
Agile Software Development 
Techniques
Testing, Managing Bugs, Teamwork, and Software 
Design in Agile Software Development

(Slides by Prof. Dr. Matthias Hölzl, based on material by Dr. Philip Mayer with input 
from Dr. Andreas Schroeder and Dr. Annabelle Klarl)



Development Techniques

 We now introduce some useful techniques for (not 
only agile) development

 We revisit:
 Testing
 Managing Bugs
 Productive Development in a Team
 Software Design

5/4/17 2Matthias Dangl



Agenda

I. Testing
II. Managing Bugs
III. Development in a Team
IV. Software Design

14.04.2016 Matthias Dangl 3



Testing

 Testing is one of the most important tasks in 
software development.

 A test is an executable piece of code which 
automatically executes part of the system and 
verifies the output
 For example, test code might start a new game and 

verify afterwards that is has indeed been started.
 A test may have two results:

 Pass (Green): Everything went as expected.
 Fail (Red): The system failed to meet requirements.

5/4/17 4Matthias Dangl



Why Testing?

 A good test leads to confidence in code. 
 Passing tests of a task should mean that

 newly implemented functionality really works as 
expected

 refactored functionality or added functionality does not 
break any previously working code (regression test)

 Thus, tests have to be written for, and as part of, 
tasks.
 There should be a test for each important functionality 

realized by the task.
 A task is not fully implemented if there are no 

associated tests.
5/4/17 5Matthias Dangl



How to write tests I

Ideas for writing tests:
 Main functionality (e.g. test that the main path works)
 Branch-Based Testing (e.g. check that there is a test for 

every branch of every condition)
 Proper Error Handling (e.g. check that methods correctly 

deal with null inputs, closed resources, failed connections)
 Working as Documented (e.g. if the documentation 

defines rules for a method, test these rules)
 Resource Constraint Handling (e.g. check that the 

system handles denied requests for resources such as 
database connections)

5/4/17 6Matthias Dangl



How to write tests II

Granularity of tests:
 Unit tests test the smallest testable part of the 

software (e.g. a single method in Java).
 Integration tests test the interaction between 

components
(e.g. public interfaces).

 System tests test the software as a whole.
 System integration tests test whether the software 

is correctly integrated into its environment.

5/4/17 7Matthias Dangl



Using Mocks

 Ideally, the code under test has no external 
dependencies.

 Unfortunately, this is most often not the case.
 For example, a currency converter class might need 

a database for retrieving exchange rates.
 To test such the currency converter class, the database 

access object is replaced by a mock object.

 A mock object mimics a real object by implementing 
the same interface and just returning constant values.

 We will use Mockito for mocking purposes.
(more details in the talk on technologies)

5/4/17 8Matthias Dangl



Testing in Scrum

 In Scrum, tests are an integral part of each Sprint – 
they are NOT deferred to the end of the project!

 Tests can be written by hand or using Test 
Frameworks.
 The most well-known one for Java is JUnit.
 The advantage is a good infrastructure and an existing 

test-runner with reporting functionality 
(more details in the talk on technologies)

 All tests should be automatable. This ensures that 
they can be run again and again if new functionality is 
added.

5/4/17 9Matthias Dangl



Code-and-Test

 The standard method for writing tests is Code-and-
Test.
 The code for the task is written.
 Immediately afterwards, the tests for the task are written.

 This ensures that each task has tests.
 But, it also holds the danger of designing tests 

according to the code and not to the requirements.
 JUnit uses a bar for showing passed and failed tests:

 Red Bar: At least one test failed.
 Green Bar: All tests passed.

 The aim is to keep the bar green.
5/4/17 10Matthias Dangl



Test-Driven Development

 In agile methods, Test-Driven-Development (TDD) is 
used.
 The test code for the task is written.
 Afterwards, the simplest code is written to get the test pass.
 At last, the code is refactored.

 TDD is claimed to lead to 
 … more testable code as testing drives the implementation
 … more reasonable tests as tests are designed according 

to the requirements
 The aim is red – green – refactor. All tests fail initially, 

Then, the code should work and at last it is cleaned up.

5/4/17 11Matthias Dangl



When did we test enough?

 Testing is, in principle, a never-ending activity.
 The main criteria for moving on is confidence. That 

is
 … the feeling that the tests adequately cover the 

functionality implemented in a task
 ...or reaching a certain code coverage with the tests.

 Code Test Coverage is the percentage of code 
tested.

 Tools like EclEmma for Eclipse calculate this 
percentage based on the test cases.

5/4/17 12Matthias Dangl



Summary

 Software development does not work without tests!
 Tests are executable requirements.
 Tests ensure that existing functionality still works after 

changes (regression testing).

 Testing gives developers confidence for boldly 
moving forward to the next task.

 A task is implemented if the tests pass (but not yet 
done!)
 See Definition of Done

5/4/17 13Matthias Dangl



Agenda

I. Testing
II. Managing Bugs
III. Development in a Team
IV. Software Design

01.02.14 Matthias Dangl 14



Managing Bugs

 It is a simple, but inevitable fact of life that bugs 
happen.

 In agile methods, bugs are accepted like that
– nothing to be (too) ashamed of.

 A bug is therefore treated like a normal Backlog Item
 A bug report is made => a new Item for the Sprint 

Backlog
 The task is given an estimate and a priority (as usual).
 It is scheduled (as usual).

 A bug task is attached to an existing User Story or a 
new Issue is created for it 

5/4/17 15Matthias Dangl



A bug report

A bug report should consist of:
 Summary – one sentence
 Steps to Reproduce – from a well-defined state of the 

system, what needs to be done to reproduce the bug?
 What was expected, and what did happen – to 

ensure everybody knows what was perceived as a 
problem

 Version, Platform, Location Information – bugs may 
be different in different versions, on different platforms 
or on different URLs

 Severity and Priority – how disastrous is the bug? 
How soon should it be fixed?

5/4/17 16Matthias Dangl



Testing for Bugs

 Bugs have a nasty habit of reappearing.
 Therefore,

 Like a usual task, a bug-fixing task MUST include a test 
which reproduces the exact circumstances the bug was 
found in.

 The test is added to regression testing (as usual) to 
ensure the bug does not occur again.

 Finally: When fixing a bug, look out for similar issues 
in the code.

5/4/17 17Matthias Dangl



Summary

Bugs are nothing to be ashamed of.

Bugs are treated like normal Backlog Items.
 They are written down and either attached to a User 

Story or a new Issue is created.
 They are estimated, prioritized, and scheduled.
 Tests are written.

5/4/17 18Matthias Dangl



Agenda

I. Testing
II. Managing Bugs
III. Development in a Team
IV. Software Design

01.02.14 Matthias Dangl 19



Team Development

Productive development in a team means

 … using an IDE for managing and controlling code, 
dependencies and libraries

 … using version control to merge the work of 
multiple developers in a controlled fashion

 … using continuous integration for ensuring up-to-
date, tested builds (manually or automated)

 … performing code reviews for ensuring high code 
quality and bug-freedom 

5/4/17 20Matthias Dangl



Using IDEs

 An integrated development environment offers 
much more than just a code editor...
 Integrated build system (background building)
 Refactoring support (includes changing references)
 Integrated documentation 

(source code of the entire Java API and libraries)
 Code Navigation 

(jump to definition, references, call hierarchy, etc.)
 Integrated test runners (JUnit and others)
 Version Control support (CVS, Subversion...)

 An IDE makes programming productive!

5/4/17 21Matthias Dangl



Version Control

 Problems arise when multiple developers work on the 
same source code:
 Changes happen to the same file which must be 

merged.
 Changes might need to be rolled back because of a 

faulty implementation (e.g. overridden or conflicting 
features)

 Traceability is needed to be able to determine the 
origin of an artifact (e.g. the developer can be asked for 
clarification)

 Version Control Systems exist to address these 
problems

 … and even more.
5/4/17 22Matthias Dangl



How version control works

 We use the distributed 
version control system Git for 
which a client is included in 
Eclipse. It consists of
 … multiple local copies of a 

repository which developers 
might use to work on the 
source code and which 
provide the full functionality of 
a revision control system

 … often, one copy is marked 
as the official repository

5/4/17 23Matthias Dangl



Version control best 
practices

 Committing a new revisions should only be done
 ... if the code compiles.
 ... after running all test cases
 ... with a commit message which precisely says what 

has been changed or newly implemented (with a 
reference to the issue tracker task)

 Before pushing to the official repository, perform an 
update (pull) and run all test cases again to ensure 
nothing was broken.

5/4/17 24Matthias Dangl



Building Code

 Eclipse already contains mechanisms for building 
software
 This includes compiling java source code, ...
 ... an export mechanism as an executable JAR file
 ... and building arbitrary other elements with ant scripts.

 Ensuring that all tests pass is still the responsibility of 
the developer.
 In small and simple projects, this can be done manually.
 For larger, more complex projects, a dedicated system 

for compiling and testing might be necessary that 
performs automatically regular builds and test runs.

5/4/17 25Matthias Dangl



Continuous Integration

 A continuous integration system reacts to commits or 
on a timer and performs
 … checking out all code
 … building the project
 … running all tests

 The result of the CI run (e.g. compilation or tests 
failed) is placed on a website or mailed to all 
developers.

 Well known CI tools:
 CruiseControl (little bit old-fashioned)
 Hudson/Jenkins
 GitLab CI tool

5/4/17 26Matthias Dangl



Reviewing Code I

Option 1: Peer Code Review (on one machine)
 Peer code reviewing means getting your code 

checked by your peers before assuming an issue is 
fixed.

 Code reviews are the single biggest thing that 
improve code quality. The average defect detection 
rate is 55 – 60% 
(vs. 25% for Unit Testing)

 Peer code reviews entail increased productivity
 Less time spent with reproducing and fixing bugs
 Increases knowledge transfer about the code base

5/4/17 27Matthias Dangl



Reviewing Code II

Option 2: Pass-around Review (using version control)
 The developer commits code to version control 

and informs the chosen reviewer via Mail or IM.
 The reviewer checks the changes, asks questions, 

discusses with the author, notes problems and bugs 
found.

 The developer responds and addresses the issues, 
and commits changes to version control.

 The review is completed.

5/4/17 28Matthias Dangl



Reviewing Code III

Option 3: Pair Programming (i.e. all coding done in 
collaboration)
 Two developers collaboratively writing code
 One has the keyboard and codes – the “pilot”
 One checks code on the fly and reflects about 

alternative approaches – the “co-pilot”
 Roles switch constantly back and forth
 Pilot and co-pilot constantly discuss the code, and the 

review is performed on the fly.

5/4/17 29Matthias Dangl



Summary

Productive development in a team means
 … using an IDE for managing and controlling code, 

dependencies and libraries
 … using version control to merge the work of 

multiple developers in a controlled fashion
 … using continuous integration for ensuring up-to-

date, tested builds (manually or automated)
 … performing code reviews for ensuring high code 

quality and bug-freedom 

5/4/17 30Matthias Dangl



Agenda

I. Testing
II. Managing Bugs
III. Development in a Team
IV. Software Design

01.02.14 Matthias Dangl 31



Good Design

 Good software design is a science of its own e.g.
 … it must match the software type (business, 

embedded, ...)
 … it must follow the company style

 But: There are rules which apply everywhere
 Visualize complicated parts
 Keep it simple
 Readable Code
 Re-Use (Design Patterns, Libraries)
 SRP / DRY / …and SOLID
 Refactor

5/4/17 32Matthias Dangl



Visualize complicated 
parts

 The Unified Modeling Language (UML) is a visual 
design tool for software.

 The static parts, in particular class diagrams, are a 
great tool for planning (parts of) the software.
 Idea: Focus on the overall structure, not on every detail

 Diagrams also serve as documentation of the 
software for new developers.

 On a higher level of abstraction, even the customer 
can get some insights into the architecture of the 
software.

5/4/17 33Matthias Dangl



Keep it simple

 The job of developers is implementing the task at 
hand
… and nothing more.

 This means:

Implement the simplest thing that could possibly work!

 The aim is not to get caught up in „what might be 
needed in the future“.

 Instead, implement the task at hand, and implement it 
well.

5/4/17 34Matthias Dangl



Readable Code

 This is (obviously) WRONG:
  

It was hard to write, it should be hard to read!

 Code should be designed to be easy to read.
 “Speaking“ and “Readable” Code:

 Use long, self-explanatory variable and method names.
 Use the formatter to ensure everything looks the same.
 Prefer code to documentation.

 But: Use JavaDoc if the code contains pitfalls
 i.e. it is not obvious why it was written this way

5/4/17 35Matthias Dangl



Re-Use

 Do not reinvent the wheel!

 Mostly, there are already 
solutions for your problems:
 Check for applicable 

design patterns
 Check the (Java) API
 Check for external 

libraries

 Talk to your team!

5/4/17 36Matthias Dangl



SRP/DRY

 Single Responsibility 
Principle 
 If a task is split across 

several classes, all of them 
need to change if the task 
changes. 

 Result: maintenance 
nightmare

 Solution: only one 
responsibility per class
 Aim: high cohesion and low 

coupling

 Don‘t Repeat Yourself
 If a bug is found in copied 

code, it needs to be 
changed everywhere.

 Result: maintenance 
nightmare (again)

 Solution: Use 
inheritance/delegation to 
pull out common code
 Aim: Find generic 

functionality
(Hint: copy&pasted code)

5/4/17 37Matthias Dangl

Maintaining code is easier if you only have 
to look in one place for each feature!



SOLID

Five basic principles in OO Programming & Design

 SRP = Single responsibility princle
  a class should have only a single responsibility (i.e. only one potential change in 

the software's specification should be able to affect the specification of the class)
 OCP = Open/closed principle

 software entities … should be open for extension, but closed for modification.
 LSP = Liskov substitution principle

 objects in a program should be replaceable with instances of their subtypes 
without altering the correctness of that program

 ISP = Interface segregation principle
 many client-specific interfaces are better than one general-purpose interface

 DIP = Dependency inversion principle
 Dependency injection is one method of following this principle.

5/4/17 Matthias Dangl 38



Refactor

 One of the best things about IDEs is refactoring support.
 Due to design purposes, code may change:

 Elements change their meaning.
 Elements have to be moved.
 Elements have to be split or merged.

 Never refrain from restructuring and renaming your code 
to fit the current view of the system.
 Refactoring take care of all references automatically.
 The aim is having no burdens of the past.

(“this field is called xy because, at the beginning, we thought...“)
 And the tests ensure that the code still works.

5/4/17 39Matthias Dangl



Summary

 Visualizing, Creating simple and readable Code, Re-
Using, SRP/DRY/SOLID, and Refactoring are tools 
waiting to be applied.

 But: Do not go too far!
 Even a “Perfect Design“ is obsolete tomorrow.
 Aim for “good-enough design“.
 Unfortunately, only experience helps to find the right 

balance.

5/4/17 40Matthias Dangl



Final Words

 We’ve seen how to use and apply
 Testing
 Managing Bugs
 Productive Development in a Team
 (Agile) Software Design

 Try to apply these principles, and learn through that 
experience.

5/4/17 Matthias Dangl 41



Thank You.

5/4/17 Matthias Dangl 42


	Slide 1
	Development Techniques
	Agenda
	Testing
	Why Testing?
	How to write tests I
	How to write tests II
	Using Mocks
	Testing in Scrum
	Code-and-Test
	Test-Driven Development
	When did we test enough?
	Summary
	Agenda
	Managing Bugs
	A bug report
	Testing for Bugs
	Summary
	Agenda
	Team Development
	Using IDEs
	Version Control
	How version control works
	Version control best practices
	Building Code
	Continuous Integration
	Reviewing Code I
	Reviewing Code II
	Reviewing Code III
	Summary
	Agenda
	Good Design
	Visualize complicated parts
	Keep it simple
	Readable Code
	Re-Use
	SRP/DRY
	SOLID
	Refactor
	Summary
	Final Words
	Slide 42

