COMP) 1 is a continuous
effort by the software-verification community. The effort consists of the following
two parts: (1) The SV-COMP community defines and collects verification tasks
that the researchers and developers of software verifiers find interesting and
challenging; these verification problems should be used to evaluate the effectivity
(soundness and completeness) and efficiency (performance) of modern verification
tools. (2) The organizer of SV-COMP performs a systematic comparative evalua-
tion of the relevant state-of-the-art tool implementations for automatic software
verification with respect to effectiveness and efficiency; part of this is to define and
explore standards for a reliable and reproducible execution of such a competition.
This paper describes the rules, definitions, results, and other interesting facts
about the execution of the competition experiments, in particular how to make
the experiments reproducible. The main objectives that the community aims at
by running yearly competitions are the following (taken from [5]):
1. provide an overview of the state of the art in software-verification technology

and increase visibility of the most recent software verifiers,
1 http://sv-comp.sosy-lab.org

http://sv-comp.sosy-lab.org

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.
There is consensus that (1) and (2) are already achieved, but need continuous
improvement: the community of research groups and verifiers that participate
in SV-COMP is increasing, and the set of verification tasks needs even more
diversity, growing, and quality assurance. The repository and the issue tracker
show that there was considerable effort spent on consolidating the verification
tasks, in terms of consistency and quality. Regarding (3), the simple syntax of
the property language works well for SV-COMP, while it would be great to
increase the supported fragment of LTL. The standard witness language as a
common, exchangeable format was a big step forward in terms of standardization.
The requirement in SV-COMP that bug reports are counted only if the bug is
reproducible, i.e., the witness can be re-played on a different machine with a
different validation tool, makes it easier to understand problems. We received
positive feedback in terms of Objective (4), but we cannot evaluate this here.
Related Competitions. SV-COMP is complemented by two other competitions
in the field of software verification: RERS 2 and VerifyThis 3. While SV-COMP
performs reproducible experiments in a controlled environment (dedicated re-
sources, resource limits), the RERS Challenges gives more room for exploring
combinations of interactive with automatic approaches without limits on the
resources, and the VerifyThis Competition focuses on evaluating approaches and
ideas rather than on fully-automatic verification. The report on SV-COMP 2014
provides a more comprehensive list of other competitions [4].

2 Procedure

The procedure for the competition organization did not change in comparison to
the past SV-COMP editions [2, 3, 4, 5]. SV-COMP was again an open competition
where all verification tasks were known before the submission of the participating
verifiers, such that there were no surprises and developers were able to train the
verifiers. In the benchmark submission phase, we collected and classified new
verification tasks, in the training phase, the teams inspected verification tasks
and trained their verifiers, and in the evaluation phase, verification runs were
preformed with all competition candidates and the system descriptions were
reviewed by the competition jury. As in the last years, the participants received
the preliminary results of their verifier per e-mail for inspection, after which the
results were publicly announced.

3 Definitions, Formats, and Rules

Verification Task. The definition of verification task was not changed (taken
from [4]). A verification task consists of a C program and a property. A verifica-
2 http://rers-challenge.org 3 http://etaps2015.verifythis.org

http://rers-challenge.org
http://etaps2015.verifythis.org

tion run is a non-interactive execution of a competition candidate on a single
verification task, in order to check whether the following statement is correct:
“The program satisfies the property.” The result of a verification run is a triple
(answer, witness, time). answer is one of the following outcomes:
True: The property is satisfied (i.e., no path that violates the property exists).
False: The property is violated (i.e., there exists a path that violates the

property) and a counterexample path is produced and reported as witness.
Unknown: The tool cannot decide the problem, or terminates abnormally, or

exhausts the computing resources time or memory (i.e., the competition
candidate does not succeed in computing an answer True or False).

The component witness [6] was this year mandatory only for False an-
swers; in the future, witnesses are also required for True answers. SV-COMP
was supported by the two witness validators CPAchecker and UAutomizer.
time is measured as consumed CPU time until the verifier terminates, in-
cluding the consumed CPU time of all processes that the verifier started [8].

Arrays

Bit Vectors

Heap Data Structures

Integers and Control Flow

Software Systems

Arrays

ArraysReach

ArraysMemSafety

Bit Vectors

BitVectorsReach

Overflows

Heap Data Structures

HeapReach

HeapMemSafety

Floats

Integers and Control Flow

ControlFlow

Simple

ECA

Loops

Recursive

ProductLines

Sequentialized

Termination

Concurrency

Software Systems DeviceDriversLinux64

BusyBox

Overall

Fig. 1: Categories (generated by GraphViz)

If the wall time was larger than the CPU
time, then the time is set to the wall
time. If time is equal to or larger than
the time limit (15min), then the verifier
is terminated and the answer is set to
‘timeout’ (and interpreted as Unknown).
Categories. The collection of verifica-
tion tasks, which represents the current
interest and abilities of tools for software
verification, is arranged into categories,
according to the characteristics of the
programs and the properties to be veri-
fied. The assignment was proposed and
implemented by the competition chair,
and approved by the competition jury.
For the 2016 edition of SV-COMP, a to-
tal of 10 categories were defined. The
structure of categories is illustrated in
Fig. 1 and described in more detail on
the competition web site 4. As a new fea-
ture of the competition, a new (meta)
category Falsification was defined, which
was meant to explore bug hunting ca-
pabilities of verifiers that are not able
to construct correctness proofs. The new
category consisted of all verification tasks
with safety properties, and any answers
True were ignored. The categories, their
defining category-set files, and the con-

4 http://sv-comp.sosy-lab.org/2016/benchmarks.php

http://graphviz.org/
http://sv-comp.sosy-lab.org/2016/benchmarks.php

Table 1: Properties used in the competition (cf. [5] for more details)
Formula Interpretation / Syntax of property
G ! call(foo()) A call to function foo is not reachable on any finite execution.

CHECK(init(main()), LTL(G ! call(__VERIFIER_error())))
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.
CHECK(init(main()), LTL(G valid-free))

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.
CHECK(init(main()), LTL(G valid-deref))

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.
CHECK(init(main()), LTL(G valid-memtrack))

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates.
CHECK(init(main()), LTL(F end))

Table 2: Scoring schema for SV-COMP 2016
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Correct program reported to satisfy property
True incorrect −32 Incorrect program reported as correct (wrong proof)

tained programs are explained in more detail under Verification Tasks on the
competition web site.

Properties and Their Format. For the definition of the properties and the
property format we refer to the previous competition report [5]. All specifications
are available as .prp files in the respective directories of the benchmark categories
in the repository. Table 1 lists the properties and their syntax as overview.

Evaluation by Scores and Run Time. In order to reflect the steady progress
towards completeness and soundness of verification tools, the scoring schema was
again adjusted in order to increase the penalty for wrong results. Table 2 provides
the overview. The ranking is decided based on the sum of points (normalized for
meta categories) and for equal sum of points according to success run time, which
is the total CPU time over all verification tasks for which the verifier reported a
correct verification result. Opt-out from Categories and Score Normalization for
Meta Categories was done as described previously [3] (page 597). The Competition
Jury consists again of the chair and one member of each participating team.
Team representatives of the jury are listed in Table 3.

http://sv-comp.sosy-lab.org/2015/benchmarks.php

(a) Verification Tasks
(public git: 'svcomp16')

(e) Verification Run
(BenchExec)

(b) Benchmark Definitions
(public git: 'svcomp16')

(c) Tool-Info Moduls
(public git: '1.7')

(d) Verifier Archives
(public web: shasum)

FALSE UNKNOWN TRUE(f) Violation
Witness

(g) Correctness
Witness

Fig. 2: Setup: components that support reproducibility are highlighted in green

4 Reproducibility

One of the main goals of SV-COMP is to make the competition as transparent
and reproducible as possible. To achieve this goal, it is necessary to control as
many as possible of the variables that might influence the results. Figure 2 gives
an overview over the components that contribute to the reproducible setup of
SV-COMP.

BenchExec: Precise Controlling and Measurement of Resources (e).
For scientifically valid experiments, we require for each verification run a reliable
assignment and controlling of computing resources (cores, memory, CPU time),
and a precise measurement. There are several requirements that experiments of a
competition such as SV-COMP have to fulfill [8]: (i) accurate measurement and
reliable enforcement of limits for CPU time and memory, (ii) reliable termination
of processes (including all child processes), and (iii) correct assignment of local
memory (for NUMA architectures). We use BenchExec5 to perform all SV-
COMP experiments, because this benchmarking framework lets us conveniently
benefit from the modern resource control and measurement mechanisms that the
Linux kernel offers.

Repository of Verification Tasks (a). The verification tasks are organized in
a public repository 6. The repository was moved to GitHub in order to support
an issue tracker and to efficiently handle contributions from the community via
pull requests. The more appropriate logging of change history and issues gives
credit to people that contribute. Furthermore, the continuous-integration system
TravisCI is used to ensure that the verification tasks are compilable by Gcc
and Clang. The move to GitHub also had a positive effect on the activity on
the benchmark suite: more people are involved, and more fixes to verification
tasks were contributed. For reproducing the results of SV-COMP, the exact
versions of the verification tasks as used for SV-COMP 2016 are available via the
PGP-signed tag ‘svcomp16’ in the git repository.
5 https://github.com/sosy-lab/benchexec 6 https://github.com/sosy-lab/sv-benchmarks

https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-benchmarks

Benchmark Definitions (b). For executing verification runs, we need to know
for each verifier, (i) which verification tasks need to be given to the verifier
(derived from participation declaration) and (ii) which parameters need to be
passed to the verifier (there are global parameters that are specified for all
categories, and there are specific parameters such as the bit architecture and
memory model). The benchmark definitions are XML files in the format that
BenchExec expects; they are collected in a specific repository for SV-COMP 7,
in which the PGP-signed tag ‘svcomp16’ points to the exact versions that were
used in SV-COMP 2016.

Tool-Specific Information (c). In order to successfully execute a verifier
and correctly interpret its results, a tool-info module needs to be provided to
BenchExec. First, the command-line to properly invoke the verifier (including
source and property file as well as the options) is assembled from the parts
specified in the benchmark definition (b). Second, the (tool-specific) information
that the verifier produces needs to be interpreted and translated into the uniform
SV-COMP result (True, False(p), Unknown). The tool-info modules that
were used in SV-COMP 2016 are available in BenchExec release 1.7.

Verifier Archive (d). The verifiers are provided in an archive containing a
license (that permits academic use, use in SV-COMP, and reproducing the results)
and all parts that are needed to execute the verifier (statically-linked executables,
all components that are required in a certain version, or for which no standard
Ubuntu package is available, are included). The verifiers and the above-mentioned
components are provided on the systems-description page of the SV-COMP web
site 8, together with the SHA1 hashes for verification of consistency.

Violation Witnesses (f). SV-COMP counts answers False only if a valid
witness according to an exchangeable, machine-readable format is part of the
result triple as witness. This means that each verification run must be followed
by a validation run that checks if the witness adheres to the exchange format
and can be reproduced. The time limit for a validation run was set to 10% of the
CPU time for a verification run, i.e., the witness validation was limited to 90 s.
The purpose of the tighter resource limit is to avoid delegating verification work
to the validator. This ensures a high quality of assignment of scores: if a verifier
claims a found bug but is not able to provide a witness, then no score is assigned.
The witness format and the validation process is explained on the web page 9.
More details on witness validation is given in a related research article [6].

Correctness Witnesses (g). Although SV-COMP requires since its second
edition (2013) that each result must be accompanied by a witness, this requirement
was not enforced for the answer True, mainly due to the lack of validators for
correctness witnesses. This year, there was a demonstration category on validation
of correctness witnesses, with the purpose to get prepared for witness validation
for correctness results in the future.

7 https://github.com/sosy-lab/sv-comp 8 http://sv-comp.sosy-lab.org/2016/systems.php
9 http://sv-comp.sosy-lab.org/2016/witnesses/

https://github.com/sosy-lab/sv-comp
http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/witnesses/

5 Results and Discussion

For the fifth time, the competition experiments represent the state of the art
in fully-automatic and publicly-available software-verification tools. The report
shows the improvements of the last year, in terms of effectiveness (number of
verification tasks that can be solved, correctness of the results, as accumulated
in the score) and efficiency (resource consumption in terms of CPU time). The
results that are presented in this article were approved by the participating teams.

Table 3: Competition candidates with their system-description references and repre-
senting jury members

Participant Ref. Jury member Affiliation
2LS [31] Peter Schrammel U Oxford, UK
AProVE [33] Jera Hensel RWTH Aachen, Germany
Blast [32] Vadim Mutilin ISPRAS, Russia
Cascade [35] Wei Wang New York U, USA
CBMC [22] Michael Tautschnig Queen Mary U London, UK
Ceagle Dexi Wang Tsinghua U, China
Ceagle-Absref Guang Chen Tsinghua U, China
CIVL [36] Stephen Siegel U Delaware, USA
CPA-BAM [14] Karlheinz Friedberger U Passau, Germany
CPA-kInd [7] Matthias Dangl U Passau, Germany
CPA-RefSel [9] Stefan Löwe U Passau, Germany
CPA-Seq [12] — U Passau, Germany
DIVINE [37] Vladimír Štill Masaryk U, Czech Republic
ESBMC [24] Mikhail Ramalho U Southampton, UK
ESBMC+DepthK [28] Lucas Cordeiro Federal U Amazonas, Brazil
Forest [13] Pablo Sanchez U Cantabria, Spain
Forester [18] Ondřej Lengál Brno UT, Czech Republic
HIPrec [23] Quang Loc Le National U, Singapore
Impara Björn Wachter U Oxford, UK
Lazy-CSeq [19] Omar Inverso Gran Sasso Sc. Inst., Italy
LCTD [30] Keijo Heljanko Aalto U, Finland
LPI [20] George Karpenkov VERIMAG, France
Map2Check [29] Herbert Rocha Federal U Roraima, Brazil
MU-CSeq [34] Gennaro Parlato U Southampton, UK
PAC-MAN [11] Ming-Hsien Tsai Academia Sinica, Taiwan
PredatorHP [21] Tomas Vojnar Brno UT, Czech Republic
SeaHorn [15] Jorge Navas NASA Ames, USA
Skink Franck Cassez Macquarie U, Australia
SMACK+Corral [27] Zvonimir Rakamaric U Utah, USA
Symbiotic [10] Jan Strejček Masaryk U, Czech Republic
SymDIVINE [1] Jiří Barnat Masaryk U, Czech Republic
UAutomizer [17] Matthias Heizmann U Freiburg, Germany
UKojak [26] Daniel Dietsch U Freiburg, Germany
UL-CSeq [25] Bernd Fischer Stellenbosch U, ZA
VVT [16] Alfons Laarman TU Vienna, Austria

Table 4: Technologies and features that the verification tools offer

Verifier C
E
G
A
R

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

S
ym

b
ol
ic

E
xe
cu

ti
on

B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

k-
In
d
u
ct
io
n

P
ro
p
er
ty
-D

ir
ec
te
d
R
ea
ch
.

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

N
u
m
er
ic
.
In
te
rv
al

A
n
al
ys
is

S
h
ap

e
A
n
al
ys
is

S
ep

ar
at
io
n
L
og

ic

B
it
-P

re
ci
se

A
n
al
ys
is

A
R
G
-B

as
ed

A
n
al
ys
is

L
az
y
A
b
st
ra
ct
io
n

In
te
rp
ol
at
io
n

A
u
to
m
at
a-
B
as
ed

A
n
al
ys
is

C
on

cu
rr
en

cy
S
u
p
p
or
t

R
an

ki
n
g
F
u
n
ct
io
n
s

2LS 3 3 3 3 3

AProVE 3 3 3 3 3

Blast 3 3 3 3 3 3

Cascade 3 3 3

CBMC 3 3 3 3

Ceagle 3 3

Ceagle-Absref 3 3 3 3 3 3

CIVL 3 3 3 3

CPA-BAM 3 3 3 3 3 3 3

CPA-kInd 3 3 3 3 3 3 3 3 3 3

CPA-RefSel 3 3 3 3 3 3 3

CPA-Seq 3 3 3 3 3 3 3 3 3 3 3 3 3

DIVINE 3 3 3 3

ESBMC 3 3 3

ESBMC+DepthK 3 3 3 3

Forest 3 3 3

Forester 3 3 3

HIPrec 3 3

Impara 3 3 3 3 3 3 3 3

Lazy-CSeq 3 3 3

LCTD 3 3 3 3

LPI 3 3 3 3 3

Map2Check 3 3

MU-CSeq 3 3 3

PAC-MAN 3 3

PredatorHP 3

SeaHorn 3 3 3 3 3 3 3

Skink 3 3 3 3

SMACK+Corral 3 3 3 3 3 3

Symbiotic 3

SymDIVINE 3 3 3 3 3

UAutomizer 3 3 3 3 3 3 3

UKojak 3 3 3 3 3

UL-CSeq 3 3 3 3 3 3

VVT 3 3 3 3 3 3 3

Participating Verifiers. Table 3 provides an overview of the participating
competition candidates and Table 4 lists the features and technologies that are
used in the verification tools.

Computing Resources. The resource limits were the same as last year [5]: Each
verification run was limited to 8 processing units (cores), 15GB of memory, and
15min of CPU time. The witness validation was limited to 2 processing units, 7GB
of memory, and 1.5min of CPU time. The machines for running the experiments
were different from last year, because we had to use 24 machines instead of eight.
Each machine had two Intel Xeon E5-2650 v2 CPUs, with 16 processing units
each, a frequency of 3.4GHz, 135GB of RAM, and a GNU/Linux operating
system (x86_64-linux, Ubuntu 14.04 with Linux kernel 4.2). All verification runs
were executed on a dedicated CPU, i.e., 8 processing units were assigned to the
verification run, while the other 8 processing units were reserved and left idle.

One complete verification execution of the competition consisted of 313 bench-
marks (each verifier on each selected category according to the opt-outs), sum-
ming up to 115 761 verification runs. Witness validation required 524 benchmarks
(combinations of verifier, category with witness validation, and two validators)
summing up to 50 249 validation runs. The consumed total CPU time for one
competition run for verification only required a total of 319 days of CPU time.
Each tool was executed several times, in order to make sure no installation issues
occur during the execution.
Quantitative Results. Table 5 presents the quantitative overview over all tools
and all categories (HIPrec participated only in subcategory Recursive and LCTD
only in subcategory BitVectorsReach). The format of the table is similar to those
of previous SV-COMP editions [5], with the exception that due to the volume we
now omit the CPU times. The tools are listed in alphabetical order; every table
row lists the scores of one verifier for each category. We indicate the top-three
candidates by formatting their scores in bold face and in larger font size. An
empty table cell means that the verifier opted-out from the respective category.
For the calculation of the score and for the ranking, the scoring schema in Table 2
was applied, the scores for the meta categories were computed using normalized
scores as defined in the report for SV-COMP’13 [3]. There were two categories for
which the winner was decided based on the run time: in category Concurrency, all
top-three verifiers achieved the maximum score of 1240 points, but the run time
differed considerably; in category Floats the first and second both achieved a score
of 136 points. More information (including formatted interactive tables, quantile
plots for every category, and also the raw data in XML format) is available on
the competition web-site. 10

Table 6 reports the top-three verifiers for each category. The run time (column
‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the tool reported wrong results: reporting an error path but
the property holds (incorrect False) and claiming that the program fulfills the
property although it actually contains a bug (incorrect True), respectively.
10 http://sv-comp.sosy-lab.org/2016/results/

http://sv-comp.sosy-lab.org/2016/results/

Table 5: Quantitative overview over all results

Verifier
A
rr
ay
s

31
6
po

in
ts

m
ax

.
18
3
ta
sk
s

B
it
V
ec
to
rs

92
po

in
ts

m
ax

.
60

ta
sk
s

H
ea
p

38
2
po

in
ts

m
ax

.
23
9
ta
sk
s

F
lo
at
s

14
0
po

in
ts

m
ax

.
81

ta
sk
s

In
te
ge
rs
C
on

tr
ol
F
lo
w

36
29

po
in
ts

m
ax

.
23
31

ta
sk
s

T
er
m
in
at
io
n

11
29

po
in
ts

m
ax

.
63
1
ta
sk
s

C
on

cu
rr
en

cy
12
40

po
in
ts

m
ax

.
10
16

ta
sk
s

D
ev
ic
eD

ri
ve
rs
L
in
u
x6

4
39
77

po
in
ts

m
ax

.
21
20

ta
sk
s

F
al
si
fi
ca
ti
on

O
ve
ra
ll

23
71

po
in
ts

m
ax

.
60
30

ta
sk
s

O
ve
ra
ll

10
85
5
po

in
ts

m
ax

.
66
61

ta
sk
s

2LS 136 1196 -2438 -38205
AProVE 909
Blast -1653 2704
Cascade 197
CBMC 62 46 8 134 -1239 882 1972 391 3386
Ceagle 136
Ceagle-Absref 124
CIVL 1240
CPA-BAM -57 28 -80 42 1822 0 0 2550 -1218 1939
CPA-kInd 3 77 161 76 2095 0 0 2350 707 4094
CPA-RefSel 35 1539 0 0 3177 36 2157
CPA-Seq -61 87 234 75 2652 0 282 2801 496 4794
DIVINE 951
ESBMC 190 84 163 -15 1217 0 742 1688 248 4145
esbmc+depthk 62 47 58 7 1111 0 877 2009 495 3110
Forest -970 -1263 -20613
Forester 86
HIPrec

Impara -592 132 -1524 42
Lazy-CSeq 1240
LCTD

LPI 1804 2107
Map2Check -121
MU-CSeq 1240
PAC-MAN -449
PredatorHP 298
SeaHorn -301 -131 -257 0 1572 504 -24659 1694 -4333 -22393
Skink 113
smack+corral 146 44 155 0 2013 0 999 2206 800 4223
Symbiotic 101 -2 105 -18 633 0 0 980 -370 1223
SymDIVINE -135
UAutomizer 83 69 169 2 1865 895 2686 823 4843
UKojak 60 19 31 0 1096 937 339 1407
UL-CSeq 856
VVT 421 1029

Table 6: Overview of the top-three verifiers for each category (CPU time in h, rounded
to two significant digits)

Rank Verifier Score CPU Solved False Wrong
Time Tasks Alarms Proofs

Arrays
1 ESBMC 190 3.2 131 2
2 SMACK+Corral 146 2.5 111
3 Symbiotic 101 .61 77

BitVectors
1 CPA-Seq 87 1.1 55
2 ESBMC 84 .61 51
3 CPA-kInd 77 .67 47

Heap
1 PredatorHP 298 .31 211 2
2 CPA-Seq 234 1.1 188 4
3 Cascade 197 2.7 140 2

Floats
1 2LS 136 .98 79
2 Ceagle 136 1.0 77
3 CBMC 134 5.0 78

IntegersControlFlow
1 CPA-Seq 2652 35 1 625 1
2 CPA-kInd 2095 35 1 278
3 SMACK+Corral 2013 97 978 4
Termination
1 AProVE 909 4.8 500
2 UAutomizer 895 3.2 503
3 SeaHorn 504 .97 323 2
Concurrency
1 MU-CSeq 1240 .93 1 016
2 Lazy-CSeq 1240 2.7 1 016
3 CIVL 1240 7.8 1 016

DeviceDriversLinux64
1 CPA-RefSel 3177 24 1 646 2
2 CPA-Seq 2801 23 1 458 4
3 Blast 2704 5.9 1 547 13 5
FalsificationOverall
1 UAutomizer 823 7.0 381 1
2 SMACK+Corral 800 17 1 140 26
3 CPA-kInd 707 14 479 2

Overall
1 UAutomizer 4843 44 3 138 1 5
2 CPA-Seq 4794 65 3 535 16
3 SMACK+Corral 4223 160 3 464 26 9

Discussion of Scoring Schema and Normalization. The SV-COMP com-
munity considers it more difficult to compute correctness proofs compared to
computing error paths (cf. Table 2: True yields 2 points, False yields 1 point) [2].
This has consequences on the final ranking: For example, AProVE won the cate-
gory Termination although UAutomizer solved more verification tasks: AProVE
solved 500, UAutomizer solved 503 verification tasks. Both verifiers did not
report any wrong results in this category. So the higher score of AProVE (score:
909) is due to its ability to compute more proofs than UAutomizer (score: 895),
while UAutomizer found more violations. AProVE computed 409 proofs and
found 91 property violations, while UAutomizer computed 392 proofs and found
111 property violations. So in this case, the scoring schema provides a good
mapping from the community’s intuition to the ranking.

A similar observation can be made on the score normalization. The community
considers the value of solving a verification task in a large category (many verifi-
cation tasks) less than the value of solving a verification task in a small category
(only a few verification tasks) [3]. The values for category Overall in Table 6 illus-
trate the purpose of the score normalization: CPA-Seq solved 3 535 tasks, which
is about 400 solved tasks more than the winner UAutomizer could solve (3 138).
So why did CPA-Seq not win the category? Because UAutomizer is better in
the intuitive sense of ‘overall’: UAutomizer solved tasks more diversely, the
‘overall’ value of the verification work is higher. Most prominently, UAutomizer
solved many tasks in category Termination which is not supported by CPA-Seq.
Similarly, in category FalsificationOverall, SMACK+Corral solved more tasks
than UAutomizer, but produced also a lot of false alarms and the tasks that
SMACK+Corral solved were considered of less value (i.e., from large categories
with many tasks). In these cases, the score normalization correctly maps the
community’s intuition.
Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [3] because these visualizations make it easier to un-
derstand the results of the comparative evaluation. The competition web-site 10

includes such a plot for each category; as example, we illustrate the category
Overall (all verification tasks) in Fig. 3 and discuss the results below. A total of
13 verifiers participated in category Overall (only 6 the year before), for which
the quantile plot shows the overall performance over all categories (scores for
meta categories are normalized [3]).

Overall Quality Measured in Scores (Right End of Graph). UAutomizer is the
winner of this category: the x-coordinate of the right-most data point represents
the highest total score (and thus, the total value) of the completed verification
work (cf. Table 6; right-most x-coordinates match the score values in the table).

Amount of Incorrect Verification Work (Left End of Graph). The left-most data
points of the quantile functions represent the total negative score of a verifier
(x-coordinate), i.e., the amount of incorrect and misleading verification work.
Verifiers should start with a score close to zero; the winner UAutomizer is
very good in this aspect, together with the second place CPA-kInd (the two
right-most columns of category Overall in Table 6 report the concrete numbers:

 1

 10

 100

 1000

T
im

e
 i
n
 s

2LS
CBMC

CPA-BAM
CPA-kInd

CPA-RefSel
CPA-Seq
DepthK
ESBMC

SeaHorn
SMACK

Symbiotic
UAutomizer

UKojak

-2000 -1000 0 1000 2000 3000 4000

Accumulated score

Fig. 3: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details are given in a previous
report [3]. A logarithmic scale is used for the time range from 1 s to 1000 s, and a
linear scale is used for the time range between 0 s and 1 s.

only 1 and 16 false alarms, respectively, and 5 and 0 wrong proofs, for a total of
6 661 verification tasks).

Characteristics of the Verification Tools. Quantile plots also give hints on how
a verification strategy works. For example, the horizontal lines show that some
verifiers ‘solve’ a large quantity of verification tasks in the same run time,
suggesting that an answer is given without the result being actually computed.
A quick look at the wrapping execution scripts reveals that indeed a pre-mature
answer is returned after 850 s or 880 s, respectively. This insight is one of the
arguments for the community’s goal to have each result supported by evidence,
e.g., in the form of a verification witness.

Robustness, Soundness, and Completeness. Table 6 shows in the last two
columns that the best verifiers of each category report a low number of wrong
verification results (compared to the large number of verification tasks), indicating
the advancement of the state-of-the-art verification technology. In the three
categories BitVectors, Floats, and Concurrency, the top-three verifiers did not
report any wrong results.

Verifiable Witnesses. SV-COMP counts answers False (bug reports) only
if the result contains a violation witness, which represents directions through
the state space to easily recover an error path. All verifiers in categories that
required witness validation supported the common exchange format for error
witnesses, and produced error paths in that format. For SV-COMP 2016, we
used two completely different witness validators: CPAchecker and UAutomizer.

Table 7: Validation of Correctness Witnesses
Verification Validation Validation

CPAchecker UAutomizer
Total tasks 3 171 1 950 1 950
Results True 1 950 1 029 1 149
Confirmed witnesses 53% 59%

Demonstration on Correctness Witnesses. The validation of the results for
answers True was not yet considered, but is identified as the next open problem
that the community should solve. As part of SV-COMP 2016, a demonstration
category (i.e., without ranking and scores) was announced to explore the pos-
sibilities of validating correctness witnesses. Two teams participated, and the
results are reported in Table 7. The table lists the results of a verification with
CPAchecker (k-induction-based configuration) and the validation results of the
correctness witnesses using the validators CPAchecker and UAutomizer. The
first row reports the total number of verification tasks that were given as input.
The verification was performed on an SV-COMP subset of 3 171 verification
tasks from the categories IntegersControlFlow and DeviceDriversLinux64. The
second row reports that for 1 950 verification tasks the expected and computed
verification result was True. Those 1 950 verification tasks were given as input
to the two validators, together with the correctness witness that the verifica-
tion produced. CPAchecker was able to validate (i.e., re-verify with the given
invariants from the witness) 1 029 verification tasks (53%) and UAutomizer
was able to validate 1 149 verification tasks (59%). More information is given
in the detailed table on the web page. 11 Considering the short time slot for
developing the validators (in the context of the demonstration category), the
achieved results show the high potential of this technology, and that it should be
further developed and used in practice.

6 Conclusion

SV-COMP 2016, the 5th edition of the Competition on Software Verification,
attracted 35 participating teams from 16 countries, which is so far the largest
number of participants (2012: 10, 2013: 11, 2014: 15, 2015: 22). The repository
of verification tasks was consolidated and the number of verification tasks was
increased (from 5 803) to 6 661 verification tasks. We used verifiable witnesses
again to validate the bug reports, and the results False were counted towards
the score only if the witness was confirmed. The number of witness validators
was increased from one to two, which contributed to the trust and neutrality
of SV-COMP’s evaluation. SV-COMP 2016 is the so-far broadest overview of
the state of the art in software verification. The large jury and the organizer
made sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency. Technical accuracy was ensured by using
the benchmarking framework BenchExec.
11 http://sv-comp.sosy-lab.org/2016/witnesses/correctness-demo.html

http://sv-comp.sosy-lab.org/2016/witnesses/correctness-demo.html

References
1. P. Bauch, V. Havel, and J. Barnat. LTL model checking of LLVM bitcode with

symbolic data. In Proc. MEMICS, pages 47–59. Springer, 2014.
2. D. Beyer. Competition on software verification (SV-COMP). In Proc. TACAS,

LNCS 7214, pages 504–524. Springer, 2012.
3. D. Beyer. Second competition on software verification. In Proc. TACAS, LNCS 7795,

pages 594–609. Springer, 2013.
4. D. Beyer. Status report on software verification. In Proc. TACAS, LNCS 8413,

pages 373–388. Springer, 2014.
5. D. Beyer. Software verification and verifiable witnesses. In Proc. TACAS,

LNCS 9035, pages 401–416. Springer, 2015.
6. D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness

validation and stepwise testification across software verifiers. In Proc. FSE, pages
721–733. ACM, 2015.

7. D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined
invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

8. D. Beyer, S. Löwe, and P. Wendler. Benchmarking and resource measurement. In
Proc. SPIN, LNCS 9232, pages 160–178. Springer, 2015.

9. D. Beyer, S. Löwe, and P. Wendler. Refinement selection. In Proc. SPIN, LNCS 9232,
pages 20–38. Springer, 2015.

10. M. Chalupa, M. Jonáš, J. Slaby, J. Strejček, and M. Vitovská. Symbiotic 3: New
slicer and error-witness generation (competition contribution). In Proc. TACAS.
Springer, 2016.

11. Y.-F. Chen, C. Hsieh, O. Lengál, T.-J. Lii, M.-H. Tsai, B.-Y. Wang, and F. Wang.
Learning-based verification and model synthesis. In Proc. ICSE, 2016.

12. M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic. In Proc. TACAS. Springer, 2015.

13. P. G. de Aledo and P. Sanchez. Framework for embedded system verification
(competition contribution). In Proc. TACAS. Springer, 2015.

14. K. Friedberger. CPA-BAM: Block-abstraction memoization with value analysis and
predicate analysis (competition contribution). In Proc. TACAS. Springer, 2016.

15. A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A framework for verifying C
programs (competition contribution). In Proc. TACAS. Springer, 2015.

16. H. Günther, A. Laarman, and G. Weissenbacher. Vienna Verification Tool: IC3 for
parallel software (competition contribution). In Proc. TACAS. Springer, 2016.

17. M. Heizmann, D. Dietsch, M. Greitschus, J. Leike, B. Musa, C. Schätzle, and
A. Podelski. Ultimate Automizer with two-track proofs (competition contribution).
In Proc. TACAS. Springer, 2016.

18. M. Hruška, L. Holík, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar. Run
forester, run backwards! (competition contribution). In Proc. TACAS. Springer,
2016.

19. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded model
checking of multi-threaded C programs via lazy sequentialization. In Proc. CAV,
LNCS 8559, pages 585–602. Springer, 2014.

20. E. G. Karpenkov, D. Monniaux, and P. Wendler. Program analysis with local policy
iteration. In Proc. VMCAI, pages 127–146. Springer, 2016.

21. M. Kotoun, P. Peringer, V. Šoková, and T. Vojnar. Optimized Predators and the
SV-COMP heap and memory safety benchmark (competition contribution). In
Proc. TACAS. Springer, 2016.

http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_3
http://dx.doi.org/10.1007/978-3-319-23404-5_3

22. D. Kröning and M. Tautschnig. CBMC: C bounded model checker (competition
contribution). In Proc. TACAS, LNCS 8413, pages 389–391. Springer, 2014.

23. Q. L. Le, M. Tran, and W.-N. Chin. HIPrec: Verifying recursive programs with a
satisfiability solver. Technical report, 2016.

24. J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer. ESBMC 1.22
(competition contribution). In Proc. TACAS, LNCS 8413, pages 405–407. Springer,
2014.

25. T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Unbounded Lazy-CSeq:
A lazy sequentialization tool for C programs with unbounded context switches
(competition contribution). In Proc. TACAS. Springer, 2015.

26. A. Nutz, D. Dietsch, M. M. Mohamed, and A. Podelski. Ultimate Kojak with
memory safety checks (competition contribution). In Proc. TACAS. Springer, 2015.

27. Z. Rakamarić and M. Emmi. SMACK: Decoupling source language details from
verifier implementations. In Proc. CAV, LNCS 8559, pages 106–113. Springer, 2014.

28. H. Rocha, H. I. Ismail, L. C. Cordeiro, and R. S. Barreto. Model checking embedded
C software using k-induction and invariants. In Proc. SBESC. IEEE, 2015.

29. H. O. Rocha, R. Barreto, and L. Cordeiro. Hunting memory bugs in c programs
with Map2Check (competition contribution). In Proc. TACAS. Springer, 2016.

30. O. Saarikivi and K. Heljanko. LCTD: Tests-guided proofs for C programs on LLVM
(competition contribution). In Proc. TACAS. Springer, 2016.

31. P. Schrammel and D. Kröning. 2LS for program analysis (competition contribution).
In Proc. TACAS. Springer, 2016.

32. P. Shved, M. Mandrykin, and V. Mutilin. Predicate analysis with Blast 2.7
(competition contribution). In Proc. TACAS. Springer, 2012.

33. T. Ströder, C. Aschermann, F. Frohn, J. Hensel, and J. Giesl. AProVE: Termination
and memory safety of C programs (competition contribution). In Proc. TACAS.
Springer, 2015.

34. E. Tomasco, T. N. Lam, O. Inverso, B. Fischer, S. L. Torre, and G. Parlato. MU-
CSeq 0.4: Individual memory location unwindings (competition contribution). In
Proc. TACAS. Springer, 2016.

35. W. Wang and C. Barrett. Cascade (competition contribution). In Proc. TACAS.
Springer, 2015.

36. M. Zheng, J. G. Edenhofner, Z. Luo, M. J. Gerrard, M. B. Dwyer, and S. F.
Siegel. CIVL: Applying a general concurrency verification framework to C/Pthreads
programs (competition contribution). In Proc. TACAS. Springer, 2016.

37. V. Štill, P. Ročkai, and J. Barnat. DIVINE: Explicit-state LTL model checker
(competition contribution). In Proc. TACAS. Springer, 2016.

