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Development Techniques

 We now introduce some useful techniques for (not 
only agile) development

 We revisit:
 Testing
 Managing Bugs
 Productive Development in a Team
 Software Design
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II. Managing Bugs
III. Development in a Team
IV. Software Design
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Testing

 Testing is one of the most important tasks in 
software development.

 A test is an executable piece of code which 
automatically executes part of the system and 
verifies the output
 For example, test code might start a new game and 

verify afterwards that is has indeed been started.
 A test may have two results:

 Pass (Green): Everything went as expected.
 Fail (Red): The system failed to meet requirements.
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Why Testing?

 A good test leads to confidence in code. 
 Passing tests of a task should mean that

 newly implemented functionality really works as 
expected

 refactored functionality or added functionality does not 
break any previously working code (regression test)

 Thus, tests have to be written for, and as part of, 
tasks.
 There should be a test for each important functionality 

realized by the task.
 A task is not fully implemented if there are no 

associated tests.
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How to write tests I

Ideas for writing tests:
 Main functionality (e.g. test that the main path works)
 Branch-Based Testing (e.g. check that there is a test for 

every branch of every condition)
 Proper Error Handling (e.g. check that methods correctly 

deal with null inputs, closed resources, failed connections)
 Working as Documented (e.g. if the documentation 

defines rules for a method, test these rules)
 Resource Constraint Handling (e.g. check that the 

system handles denied requests for resources such as 
database connections)
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How to write tests II

Granularity of tests:
 Unit tests test the smallest testable part of the 

software (e.g. a single method in Java).
 Integration tests test the interaction between 

components
(e.g. public interfaces).

 System tests test the software as a whole.
 System integration tests test whether the software 

is correctly integrated into its environment.
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Using Mocks

 Ideally, the code under test has no external 
dependencies.

 Unfortunately, this is most often not the case.
 For example, a currency converter class might need 

a database for retrieving exchange rates.
 To test such the currency converter class, the database 

access object is replaced by a mock object.

 A mock object mimics a real object by implementing 
the same interface and just returning constant values.

 We will use Mockito for mocking purposes.
(more details in the talk on technologies)
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Testing in Scrum

 In Scrum, tests are an integral part of each Sprint – 
they are NOT deferred to the end of the project!

 Tests can be written by hand or using Test 
Frameworks.
 The most well-known one for Java is JUnit.
 The advantage is a good infrastructure and an existing 

test-runner with reporting functionality 
(more details in the talk on technologies)

 All tests should be automatable. This ensures that 
they can be run again and again if new functionality is 
added.
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Code-and-Test

 The standard method for writing tests is Code-and-
Test.
 The code for the task is written.
 Immediately afterwards, the tests for the task are written.

 This ensures that each task has tests.
 But, it also holds the danger of designing tests 

according to the code and not to the requirements.
 JUnit uses a bar for showing passed and failed tests:

 Red Bar: At least one test failed.
 Green Bar: All tests passed.

 The aim is to keep the bar green.
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Test-Driven Development

 In agile methods, Test-Driven-Development (TDD) is 
used.
 The test code for the task is written.
 Afterwards, the simplest code is written to get the test pass.
 At last, the code is refactored.

 TDD is claimed to lead to 
 … more testable code as testing drives the implementation
 … more reasonable tests as tests are designed according 

to the requirements
 The aim is red – green – refactor. All tests fail initially, 

Then, the code should work and at last it is cleaned up.
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When did we test enough?

 Testing is, in principle, a never-ending activity.
 The main criteria for moving on is confidence. That 

is
 … the feeling that the tests adequately cover the 

functionality implemented in a task
 ...or reaching a certain code coverage with the tests.

 Code Test Coverage is the percentage of code 
tested.

 Tools like EclEmma for Eclipse calculate this 
percentage based on the test cases.
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Summary

 Software development does not work without tests!
 Tests are executable requirements.
 Tests ensure that existing functionality still works after 

changes (regression testing).

 Testing gives developers confidence for boldly 
moving forward to the next task.

 A task is implemented if the tests pass (but not yet 
done!)
 See Definition of Done
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Managing Bugs

 It is a simple, but inevitable fact of life that bugs 
happen.

 In agile methods, bugs are accepted like that
– nothing to be (too) ashamed of.

 A bug is therefore treated like a normal Backlog Item
 A bug report is made => a new Item for the Sprint 

Backlog
 The task is given an estimate and a priority (as usual).
 It is scheduled (as usual).

 A bug task is attached to an existing User Story or a 
new Issue is created for it 
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A bug report

A bug report should consist of:
 Summary – one sentence
 Steps to Reproduce – from a well-defined state of the 

system, what needs to be done to reproduce the bug?
 What was expected, and what did happen – to 

ensure everybody knows what was perceived as a 
problem

 Version, Platform, Location Information – bugs may 
be different in different versions, on different platforms 
or on different URLs

 Severity and Priority – how disastrous is the bug? 
How soon should it be fixed?
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Testing for Bugs

 Bugs have a nasty habit of reappearing.
 Therefore,

 Like a usual task, a bug-fixing task MUST include a test 
which reproduces the exact circumstances the bug was 
found in.

 The test is added to regression testing (as usual) to 
ensure the bug does not occur again.

 Finally: When fixing a bug, look out for similar issues 
in the code.
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Summary

Bugs are nothing to be ashamed of.

Bugs are treated like normal Backlog Items.
 They are written down and either attached to a User 

Story or a new Issue is created.
 They are estimated, prioritized, and scheduled.
 Tests are written.
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Team Development

Productive development in a team means

 … using an IDE for managing and controlling code, 
dependencies and libraries

 … using version control to merge the work of 
multiple developers in a controlled fashion

 … using continuous integration for ensuring up-to-
date, tested builds (manually or automated)

 … performing code reviews for ensuring high code 
quality and bug-freedom 
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Using IDEs

 An integrated development environment offers 
much more than just a code editor...
 Integrated build system (background building)
 Refactoring support (includes changing references)
 Integrated documentation 

(source code of the entire Java API and libraries)
 Code Navigation 

(jump to definition, references, call hierarchy, etc.)
 Integrated test runners (JUnit and others)
 Version Control support (CVS, Subversion...)

 An IDE makes programming productive!
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Version Control

 Problems arise when multiple developers work on the 
same source code:
 Changes happen to the same file which must be 

merged.
 Changes might need to be rolled back because of a 

faulty implementation (e.g. overridden or conflicting 
features)

 Traceability is needed to be able to determine the 
origin of an artifact (e.g. the developer can be asked for 
clarification)

 Version Control Systems exist to address these 
problems

 … and even more.
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How version control works

 We use the distributed 
version control system Git for 
which a client is included in 
Eclipse. It consists of
 … multiple local copies of a 

repository which developers 
might use to work on the 
source code and which 
provide the full functionality of 
a revision control system

 … often, one copy is marked 
as the official repository
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Version control best 
practices

 Committing a new revisions should only be done
 ... if the code compiles.
 ... after running all test cases
 ... with a commit message which precisely says what 

has been changed or newly implemented (with a 
reference to the issue tracker task)

 Before pushing to the official repository, perform an 
update (pull) and run all test cases again to ensure 
nothing was broken.
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Building Code

 Eclipse already contains mechanisms for building 
software
 This includes compiling java source code, ...
 ... an export mechanism as an executable JAR file
 ... and building arbitrary other elements with ant scripts.

 Ensuring that all tests pass is still the responsibility of 
the developer.
 In small and simple projects, this can be done manually.
 For larger, more complex projects, a dedicated system 

for compiling and testing might be necessary that 
performs automatically regular builds and test runs.

5/4/17 25Matthias Dangl



Continuous Integration

 A continuous integration system reacts to commits or 
on a timer and performs
 … checking out all code
 … building the project
 … running all tests

 The result of the CI run (e.g. compilation or tests 
failed) is placed on a website or mailed to all 
developers.

 Well known CI tools:
 CruiseControl (little bit old-fashioned)
 Hudson/Jenkins
 GitLab CI tool
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Reviewing Code I

Option 1: Peer Code Review (on one machine)
 Peer code reviewing means getting your code 

checked by your peers before assuming an issue is 
fixed.

 Code reviews are the single biggest thing that 
improve code quality. The average defect detection 
rate is 55 – 60% 
(vs. 25% for Unit Testing)

 Peer code reviews entail increased productivity
 Less time spent with reproducing and fixing bugs
 Increases knowledge transfer about the code base
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Reviewing Code II

Option 2: Pass-around Review (using version control)
 The developer commits code to version control 

and informs the chosen reviewer via Mail or IM.
 The reviewer checks the changes, asks questions, 

discusses with the author, notes problems and bugs 
found.

 The developer responds and addresses the issues, 
and commits changes to version control.

 The review is completed.
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Reviewing Code III

Option 3: Pair Programming (i.e. all coding done in 
collaboration)
 Two developers collaboratively writing code
 One has the keyboard and codes – the “pilot”
 One checks code on the fly and reflects about 

alternative approaches – the “co-pilot”
 Roles switch constantly back and forth
 Pilot and co-pilot constantly discuss the code, and the 

review is performed on the fly.

5/4/17 29Matthias Dangl



Summary

Productive development in a team means
 … using an IDE for managing and controlling code, 

dependencies and libraries
 … using version control to merge the work of 

multiple developers in a controlled fashion
 … using continuous integration for ensuring up-to-

date, tested builds (manually or automated)
 … performing code reviews for ensuring high code 

quality and bug-freedom 
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Good Design

 Good software design is a science of its own e.g.
 … it must match the software type (business, 

embedded, ...)
 … it must follow the company style

 But: There are rules which apply everywhere
 Visualize complicated parts
 Keep it simple
 Readable Code
 Re-Use (Design Patterns, Libraries)
 SRP / DRY / …and SOLID
 Refactor
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Visualize complicated 
parts

 The Unified Modeling Language (UML) is a visual 
design tool for software.

 The static parts, in particular class diagrams, are a 
great tool for planning (parts of) the software.
 Idea: Focus on the overall structure, not on every detail

 Diagrams also serve as documentation of the 
software for new developers.

 On a higher level of abstraction, even the customer 
can get some insights into the architecture of the 
software.
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Keep it simple

 The job of developers is implementing the task at 
hand
… and nothing more.

 This means:

Implement the simplest thing that could possibly work!

 The aim is not to get caught up in „what might be 
needed in the future“.

 Instead, implement the task at hand, and implement it 
well.
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Readable Code

 This is (obviously) WRONG:
  

It was hard to write, it should be hard to read!

 Code should be designed to be easy to read.
 “Speaking“ and “Readable” Code:

 Use long, self-explanatory variable and method names.
 Use the formatter to ensure everything looks the same.
 Prefer code to documentation.

 But: Use JavaDoc if the code contains pitfalls
 i.e. it is not obvious why it was written this way
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Re-Use

 Do not reinvent the wheel!

 Mostly, there are already 
solutions for your problems:
 Check for applicable 

design patterns
 Check the (Java) API
 Check for external 

libraries

 Talk to your team!
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SRP/DRY

 Single Responsibility 
Principle 
 If a task is split across 

several classes, all of them 
need to change if the task 
changes. 

 Result: maintenance 
nightmare

 Solution: only one 
responsibility per class
 Aim: high cohesion and low 

coupling

 Don‘t Repeat Yourself
 If a bug is found in copied 

code, it needs to be 
changed everywhere.

 Result: maintenance 
nightmare (again)

 Solution: Use 
inheritance/delegation to 
pull out common code
 Aim: Find generic 

functionality
(Hint: copy&pasted code)
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SOLID

Five basic principles in OO Programming & Design

 SRP = Single responsibility princle
  a class should have only a single responsibility (i.e. only one potential change in 

the software's specification should be able to affect the specification of the class)
 OCP = Open/closed principle

 software entities … should be open for extension, but closed for modification.
 LSP = Liskov substitution principle

 objects in a program should be replaceable with instances of their subtypes 
without altering the correctness of that program

 ISP = Interface segregation principle
 many client-specific interfaces are better than one general-purpose interface

 DIP = Dependency inversion principle
 Dependency injection is one method of following this principle.
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Refactor

 One of the best things about IDEs is refactoring support.
 Due to design purposes, code may change:

 Elements change their meaning.
 Elements have to be moved.
 Elements have to be split or merged.

 Never refrain from restructuring and renaming your code 
to fit the current view of the system.
 Refactoring take care of all references automatically.
 The aim is having no burdens of the past.

(“this field is called xy because, at the beginning, we thought...“)
 And the tests ensure that the code still works.
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Summary

 Visualizing, Creating simple and readable Code, Re-
Using, SRP/DRY/SOLID, and Refactoring are tools 
waiting to be applied.

 But: Do not go too far!
 Even a “Perfect Design“ is obsolete tomorrow.
 Aim for “good-enough design“.
 Unfortunately, only experience helps to find the right 

balance.
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Final Words

 We’ve seen how to use and apply
 Testing
 Managing Bugs
 Productive Development in a Team
 (Agile) Software Design

 Try to apply these principles, and learn through that 
experience.
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Thank You.
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