
CCVisu 3.0 Introduction and Reference Manual

— Draft —

Dirk Beyer

University of Passau, Germany

2010-03-03

Abstract

CCVisu is a lightweight tool for visual graph clustering and general force-directed graph layout.

Although the tool was originally developed for computing clustering layouts of software systems,

based on dependency and co-change graphs, CCVisu is applicable to many graph layout problems.

Contents

1 Getting Started 3
1.1 Download and Installation . 3
1.2 Usage and Command-Line Options . 3

2 CCVisu Tutorial 4
2.1 Generating Graphs in RSF Format / CCVisu as Fact Extractor 4
2.2 Generating Layouts / CCVisu as Graph-Drawing Tool 5
2.3 Introduction to Force-Directed Graph Layout . 6
2.4 Examples . 6

3 Input Formats 7
3.1 CVS/SVN Log File (CVS/SVN) . 7
3.2 Doxygen File (DOX) . 8
3.3 Graph (RSF) . 8
3.4 Layout (LAY) . 9

4 Output Formats 9
4.1 Graph (RSF) . 9
4.2 Layout (LAY) . 9
4.3 Displaying the Layout . 9

4.3.1 Layout (VRML) . 9
4.3.2 Layout (SVG) . 10
4.3.3 Layout on Screen (DISP) . 10

5 Tool Overview and Architecture 10

6 Force-Directed Graph Layout 11
6.1 Minimizing Algorithm . 11
6.2 Energy Models . 11

6.2.1 Fruchterman Reingold . 12
6.2.2 Vertex-Repulsion LinLog . 12
6.2.3 Edge-Repulsion LinLog . 12
6.2.4 Weighted Edge-Repulsion LinLog . 12
6.2.5 Generic Model . 13

1

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org

7 Co-Change Graphs 13

8 Related Work 16

1 Getting Started

CCVisu is a lightweight tool that reads and writes data using simple text formats (cf. pipes-and-filters
architecture). It is written in Java, and should be usable on all platforms. The tool is designed as a
framework, easy to use, and easy to integrate into existing re-engineering environments; several formats
for data interchange are already implemented. CCVisu provides a command-line interface as well as
a GUI. The graph layout is currently provided in VRML format, in SVG format, in a standard text
format, or directly drawn on the screen.

1.1 Download and Installation

Download the current release from the CCVisu web page at http://ccvisu.sosy-lab.org. Start the
program from the command line using java -jar CCVisu-3.0.jar or via double-click on the jar file
in a file browser. If no parameters are given, a GUI is started that asks for the parameter. Option
-h prints a list of available options. Alternatively, pull the sources from the repository or unpack the
zip archive, and compile the Java sources; the package contains a Makefile. It is a good idea to set
the CLASSPATH variable of your shell to the directory bin, which contains the Java byte-code files after
successful compilation. If you do not want to set your CLASSPATH variable globally, you can use the file
setup.sh (generated by make setup) to set the variables in the current shell: source setup.sh. This
also sets the PATH variable to the CCVisu directory, to enable the use of the shell wrappers ccvisu.sh
and disp.sh to abbreviate the command line a bit (invocation of the Java virtual machine).

1.2 Usage and Command-Line Options

Usage: java ccvisu.CCVisu [OPTION]...

Compute a layout for a given (co-change) graph (or convert).

Options:

General options:

-h --help display this help message and exit (current value: true).

-v --version print version information and exit (current value: false).

-q --quiet quiet mode (current value: false).

-w --warnings enable warnings (current value: false).

-verbose verbose mode (current value: false).

-a --assertCheck check if assertions are enabled (current value: false).

-g --guiMode GUI mode (provides a window to set options) (current value: false).

-inputName <str> read input data from given file <str> (current value: ’stdin’).

-outputName <str> write output data to given file <str> (current value: ’stdout’).

-inFormat FORMAT read input data in format FORMAT (default: RSF, see below).

-outFormat FORMAT write output data in format FORMAT (default: DISP, see below).

Layouting options:

-dim <int> number of dimensions of the layout, up to 3 (current value: 2).

-iter <int> number of iterations of the minimizer;

choose appropriate values by observing the convergence of energy (current value: 100).

-initLayout <str> use layout (LAY format) from file <str> as initial layout (current value: ’’).

-fixedInitPos fix positions for vertices from initial layout given by -initLayout (current value: false).

Energy model options:

-attrExp <int> exponent for the distance in the attraction term

(default: 1).

-repuExp <int> specifies that <int> is applied as exponent to the distance in the repulsion term

(if <int> != 0) or that log is applied to the distance (if <int> = 0) (default: 0).

-vertRepu use vertex repulsion instead of edge repulsion

(default: edge repulsion).

-noWeight use unweighted model (default: weighted).

-grav <float> gravitation factor for the Barnes-Hut-procedure

(default: 0.001).

DOX reader option:

-relSelect <rel> selects a relation for visualization

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org/
http://ccvisu.sosy-lab.org

(default: REFFILE).

CVS reader options:

-timeWindow <int> time window for change transaction recovery, in milli-seconds (current value: 180000).

-slidingTW use sliding time windows instead of fixed time window, i.e., the time window ’slides’:

a new commit node is created if the time difference between two commited files is bigger

than the time window (current value: false).

Layout writer options:

-hideSource draw only vertices that are not source of an edge.

In co-change graphs, all change-transaction vertices

are source vertices (current value: false).

-minVert <float> size of the smallest vertex disc; diameter (current value: 2.0).

-fontSize <int> font size of vertex annotations (current value: 14).

-backColor COLOR background color (default: WHITE).

Colors: BLACK, GRAY, LIGHTGRAY, WHITE.

-noBlackCircle no black circle around each vertex (default: with).

-ringColor <str> Color of the ring around the vertex discs (current value: ’GRAY’).

-depDegreeColor Color of the vertex disc determined by dep-degree (current value: false).

-showEdges show the edges of the graph; available only for CVS and RFS inFomat (current value: false).

-scalePos <float> scaling factor for the layout to adjust; VRML and SVG only (current value: 1.0).

-noAnim layout not shown while minimizer is still improving it

(default: show).

-annotAll annotate each vertex with its name (current value: false).

-annotNone annotate no vertex (current value: false).

-shortNames shorten vertex labels (current value: false).

-dispFilter show extra controls for display filter (current value: false).

-initGroups <str> assign vertices to groups (and colors) according to file <str>

(cf. file marker_script.example.txt as example) (current value: ’’).

-openURL the vertex names can be considered as URL and opened in a web broswer.

This option used with DISP output requires to hold CTRL KEY while clicking (current value: false).

DISP specific option

-browser <str> browser <str> will be invoked; if empty, CCVisu will try to guess (current value: ’’).

Input Formats:

RSF Graph (relation) in Relational Standard Format (RSF).

LAY Graph layout in textual format.

CVS CVS log format (produce with ’cvs log -Nb’).

SVN SVN log format (produce with ’svn log -v --xml’).

DOX Doxygen XML dump format (produce with ’doxygen’).

ODS ODS Spreadsheet.

AUX Graph is passed as data structure from a third-party client.

Output Formats:

RSF Graph (relation) in Relational Standard Format (RSF).

LAY Graph layout in textual format.

SVG Graph layout in SVG format.

VRML Graph layout in VRML format.

GRAPHML Graph in GraphML format.

DISP Display graph layout on screen.

2 CCVisu Tutorial

In this tutorial, we write ccvisu.sh for java -jar CCVisu-3.0.jar. If no command-line option is
given, CCVisu opens a GUI to enter necessary parameters, e.g., an input file to operate on. A double-
click on the jar file in a file browser should do the same.

2.1 Generating Graphs in RSF Format / CCVisu as Fact Extractor

Relational Standard Format (RSF) is a common exchange format for relations. RSF is used by many
relation-based tools, for example, the relational programming tool CrocoPat and the re-engineering
tool Rigi (Rigi Standard Format). RSF is based on plain text with whitespace (most common: tabs) as

http://ccvisu.sosy-lab.org
http://www.sosy-lab.org/~dbeyer/CrocoPat/

delimiter, which makes it easy to process data on the command line with standard Unix tools like grep,
cut, and sed.

When CCVisu is used to produce layouts (visualizations), it expects input graphs in one of the
following file formats: Relational Standard Format (RSF) (cf. Sect. 3.3), Doxygen XML format (DOX)
(cf. Sect. 3.2), Subversion log format in XML (SVN) (cf. Sect. 3.1), and CVS log format (CVS)
(cf. Sect. 3.1). Since CCVisu uses RSF as file format for data exchange, it can export (to RSF)
relations that it extracted from one of the above mentioned input formats.

Open Document Spreadsheet (ODS) to RSF Converter. For example, given a file crocopat-2.1.ods,
which is an ODS file that contains one table sheet named ’CO-CHANGE’ with several columns repre-
senting a relation. Then the command
ccvisu.sh -informat ODS -i crocopat-2.1.ods -outformat RSF -o crocopat-2.1.rsf

produces a file crocopat-2.1.4.rsf, which contains the co-change graph that CCVisu extracted from
table sheet ’CO-CHANGE’.

Doxygen (DOX) to RSF Converter. For example, given a directory crocopat-2.1.4-dox of
XML files that was produced using the command doxygen Doxyfile, where Doxyfile is an exam-
ple configuration file for Doxygen. (Doxygen usually generates a directory xml which contains a file
index.xml.) Then the command
ccvisu.sh -inFormat DOX -i crocopat-2.1.4-dox/index.xml -outFormat RSF -o crocopat-2.1.4.rsf

produces a file crocopat-2.1.4.rsf, which contains the relations that CCVisu extracted from the
Doxygen output.

CVS to RSF Converter. For example, given a file crocopat-2.1.log, which is a CVS log file of
CrocoPat and was produced using the command cvs log -Nb. Then the command
ccvisu.sh -informat CVS -i crocopat-2.1.log -outformat RSF -o crocopat-2.1.rsf

produces a file crocopat-2.1.4.rsf, which contains the co-change graph that CCVisu extracted from
the CVS log file. As example for how an RSF file looks like we show an extract from the generated
co-change graph of CrocoPat:

CCG 125 src/bddSymTab.h

CCG 126 src/Makefile

CCG 126 src/relLex.l

CCG 127 src/crocopat.cpp

CCG 127 src/relExpression.h

CCG 127 src/relLex.l

CCG 127 src/relYacc.y

Subversion (SVN) to RSF Converter. TODO
Other Fact Extractors. There are many tools available for graph extraction from software systems.

Examples are: cawkcg, GCT, Imagix, Rigiparse, Field, cflow, CIA, LSMEcg, Mawkcg, Portable Bookshelf
(grok), Doxygen, DepFinder, java2rsf.

Comparison of Fact Extractors. A good (but somewhat outdated) comparison of fact extractors
was done by Murphy et al. [MNGL98].

2.2 Generating Layouts / CCVisu as Graph-Drawing Tool

Generate a Layout. Once we have the input graph in RSF or in one of the above mentioned for-
mats, the next step is to run CCVisu on the input graph in order to produce a (clustering) lay-
out for the software graph. For example, consider the dependency graph of a (small) compiler sys-
tem (extracted using Bauhaus) in file compiler.rsf. If we run CCVisu using the command line
ccvisu.sh -informat RSF -i compiler.rsf -outformat DISP -iter 100,
a screen display will open and show the resulting layout, running 100 iterations of the minimizer.
Since RSF is the default input format, and DISP (screen DISPlay) is the default output option, and by
default it runs 100 iterations, the following command does the same: ccvisu.sh -i compiler.rsf

Save a Layout. CCVisu supports several different output formats: LAY (plain text format), SVG
(2D Scalable Vector Graphics), VRML (3D format). Any layout that CCVisu shows on the screen

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
file:../ccvisu/examples/crocopat-2.1.ods
file:../ccvisu/examples/crocopat-2.1.rsf
http://ccvisu.sosy-lab.org
file:../ccvisu/examples/crocopat-2.1.4-dox
file:../ccvisu/examples/crocopat-2.1.4.rsf
http://ccvisu.sosy-lab.org
file:../ccvisu/examples/crocopat-2.1.log
http://www.sosy-lab.org/~dbeyer/CrocoPat/
file:../ccvisu/examples/crocopat-2.1.rsf
http://ccvisu.sosy-lab.org
http://www.sosy-lab.org/~dbeyer/CrocoPat/
http://java2rsf.googlecode.com
http://ccvisu.sosy-lab.org
http://www.iste.uni-stuttgart.de/ps/bauhaus/
file:../ccvisu/examples/compiler.rsf
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org

can be saved to a file in one of these formats, by opening the corresponding SAVE dialog and giving
a filename to store the layout in the file. The filename extension .lay, .svg, or .wrl determines the file
format.

2.3 Introduction to Force-Directed Graph Layout

Force-directed graph layout consists of two parts: an energy model that assigns an energy value to each
layout for evaluation —the smaller the number, the better the layout—, and a minimizing algorithm
that computes a layout with minimal energy.

A tool for force-directed graph layout takes as input a graph (undirected, connected, irreflexive).
Another parameter of the tool is the energy model, which encodes the user’s requirements for ‘good’
layout, e.g., uniform edge-length or interpretable distances. The output of the tool is a layout that has
minimal energy according to the energy model.

CCVisu is such a tool for force-directed layout. It uses the well-known algorithm of Barnes and Hut
as minimization algorithm (cf. Sect. 6.1), and it provides several standard energy models, and lets the
user define (optional, per command line) certain parameters of the energy model (cf. Sect. 6.2), in order
to adapt it to the user’s application area.

2.4 Examples

Chain. Consider first a graph that forms a chain, i.e., a connected graph where the first and the last
vertex has one edge and all other vertices have two edges. Figure 1 shows the graph (on the left) and the
resulting layout (on the right). To produce this result, the tool CCVisu was invoked with the following
command line (start java interpreter with class CCVisu of package ccvisu, read the input graph in
RSF format from file simple-chain.rsf, and use the attraction exponent 3 in the energy model, cf.
Section 6.2, Generic Model):
ccvisu.sh -i simple-chain.rsf -attrExp 3

An energy model usually consists of two terms, one is interpreted as the energy resulting from an
attraction force, and the other is interpreted as the energy resulting from a repulsion force. In the
example, the attraction force ensures that neighboring vertices in the chain have closed positions in the
layout (e.g., vertices 1 and 2). The repulsion force between each two vertices ensure that vertices that
are connected by a long path have distant positions (e.g., vertices 1 and 20).

V1V2. todo
3times two. todo
CrocoPat’s Co-Change Graph. Now we consider the co-change visualization of the tool Croco-

Pat1. The input is the CVS log file of the version history, obtained using the command cvs log 2. The
co-change visualization can be either computed and displayed in one direct step:

ccvisu.sh -inFormat CVS -i crocopat-2.1.log -hideSource

or obtained by several steps (to store intermediate results for later reuse):

ccvisu.sh -inFormat CVS -i crocopat-2.1.log -outFormat RSF -o crocopat-2.1.rsf

computes the co-change graph and stores it into a text file in RSF format.

ccvisu.sh -inFormat RSF -i crocopat-2.1.rsf -outFormat LAY -o crocopat-2.1.lay -hideSource

computes the layout and writes it to a text file in LAY format. The option -hideSource hides the
change transaction vertices in the visualization.

ccvisu.sh -inFormat LAY -i crocopat-2.1.lay -outFormat SVG -o crocopat-2.1.svg

converts the layout in LAY format to a vector graphics in SVG format.

1CrocoPat is a tool for relational calculation, available at ../../CrocoPat.
2Example files are available at ../ccvisu/examples.

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
file:../ccvisu/examples/crocopat-2.1.log
file:../ccvisu/examples/crocopat-2.1.rsf
file:../ccvisu/examples/crocopat-2.1.lay
file:../ccvisu/examples/crocopat-2.1.svg

R 1 2

R 2 3

R 3 4

R 4 5

R 5 6

R 6 7

R 7 8

R 8 9

R 9 10

R 10 11

R 11 12

R 12 13

R 13 14

R 14 15

R 15 16

R 16 17

R 17 18

R 18 19

R 19 20

Figure 1: Chain example

3 Input Formats

There are five different input formats for the different purposes of CCVisu: the CVS/SVN log-file
formats for extracting the co-change graph from a CVS/SVN repository, the Doxygen XML output
format (DOX) for extracting the software relations from a source code directory after Doxygen had
processed the directory, graphs in Relational Standard Format (RSF) to enable the use of CCVisu for
any graphs or previously stored relations, and layouts in text format (LAY) (previously computed with
CCVisu or a compatible tool).

3.1 CVS/SVN Log File (CVS/SVN)

CCVisu can be used to extract a co-change graph [BN05a], which is an abstraction of the history in a
software repository, from either CVS log files in text format (produced with ’cvs log -Nb’) or SVN log
files in XML format (produced with ’svn log -v –xml’). CCVisu uses the log files to directly compute
a co-change visualization, or to dump the co-change information into an RSF file, which can serve as
input for another tool (if CCVisu is used as pure fact-extractor) or as input for CCVisu in a later
processing phase. The mode of operation depends on the parameter -outFormat.

The version control system CVS does not directly keep the information about which files were
checked-in together in the repository. The transactions need to be recovered from the logged information
about time, user, and log message. The current CVS reader implements the heuristic used in cvs2cl

(available at http://www.red-bean.com/cvs2cl) : it considers a sequence of changes of files as one change
transaction if the changes have the same user login, the same log message, and time stamps that differ
by at most 180 s (the constant can be adjusted by parameter -timeWindow). The co-change graph
is extracted on file level. However, if a more fine-grained visualization is necessary (e.g., on method
level), the techniques used in Rose [ZDZ03] can be integrated as additional reader. On the other hand,
co-change graphs on higher levels (e.g., on package level) can be obtained by applying a technique called
’lifting’.

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://www.red-bean.com/cvs2cl/

3.2 Doxygen File (DOX)

CCVisu can be used as fact-extractor for Doxygen XML files. For a given software system, Doxygen can
be applied to the source-code directory in order to produce a directory of XML files that describe the
structure of the software system (the option to produce XML output can be enabled in the Doxygen
configuration file Doxyfile).

Given such an XML output directory, CCVisu can be applied to extract an RSF file that contains
the most important software graphs, such as the inheritance graph, containment graph, and call graph:

ccvisu.sh -inFormat DOX -i xml/index.xml -outFormat RSF -o DOXgraphs.rsf

The main XML file in this case is xml/index.xml, and the following relations are written to the file
DOXgraphs.rsf.
Basic Doxygen relations:

COMPOUND <compound-kind> <compound-id> <compound-name>

MEMBER <member-kind> <member-id> <member-name>

CONTAINEDIN <member-id> <compound-id>

BASEDON <compound-id> <basecompound-id> <protection-kind> <virtual-kind>

REFERSTO <member-id> <referredmember-id>

LOCATEDAT <compound-id> <file-path> <line-no>

LOCATEDAT <member-id> <file-path> <line-no>

Derived relations:

REF<kind> <referrer-name> <referred-name>

refFile <referrer-file-name> <referred-file-name>

refClass <referrer-class-name> <referred-class-name>

The relation REF<kind> is derived from relation REFERSTO, where the ids are replaces by their
names and the second element is of the category <kind>, e.g., REFvariable, REFfunction, ... The
category <kind> can be any of the following: define, property, event, variable, typedef, enum,

enumvalue, function, signal, prototype, friend, dcop, slot.
The relation refFile (refClass) is derived from relation REFERSTO, where the ids are replaced by

the names of the containing files (classes), i.e., this relation is the ’lifting’ of the REF<kind> relation to
the file (class) level.

3.3 Graph (RSF)

Graphs are provided in RSF format. This format is used to provide co-change graphs, which were
previously computed by CCVisu or other extraction tools, or graphs in general (e.g., graphs representing
the static structure of a software system, gene expression networks, etc.).

Each line in an RSF file represents an edge in the following format:

<graph name> <source> <target> <weight>

For example, the line

CALL A B 0.5

represents an edge between vertices A and B of weight 0.5.
Graph requirements. Input graphs for force-directed graph layout must be irreflexive (no self-

edges) and connected (no isolated subgraphs). The graph must be connected because for most energy
models, the distance of two unconnected vertices is infinite in a layout with minimal energy. A software
system consisting of several unconnected components must be visualized using several layouts, one for
each component (small unconnected components are usually skipped because of its unimportance).

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org

3.4 Layout (LAY)

For the purpose of transforming a given layout to the VRML or SVG format, or to display the layout
on the screen, CCVisu accepts layouts in the layout text format that is described in Section 4.2 (output
formats).

4 Output Formats

CCVisu produces two kinds of results: co-change graphs, when used as a pure extractor of co-change
relations from the CVS repository, or graph layouts in different formats (text format LAY, VRML,
SVG, and directly drawn on the screen).

4.1 Graph (RSF)

When used as a co-change graph extractor only, CCVisu stores the graph in RSF format for further
use (the RSF format is described in Section 3.3).

4.2 Layout (LAY)

CCVisu can save layouts in its own text format, either by specifying LAY as output format or by pressing
the save-button while viewing a screen layout using the DISP output format. The tool can produce all
other provided layout formats from the LAY format.

Each line contains the data needed to represent a single vertex. For example, the line

LAY -126.0 -72.0 0.0 32 src/Makefile 255 false

represents a vertex with name src/Makefile at coordinates x=-126.0, y=-72.0, z=0.0, edge degree 32,
drawn in color 255 (which is blue, in usual 3 byte RGB code), and the name is by default not annotated
(false). (’LAY’ is the name of the relation if the file is interpreted in RSF format.)

4.3 Displaying the Layout

This section describes common features of the different possibilities for actually viewing the computed
layout. The vertices are drawn as filled circles in the visualizations. Edges are always omitted. The
area of the filled circles is proportional to the degree of the corresponding vertex.

All three output options support the following mouse feature to show the names of vertices:

• If the mouse pointer is moved on a vertex, the name annotation is shown. After the mouse pointer
leave the vertex, the annotation is removed.

• If the mouse pointer points to a vertex and the mouse button is clicked, the name annotation is
permanently added to the vertex. Clicking again on a vertex removes the annotation.

4.3.1 Layout (VRML)

CCVisu supports the VRML graphics format as output format
(cf. http://tecfa.unige.ch/guides/vrml/vrml97/spec/
or http://tecfa.unige.ch/guides/vrml/pointers.html).

For VRML viewers we refer to the VRML Viewers, Browsers and Plug-ins web page of the Web 3D

Consortium (http://www.web3d.org/x3d/vrml/tools/viewers and browsers/), or, e.g., directly to the
Cortona VRML Client (http://www.parallelgraphics.com/products/cortona/), which is a plug-in for
some standard web browsers.

However, VRML viewers are not appropriate for viewing large layouts (thousands of vertices).

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://tecfa.unige.ch/guides/vrml/vrml97/spec/
http://tecfa.unige.ch/guides/vrml/pointers.html
http://www.web3d.org/x3d/vrml/tools/viewers_and_browsers/
http://www.parallelgraphics.com/products/cortona/

4.3.2 Layout (SVG)

CCVisu supports the SVG graphics format as output format
(cf. http://www.w3.org/TR/SVG/ or http://www.w3.org/Graphics/SVG/).

For SVG viewers we refer to the SVG Implementations web page of the World Wide Web Consortium

(http://www.w3.org/Graphics/SVG/SVG-Implementations), or, e.g., directly to the Adobe SVG Viewer

(http://www.adobe.com/svg/), which is a plug-in for some standard web browsers.

4.3.3 Layout on Screen (DISP)

The output-format option DISP provides the display of layouts without any additional viewer software,
and at the same time this is the only possibility for viewing layouts up to a million vertices (where even
an SVG viewer breaks down).

In difference to the above mentioned viewing techniques, the direct display annotates the vertex
name (if mouse pointer moves on a vertex) in a separate frame to avoid repainting the layout. The
separate frame also contains a SAVE button to save the layout using the LAY output format.

5 Tool Overview and Architecture

Input/Processing/Output (black-box view. Figure 2 shows the more general usage of the tool.
The input is either (1) a CVS log file —extracted from the CVS version repository with the command
cvs log—, or (2) a textual representation of the co-change graph in Rigi Standard Format (RSF)
to compute layouts for co-change graphs extracted from other version control systems. To display a
previously computed layout, the input can also be (3) a text file containing the layout (LAY).

After the input graph is read, the tool computes the layout for the vertices of the graph. This part
is done by an implementation of an energy model and an algorithm that computes a layout that has
minimal energy according to the energy model.

At the end, the graph needs to be displayed on the screen, or written to a file. The layout of the
artifacts can be produced in three forms. (1) The text file (LAY) can later be read by CCVisu or other
tools, such that the tool can be embedded in different environments. (2) The VRML format allows
the use of an external VRML viewer (or a web browser with VRML plug-in) to view the layout, and is
enabled for 2D as well as 3D layouts. Artifacts are drawn as spheres, and when the mouse pointer moves
on the artifacts the name is annotated. (3) The layout can be directly displayed on the screen. This
form is the preferred output method for huge graphs, when a VRML viewer is not able to reproduce the
layout on the screen. Only two-dimensional layouts are supported. Artifacts are drawn as filled circles,
and the names of the artifacts are shown in a separate frame when the mouse pointer moves onto an
artifact, or permanently annotated to the artifact via mouse click. (4) Besides the layouts, the tool can
also output the extracted co-change graph in RSF format.

Framework (white-box view). CCVisu is designed as a framework to make improvements and
extensions easy, and to enable integration into other reengineering tools. Figure 3 shows the components
of the tool. Basically, the input graph is read by a reader component, passed to the layout algorithm, and
the output is written by a writer component. The reader interface has currently three implementations:
for reading CVS log files, co-change graphs in RSF, and layouts in text format. The writer interface has
five implementations so far, for writing co-change graphs in RSF format, layouts in text format, VRML
format, SVG format, and for writing the layout directly to the screen.

Using these flexible input/output formats, the tool can be used as a general tool for force-directed
graph layout, not only for co-change graphs. To provide more control over the concrete layout computa-
tion, the minimizer algorithm and the energy model themselves are also abstract components. Currently,
CCVisu includes the Barnes-Hut algorithm [BH86] as minimizer, and the following energy models for
the evaluation of layouts: the Fruchterman-Reingold model [FR91], the LinLog model [Noa04a], the
edge-repulsion LinLog model [BN05a, Noa04b], and the weighted edge-repulsion LinLog model.

API. The integration of CCVisu into other tools is possible either by invoking it as a command line
tool from a shell, or by invoking the methods of the Java classes using CCVisu’s API.

http://ccvisu.sosy-lab.org
http://www.w3.org/TR/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/SVG-Implementations
http://www.adobe.com/svg/
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://mtc.epfl.ch/~beyer/CCVisu/

Figure 2: CCVisu’s input/output interface

Figure 3: CCVisu’s framework architecture

6 Force-Directed Graph Layout

6.1 Minimizing Algorithm

An algorithm for minimizing the energy of the model usually works in the following way: It starts with
an initial layout, where the positions of the vertices are randomly assigned. Then, in every iteration,
the algorithm tries to improve the layout according to the energy model (by using the first derivation
of the energy function to compute a direction and a distance for the movement of each vertex). Since
the graphs we have to deal with are usually large (especially software graphs), we cannot afford to use
algorithms with complexity in O(|V |2) per iteration. The algorithm of Barnes and Hut [BH86] is in
O(|E| + |V | log |V |) per iteration, and is therefore sufficient for our purposes.

6.2 Energy Models

The energy model encodes decisions about what is considered to be a good layout. In the following,
we briefly introduce some of the energy models that are supported by CCVisu. First give the concrete
models, and at the end we explain our generic model that can be instantiated for each of the concrete
models.

We use the following notation: A graph G = (V,E) consists of a set of vertices V and a set of
edges E ⊆ V (2), where V (2) = {{u, v} | u, v ∈ V } contains all sets with two vertices (i.e., undirected

http://ccvisu.sosy-lab.org

edges). A layout p : V → ℜd is a function that assigns to each vertex a position in the d-dimensional
space (d ∈ {2, 3} is the number of dimensions, ℜ is the set of real numbers), P is the set of all layouts.
An energy model U : P → ℜ is a function that assigns to each layout a real number (the smaller the
value the better the layout). For a given layout p and two vertices u and v, the term ||p(u) − p(v)||
denotes the Euclidean distance of the two vertices.

6.2.1 Fruchterman Reingold

The energy model of Fruchterman and Reingold was designed to enforce layouts with uniform edge
length [FR91]. It requires graph with a large diameter (or graph-theoretic distance), for which it pro-
duces esthetic graph layouts. The energy for a layout p is defined as:

U(p) =
∑

{u,v}∈E

1

3
||p(u) − p(v)||3 +

∑
{u,v}∈V (2)

− ln ||p(u) − p(v)||

The first term of the sum is interpreted as attraction between connected vertices, because its value
decreases when the distance of such vertices decreases. The second term is interpreted as repulsion
between all pairs of (different) vertices, because its value decreases when the distance between any two
vertices increases.

6.2.2 Vertex-Repulsion LinLog

The vertex-repulsion LinLog energy model was designed for visual graph clustering, i.e., to produce
layouts that fulfill certain clustering criteria [Noa04a]. It was the first energy model that was explicitly
designed for computing clustering layouts (of software graphs). This model requires graphs with uniform
edge degree to produce good layouts. The energy for a layout p is defined as:

U(p) =
∑

{u,v}∈E
||p(u) − p(v)|| +

∑
{u,v}∈V (2)

− ln ||p(u) − p(v)||

6.2.3 Edge-Repulsion LinLog

The edge-repulsion LinLog energy model is an extension of the vertex-repulsion LinLog model to over-
come the limitation to graphs of uniform edge degree. It was successfully used in the initial study
of co-change visualization [BN05a]. Noack provides a detailed introduction and comparison with the
vertex-repulsion LinLog model in the technical report [Noa04b]. For a comparison with the Fruchterman-
Reingold model we refer to Section 7 (or to the technical report [BN05b]). The energy for a layout p is
defined as (the edge degree of a vertex v is denoted by deg(v)):

U(p) =
∑

{u,v}∈E
||p(u) − p(v)|| +

∑
{u,v}∈V (2)

− deg(u) deg(v) ln ||p(u) − p(v)||

In this energy model, the second term can be interpreted as repulsion between all pairs of edges
(more precisely, between the end vertices of the edges).

6.2.4 Weighted Edge-Repulsion LinLog

The weighted edge-repulsion LinLog model is defined for graphs with weighted edges, as a straight for-
ward extension of the edge-repulsion LinLog model. A weighted graph G = (V,E,w) consists of a set
of vertices V , a set of edges E ⊆ V (2), and a function w : E → ℜ, which assigns a real number (edge
weight) to each edge. (A graph is a weighted graph with w(e) = 1 for all edges e ∈ E.) The weighted
edge degree of a vertex v is degw(v) =

∑
{u,v}∈E w({u, v}). The energy for a layout p is defined as:

U(p) =
∑

{u,v}∈E
w({u, v}) ||p(u) − p(v)|| +

∑
{u,v}∈V (2)

− degw(u)degw(v) ln ||p(u) − p(v)||

6.2.5 Generic Model

The tool CCVisu implements a generalization of the above mentioned energy models by using three
parameters, which can be used to adjust the actual energy model by command-line options. (1) Option
-attrExp a applies value a as exponent to the distance in the attraction term. (2) Option -repuExp r

applies value r as exponent to the distance in the repulsion term if r 6= 0, and applies the logarithm
to the distance in the repulsion term if r = 0. (3) Option -vertRepu eliminates the edge-weight factor
in the repulsion term by setting e to value 0. The default values are a = 1, r = 0, and e = 1, i.e., the
default energy model is the weighted edge-repulsion energy model. Table 1 describes how to set the
parameters for each above-mentioned energy model.

For a weighted graph G = (V,E,w), the energy for a layout p is defined as:

if r = 0 : U(p) =
∑

{u,v}∈E
w({u, v})

1

a
||p(u) − p(v)||a

+
∑

{u,v}∈V (2)
− (degw(u)degw(v))e ln ||p(u) − p(v)||

if r 6= 0 : U(p) =
∑

{u,v}∈E
w({u, v})

1

a
||p(u) − p(v)||a

+
∑

{u,v}∈V (2)
− (degw(u)degw(v))e ||p(u) − p(v)||r

with the attraction exponent a ∈ ℜ, the repulsion exponent r ∈ ℜ, and the edge-repulsion factor
e ∈ {0, 1}.

Energy model attrExp a repuExp r vertRepu e

Fruchterman Reingold 3 0 0
Vertex-repulsion LinLog 1 0 0
Edge-repulsion LinLog 1 0 1
Weighted edge-repulsion LinLog 1 0 1

Table 1: Parameters for the generic energy model

The energy models for clustering software graphs —e.g., co-change graphs and call graphs— have
to fulfill several clustering criteria, in particular, it should separate clusters and lead to interpretable
distances. In difference to other graph-drawing applications, the energy models for software graphs must
not enforce uniform edge length, must not be biased to the size of the clusters, and must be normalized
to non-uniform degrees of the vertices. That is why we use the weighted edge-repulsion LinLog energy
model (or its unweighted version) as the standard energy model. However, the generic energy model
allows to express the many important energy models for software graphs in the current implementation,
and the tool CCVisu is easy to extend to further variants and completely different energy models.

7 Co-Change Graphs

Co-change visualization is a method to compute clustering layouts based on the change history of the
system. Intuitively, we want to compute layouts where two artifacts have close positions if they were
often changed together, and they have distant positions if they were rarely commonly changed. We
model the system’s change history as the so called co-change graph, which is described in Section 3.1.
Then, the usual graph-layout algorithm can be applied to compute a layout (cf. [BN05a] for details).
The precondition for achieving good layouts is to use an energy model that fulfills certain clustering
properties (cf. the discussion in Section 6.2).

The motivation for using the co-change graph is threefold: First, frequently co-changed artifacts
are likely to be logically coupled, and grouping them together in one subsystem restricts the scope
of changes to the local context. Second, the co-change graph is not limited to program source code,

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org

unlike call graphs and other syntax-based models; the co-change graph includes also artifacts for test
data, shell scripts, SQL scripts, examples, documentation, and subsystems in different programming
languages. Third, the co-change graph can be efficiently and inexpensively extracted from version
control repositories.

The (weighted) co-change graph for a given version-control repository is an undirected graph G =
(V,E,w). The set V of vertices represents the artifacts of the system (e.g., files, classes, methods,
packages) and change transactions (e.g., commits in CVS). An edge {c, a} is contained in the set E of
edges if artifact a was changed by change transaction c (also called ’commit’). The weight w({c, a}) of an
edge is interpreted as the importance of the edge. For an unweighted graph, the weight is 1 for all edges.
A detailed discussion on edge weights for co-change graphs is given in the technical report [BN05b].

Information provided by the visualization. The layouts produced by the tool CCVisu provide
information on two levels:

• If the co-change graph contains clusters, then —due to the clustering quality of the energy model—
the clusters are separated. Therefore, on the higher level, it reveals the subsystem structure of
the system if the repository information allows so, and provides an overview over the relationships
between the subsystems on the coarse level.

• Artifacts that were often changed together are placed closed together in the layout. Therefore, on
the lower level, the engineer can use the visualization to find out in which context the artifact is
used, which other artifacts need to be understood to understand the artifact, and if the artifact
needs to be changed, it provides the artifacts that are most likely to change as well in the close
neighborhood of the artifact.

The visualization can, for example, provide some guidance for answering concrete questions like the
following:

High level: What are the subsystems of the system, according to common changes? If there is
a decomposition into subsystems available, does it match the subsystems suggested by the co-change
visualization? (If not, what are the reasons?) If we want to restructure the system, what do the clusters
in the co-change layout suggest? Are there files that need to be assigned to other subsystems, which
they are closed to in the layout?

Low level: Which SQL query files correspond to which module of the system? Which test input file
is related to which code file? Which configuration file corresponds to which module files? If we change
a certain file, which files should we understand because of potential impact? If we are interested to
unterstand a certain code file, which documentation file shall we read? If we want to test a certain part
of the program, which example files and test cases are closely related to the source file of that part?

Example Visualization. We have applied the CCVisu method to the well-known software project
Mozilla, in particular to the mailnews component without the base package. The co-change graph was
extracted from a CVS log file with 270 000 lines (13 MB). In this example, the artifacts of the co-change
graph are files. The graph consists of 1 804 artifact vertices, 9 950 vertices for change transactions, and
30 938 edges (changes). Figure 4 shows a screen-shot of the layout, which was computed within 5 min
on a 1.7 MHz Pentium machine, using only 100 iterations of the minimizer.

The vertices for the change transactions and the edges are omitted for readability. The artifact
vertices were drawn in different colors, in order to compare the grouping suggested by the layout with the
authoritative decomposition, according to the documentation. We considered 8 major subsystems of the
mailnews component and assigned colors to them: AddrBook (blue), Compose (magenta), IMAP (pink),
MAPI (yellow), MIME (red), Import (cyan), DB (orange), and Extensions (gray). The rest (minor
components, build utils, etc.) is labeled as Misc (green) in the figure. (The subsystem labels are also
annotated in gray boxes, to improve readability for gray-scale printouts.) Now we can compare whether
CCVisu has positioned the 1 804 files in groups in agreement with the authoritative decomposition:
Some of the subsystems are clearly separated from the rest (Extensions, IMAP, DB, MAPI, AddrBook),
some are not separate clusters but almost all files of the same subsystem are closed together (Import,
MIME, Compose), and Misc is not grouped at all (as expected).

http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org
http://ccvisu.sosy-lab.org

Figure 4: Co-change visualization of Mozilla’s mailnews component

Comparison of two Energy Models. Table 2 compares layouts of co-change graphs created with
the edge-repulsion LinLog energy model (described in Section 6.2.3) and with the standard force model
of Fruchterman and Reingold (cf. [1] or Section 6.2.1). The figures show that the Fruchterman-Reingold
model separates clusters less clearly (because it enforces uniform edge lengths) and has a strong bias
towards placing vertices with high degree (i.e., vertices that participated in many change transactions
and are drawn large in the figures) in the center (because it models vertex repulsion instead of edge
repulsion). This is typical for state-of-the-art force and energy models, because they are not primarily
designed for clustering.

SW system CC graph Edge-Repulsion LinLog Fruchterman-Reingold
CrocoPat 2.1 crocopat.rsf crocopat.png crocopat.svg crocopat.wrl crocopat-FR.png crocopat-FR.svg crocopat-FR.wrl
Rabbit 2.1 rabbit.rsf rabbit.png rabbit.svg rabbit.wrl rabbit-FR.png rabbit-FR.svg rabbit-FR.wrl
Blast 1.1 blast.rsf blast.png blast.svg blast.wrl blast-FR.png blast-FR.svg blast-FR.wrl

Table 2: Comparison of energy models

For each software system, the table provides the co-change graph (RSF), the layouts created with
the edge-repulsion LinLog model, and the layouts created with the Fruchterman-Reingold model. For
a detailed explanation of the formats and how to get viewers, we refer to Section 4. The PNG files are
static pictures that can be viewed with standard web browsers. The WRL (VRML) files can be viewed
with a VRML viewer (cf. Section 4.3.1). The advantage of the VRML files is that the names of graph
vertices can be selectively shown and that one can navigate through the layout.

file:../ccvisu-1.0/examples/crocopat-2.1.rsf
file:../ccvisu-1.0/examples/crocopat-2.1_annot.png
file:../ccvisu-1.0/examples/crocopat-2.1_annot.svg
file:../ccvisu-1.0/examples/crocopat-2.1.wrl
file:../ccvisu-1.0/examples/crocopat-2.1-FR.png
file:../ccvisu-1.0/examples/crocopat-2.1-FR.svg
file:../ccvisu-1.0/examples/crocopat-2.1-FR.wrl
file:../ccvisu-1.0/examples/rabbit-2.1-CC.rsf
file:../ccvisu-1.0/examples/rabbit-2.1-CC_annot.png
file:../ccvisu-1.0/examples/rabbit-2.1-CC_annot.svg
file:../ccvisu-1.0/examples/rabbit-2.1-CC.wrl
file:../ccvisu-1.0/examples/rabbit-2.1-CC-FR.png
file:../ccvisu-1.0/examples/rabbit-2.1-CC-FR.svg
file:../ccvisu-1.0/examples/rabbit-2.1-CC-FR.wrl
file:../ccvisu-1.0/examples/blast-1.1-CC.rsf
file:../ccvisu-1.0/examples/blast-1.1-CC_annot.png
file:../ccvisu-1.0/examples/blast-1.1-CC_annot.svg
file:../ccvisu-1.0/examples/blast-1.1-CC.wrl
file:../ccvisu-1.0/examples/blast-1.1-CC-FR.png
file:../ccvisu-1.0/examples/blast-1.1-CC-FR.svg
file:../ccvisu-1.0/examples/blast-1.1-CC-FR.wrl

The artifact vertices are drawn as circles in the figures. The vertices for change transactions and
the edges are omitted. The area of the circles is proportional to the degree of the corresponding
vertice. The circles are colored according to the authoritative decomposition. Different subsystems in
the authoritative decomposition correspond to different colors. (In the Blast visualizations, some colors
are difficult to distinguish because of the large number of different colors.)

A discussion and interpretation of the layouts are given in the technical report [BN05b].

8 Related Work

A comprehensive discussion of the related work is given in our technical report [BN05b]. The two most
related approaches are Bunch [MMCG99] and the work of Eick and Wills [EW93]. The novelty of
CCVisu is twofold: First, it is based on the co-change graph, not on syntax-based models. (There are
other approaches using change history, but not for clustering.) Second, it is based on an energy model
that is designed for clustering layout.

References

[BH86] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algorithm. Nature,
324:446–449, 1986.

[BN05a] Dirk Beyer and Andreas Noack. Clustering software artifacts based on frequent common
changes. In Proc. IWPC, pages 259–268. IEEE, 2005.

[BN05b] Dirk Beyer and Andreas Noack. Mining co-change clusters from version repositories. Tech-
nical Report IC/2005/003, EPFL Lausanne, 2005.

[EW93] Stephen G. Eick and Graham J. Wills. Navigating large networks with hierarchies. In Proc.

Visualization, pages 204–210, 1993.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software – Practice and Experience, 21(11):1129–1164, 1991.

[MMCG99] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool for
the recovery and maintenance of software system structures. In Proc. ICSM, pages 50–59.
IEEE, 1999.

[MNGL98] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan. An empirical study of static
call-graph extractors. ACM Trans. Softw. Eng. Methodol., 7(2):158–191, 1998.

[Noa04a] Andreas Noack. An energy model for visual graph clustering. In Proc. GD’03, LNCS 2912,
pages 425–436. Springer, 2004.

[Noa04b] Andreas Noack. Visual clustering of graphs with nonuniform degrees. Technical Report
02/04, BTU Cottbus, 2004.

[ZDZ03] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies system
architecture (or not). In Proc. IWPSE, pages 73–83. IEEE, 2003.

http://ccvisu.sosy-lab.org

	Getting Started
	Download and Installation
	Usage and Command-Line Options

	CCVisu Tutorial
	Generating Graphs in RSF Format / CCVisu as Fact Extractor
	Generating Layouts / CCVisu as Graph-Drawing Tool
	Introduction to Force-Directed Graph Layout
	Examples

	Input Formats
	CVS/SVN Log File (CVS/SVN)
	Doxygen File (DOX)
	Graph (RSF)
	Layout (LAY)

	Output Formats
	Graph (RSF)
	Layout (LAY)
	Displaying the Layout
	Layout (VRML)
	Layout (SVG)
	Layout on Screen (DISP)

	Tool Overview and Architecture
	Force-Directed Graph Layout
	Minimizing Algorithm
	Energy Models
	Fruchterman Reingold
	Vertex-Repulsion LinLog
	Edge-Repulsion LinLog
	Weighted Edge-Repulsion LinLog
	Generic Model

	Co-Change Graphs
	Related Work

