
Technology Background
Development environment, Skeleton and Libraries

Slides by Prof. Dr. Matthias Hölzl
(based on material from Dr. Andreas Schröder)

15.05.2017 Matthias Dangl

Outline

Lecture 1
I. Eclipse
II. Git

Lecture 2
IV.Skeleton Overview
V. Libraries Overview
VI.Game Rules and Coding Task

15.05.2017 Matthias Dangl 2

Part I. Eclipse

15.05.2017 Matthias Dangl

Part I: Goals

Learning Target
 Recognize the power of Eclipse
 Identify what you did not know yet
 Know where to find tutorials and help
 Being able to set up the Eclipse IDE for the lab

15.05.2017 Matthias Dangl 4

Eclipse

Eclipse is far more than a Java editor
 Code navigation and exploration
 Refactoring
 Background compilation
 Customizable build system
 Extensibile: Git, JUnit, Code Coverage, Web development tools, …

15.05.2017 Matthias Dangl 5

Eclipse

 Recommended reads
 Workbench user guide > Tips and tricks
 Java development user guide > Tips and tricks

 Recommended shortcuts
 Quick Fix (Ctrl+1), Quick Access (Ctrl+3)
 Open Type / resource (Ctrl+Shift+T /

Ctrl+Shift+R)
 Open declaration / Javadoc (F3 / F2)
 Quick type hierarchy (Ctrl+T)
 Quick outline (Ctrl+O)
 Refactor / Rename (Alt+Shift+T / Alt+Shift+R)
 … Key bindings overview (Ctrl+Shift+L) J

15.05.2017 Matthias Dangl 6

Setting up Eclipse

To setup your Eclipse, you need to:
1. Download and install eclipse
2. Setup basics: code styles, save actions, file encoding,

…
3. Setup Tomcat
4. Setup Git
5. Setup DB
6. Setup Launch configurations
7. Install other plugins/extensions as needed (e.g.,

EclEmma)

15.05.2017 Matthias Dangl 7

Part II. Git

15.05.2017 Matthias Dangl

Git

 Git is a modern distributed version control system
(VCS)

 Initial release 2005 by Linus Torwalds
 Widely adopted in open source communities:

Linux Kernel, Ruby on Rails, Android, Debian, …

 Can best be learned if you forget everything you
know about how (centralized) version control works!

15.05.2017 Matthias Dangl 9

http://git-scm.com/

Fundamentals of version control

 Repository – a database containing files under version control
and the history of these files.

 Working Copy – a local copy of files from the repository. May be
modified, and may not represent the most recent repository revision.

 Revision – the state of a file (CVS), of a branch (Git), or of the
whole repository (SVN) as committed to the version control system.

 Change Set – a set of modifications to files under version control.

 Commit – the act of writing a change set from the working copy to
the repository.

 Update – the act of fetching changes that have been performed on
the repository since the last update and applying them to the
working copy.

15.05.2017 Matthias Dangl 10

Fundamentals of version control

 Branch – a set of files under version control that evolve
independently of other file sets. Often defines an own line of
development of a product.

 Tag – a human-readable link to a specific revision. Is often used to
mark the source code of released versions (e.g. tag v_2_0_3).

 Trunk/Master – the branch denoting the main line of development
of a product.

 Merge – the act of reconciling change sets from parallel branches.

 Switch – the act of changing the working copy from a branch to
another.

 Conflict – occurs when a file was changed concurrently, and the
VCS cannot reconcile the changes automatically. Conflicts must be
resolved manually.

15.05.2017 Matthias Dangl 11

Centralized VCS

dev machine server

working

Latest from VCS

update

commit

merge

branch

§ Cannot work without connectivity
§ Needs server to branch and merge
§ Cannot save experimental features locally

Matthias Dangl15.05.2017

Decentralized VCS

§ Works without connectivity
§ Can branch and merge against local VCS
§ Needs synchronization among multiple VCS

server

working

synchronize

synchronize

dev machine

switch

commit

merge

branch

Matthias Dangl15.05.2017

Git Staging

• Git allows to select changes for commit
• “Staging area” lies between working area and

local branches

Working
area

Local
branches

Staging
area

commitstage

Matthias Dangl15.05.2017

Git

serverdev machine

fetch

Local branches
(on server)Local

branches
Remote

branches

merge

clone

push

pull = fetch & merge

commit

switch

merge
working

Matthias Dangl15.05.2017

eGit Staging View

 Helpful tool for creating commits
 Faster than Menu > Team > Add

15.05.2017 Matthias Dangl 16

Synchronize Workspace View

 Menu à Teamà Synchronize Workspace (or change to
Team Synchronizing perspective)

15.05.2017 Matthias Dangl 17

eGit from the start

15.05.2017 Matthias Dangl 18

eGit: cloning

15.05.2017 Matthias Dangl 19

eGit: clone results

15.05.2017 Matthias Dangl 20

eGit: Import Projects

15.05.2017 Matthias Dangl 21

Creating a new branch

15.05.2017 Matthias Dangl 22

The art of branching

 When working on a user story
 Create a branch for your story

(= feature branch)
 Work on the branch
 Merge the branch into master

 Don’t disconnect from the repository
(= team): fetch & merge master
changes to your branch regularly!

 Read the Git tutorials

15.05.2017 Matthias Dangl 23

GitLab Flow: Feature Branches

GitLab Flow: Release Branches

Commit messages

 What does the following history tell you?
ea42b79 There were some bugs in the code!!!! Didn't know
2db0f12 fixed two build-breaking issues: the ant task co
147709f Tweaks to some files
22b25e0
7f96f57 polishing
59a2ed6 update

 And the following?
5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
e142fd1 Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage

15.05.2017 Matthias Dangl 26

The art of writing commit
messages

 Good commit messages are important
 Separate subject from body with a blank line
 Limit the subject line to 50 characters
 Capitalize the subject line
 Do not end the subject line with a period
 Use the imperative mood in the subject line
 Wrap the body at 72 characters
 Use the body to explain what and why vs. How

 See http://chris.beams.io/posts/git-commit/ for more

15.05.2017 Matthias Dangl 27

http://chris.beams.io/posts/git-commit/
http://chris.beams.io/posts/git-commit/

Tracking remote branches

 Instead of checking out a
remote branch directly, it's
better to create a local branch
that tracks the remote branch.

 After that, you can pull and
push directly to/from the original
remote branch.

 If you push a branch that you
created locally, the local branch
starts tracking the remote copy.

15.05.2017 Matthias Dangl 28

Deleting remote branches

 Deleting the remote reference
doesn't do anything on the
server.

 To remove a remote branch you
have to push "nothing" to the
branch:
git push origin --delete branch

or with the push dialog in eGit
(see picture).

 Deleting remote branches is
most fun when others are
tracking it J

15.05.2017 Matthias Dangl 29

Switching between branches

 Git allows to switch between branches at any time
 eGit: Menuà Teamà Switch To

 If you have uncommitted changes, you have to
either commit them first or stash your changes
 eGit: Menu in Git Repository View à Stash Changes
 Those changes get “stored" and you can switch

branches
 You can restore stashed changes in the Git

Repository View

15.05.2017 Matthias Dangl 30

Resolving conflicts

 Merging branches may lead to conflicts. When this
happens you end up in a "merging-state" where you
have to resolve the conflicts.

 Resolve conflicts:
 Menuà Teamà

Merge Tool
 Or/and edit

manually
 Then:

 Add to index
 Commit

15.05.2017 Matthias Dangl 31

Other (e)Git hints

 Undoing changes:
 Use Menuà Replaceà (HEAD|Commit|…) to replace

files/folders with previous versions from the repository
 If you're used to SVN: don't forget to push

 Commit only writes to your local repository. Use
"commit and push" in Commit dialog or push
explicitly.

 Resolving conflicts without editing (e.g. for binary
files)
 git checkout --ours <path>
 git checkout --theirs <path>

15.05.2017 Matthias Dangl 32

Other (e)Git hints

 Use own repository (e.g. GitHub/GitLab) to
experiment!

 Install full Git distribution (www.git-scm.com) and
(optionally) GUI like TortoiseGit, etc.

 Have a look at the git command line

15.05.2017 Matthias Dangl 33

http://www.git-scm.com/
http://www.git-scm.com/

Some words on collaboration…

Merging a user story into master means integration
 Conflicts must be carefully resolved
 The whole codebase must compile
 All tests must pass:

unit tests, integration tests, system tests

Integrate early and opportunistically,
It will not get easier if you wait!

15.05.2017 Matthias Dangl 34

GitLab: Project Overview

Matthias Dangl15.05.2017

GitLab: List of Milestones

Matthias Dangl15.05.2017

GitLab: Milestone

Matthias Dangl15.05.2017

GitLab: Issues

Matthias Dangl15.05.2017

GitLab: Issue

Matthias Dangl15.05.2017

GitLab: Issue

Matthias Dangl15.05.2017

GitLab: Issue

Matthias Dangl15.05.2017

GitLab: Third-Party Scrum
Support

Matthias Dangl15.05.2017

GitLab: Branches

Matthias Dangl15.05.2017

GitLab: Branches

Matthias Dangl15.05.2017

GitLab: Merge Requests

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

Summary

15.05.2017 Matthias Dangl

Summary: Development
Environment

 Eclipse
 The IDE for our project

 Git
 Distributed version control system
 Built-in branching facilities

15.05.2017 Matthias Dangl 61

Technology Background
Development environment, Skeleton and Libraries

Slides by Prof. Dr. Matthias Hölzl
(based on material from Dr. Andreas Schröder)

15.05.2017 Matthias Dangl

Outline

Lecture 1
I. Eclipse
II. Git

Lecture 2
IV.Skeleton Overview
V. Libraries Overview
VI.Game Rules and Coding Task

15.05.2017 Matthias Dangl 2

Part I. Eclipse

15.05.2017 Matthias Dangl

Part I: Goals

Learning Target
 Recognize the power of Eclipse
 Identify what you did not know yet
 Know where to find tutorials and help
 Being able to set up the Eclipse IDE for the lab

15.05.2017 Matthias Dangl 4

Eclipse

Eclipse is far more than a Java editor
 Code navigation and exploration
 Refactoring
 Background compilation
 Customizable build system
 Extensibile: Git, JUnit, Code Coverage, Web development tools, …

15.05.2017 Matthias Dangl 5

Eclipse

 Recommended reads
 Workbench user guide > Tips and tricks
 Java development user guide > Tips and tricks

 Recommended shortcuts
 Quick Fix (Ctrl+1), Quick Access (Ctrl+3)
 Open Type / resource (Ctrl+Shift+T /

Ctrl+Shift+R)
 Open declaration / Javadoc (F3 / F2)
 Quick type hierarchy (Ctrl+T)
 Quick outline (Ctrl+O)
 Refactor / Rename (Alt+Shift+T / Alt+Shift+R)
 … Key bindings overview (Ctrl+Shift+L) J

15.05.2017 Matthias Dangl 6

Setting up Eclipse

To setup your Eclipse, you need to:
1. Download and install eclipse
2. Setup basics: code styles, save actions, file encoding,

…
3. Setup Tomcat
4. Setup Git
5. Setup DB
6. Setup Launch configurations
7. Install other plugins/extensions as needed (e.g.,

EclEmma)

15.05.2017 Matthias Dangl 7

Part II. Git

15.05.2017 Matthias Dangl

Git

 Git is a modern distributed version control system
(VCS)

 Initial release 2005 by Linus Torwalds
 Widely adopted in open source communities:

Linux Kernel, Ruby on Rails, Android, Debian, …

 Can best be learned if you forget everything you
know about how (centralized) version control works!

15.05.2017 Matthias Dangl

http://git-scm.com/

9

Fundamentals of version control

 Repository – a database containing files under version control
and the history of these files.

 Working Copy – a local copy of files from the repository. May be
modified, and may not represent the most recent repository revision.

 Revision – the state of a file (CVS), of a branch (Git), or of the
whole repository (SVN) as committed to the version control system.

 Change Set – a set of modifications to files under version control.

 Commit – the act of writing a change set from the working copy to
the repository.

 Update – the act of fetching changes that have been performed on
the repository since the last update and applying them to the
working copy.

15.05.2017 Matthias Dangl 10

Fundamentals of version control

 Branch – a set of files under version control that evolve
independently of other file sets. Often defines an own line of
development of a product.

 Tag – a human-readable link to a specific revision. Is often used to
mark the source code of released versions (e.g. tag v_2_0_3).

 Trunk/Master – the branch denoting the main line of development
of a product.

 Merge – the act of reconciling change sets from parallel branches.

 Switch – the act of changing the working copy from a branch to
another.

 Conflict – occurs when a file was changed concurrently, and the
VCS cannot reconcile the changes automatically. Conflicts must be
resolved manually.

15.05.2017 Matthias Dangl 11

Centralized VCS

dev machine server

working

Latest from VCS

update

commit

merge

branch

§ Cannot work without connectivity
§ Needs server to branch and merge
§ Cannot save experimental features locally

Matthias Dangl15.05.2017

Decentralized VCS

§ Works without connectivity
§ Can branch and merge against local VCS
§ Needs synchronization among multiple VCS

server

working

synchronize

synchronize

dev machine

switch

commit

merge

branch

Matthias Dangl15.05.2017

Git Staging

• Git allows to select changes for commit
• “Staging area” lies between working area and

local branches

Working
area

Local
branches

Staging
area

commitstage

Matthias Dangl15.05.2017

Git

serverdev machine

fetch

Local branches
(on server)Local

branches
Remote

branches

merge

clone

push

pull = fetch & merge

commit

switch

merge
working

Matthias Dangl15.05.2017

eGit Staging View

 Helpful tool for creating commits
 Faster than Menu > Team > Add

15.05.2017 Matthias Dangl 16

Synchronize Workspace View

 Menu à Teamà Synchronize Workspace (or change to
Team Synchronizing perspective)

15.05.2017 Matthias Dangl 17

eGit from the start

15.05.2017 Matthias Dangl 18

eGit: cloning

15.05.2017 Matthias Dangl 19

eGit: clone results

15.05.2017 Matthias Dangl 20

eGit: Import Projects

15.05.2017 Matthias Dangl 21

Creating a new branch

15.05.2017 Matthias Dangl 22

The art of branching

 When working on a user story
 Create a branch for your story

(= feature branch)
 Work on the branch
 Merge the branch into master

 Don’t disconnect from the repository
(= team): fetch & merge master
changes to your branch regularly!

 Read the Git tutorials

15.05.2017 Matthias Dangl 23

Viel Erfolg mit Git J
à Und jetzt zum nächsten Thema, MyLyn

23

GitLab Flow: Feature Branches

GitLab Flow: Release Branches

Commit messages

 What does the following history tell you?
ea42b79 There were some bugs in the code!!!! Didn't know
2db0f12 fixed two build-breaking issues: the ant task co
147709f Tweaks to some files
22b25e0
7f96f57 polishing
59a2ed6 update

 And the following?
5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
e142fd1 Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage

15.05.2017 Matthias Dangl 26

Viel Erfolg mit Git J
à Und jetzt zum nächsten Thema, MyLyn

26

The art of writing commit
messages

 Good commit messages are important
 Separate subject from body with a blank line
 Limit the subject line to 50 characters
 Capitalize the subject line
 Do not end the subject line with a period
 Use the imperative mood in the subject line
 Wrap the body at 72 characters
 Use the body to explain what and why vs. How

 See http://chris.beams.io/posts/git-commit/ for more

15.05.2017 Matthias Dangl 27

Viel Erfolg mit Git J
à Und jetzt zum nächsten Thema, MyLyn

27

Tracking remote branches

 Instead of checking out a
remote branch directly, it's
better to create a local branch
that tracks the remote branch.

 After that, you can pull and
push directly to/from the original
remote branch.

 If you push a branch that you
created locally, the local branch
starts tracking the remote copy.

15.05.2017 Matthias Dangl 28

Deleting remote branches

 Deleting the remote reference
doesn't do anything on the
server.

 To remove a remote branch you
have to push "nothing" to the
branch:
git push origin --delete branch

or with the push dialog in eGit
(see picture).

 Deleting remote branches is
most fun when others are
tracking it J

15.05.2017 Matthias Dangl 29

Switching between branches

 Git allows to switch between branches at any time
 eGit: Menuà Teamà Switch To

 If you have uncommitted changes, you have to
either commit them first or stash your changes
 eGit: Menu in Git Repository View à Stash Changes
 Those changes get “stored" and you can switch

branches
 You can restore stashed changes in the Git

Repository View

15.05.2017 Matthias Dangl 30

Resolving conflicts

 Merging branches may lead to conflicts. When this
happens you end up in a "merging-state" where you
have to resolve the conflicts.

 Resolve conflicts:
 Menuà Teamà

Merge Tool
 Or/and edit

manually
 Then:

 Add to index
 Commit

15.05.2017 Matthias Dangl 31

Other (e)Git hints

 Undoing changes:
 Use Menuà Replaceà (HEAD|Commit|…) to replace

files/folders with previous versions from the repository
 If you're used to SVN: don't forget to push

 Commit only writes to your local repository. Use
"commit and push" in Commit dialog or push
explicitly.

 Resolving conflicts without editing (e.g. for binary
files)
 git checkout --ours <path>
 git checkout --theirs <path>

15.05.2017 Matthias Dangl 32

32

Other (e)Git hints

 Use own repository (e.g. GitHub/GitLab) to
experiment!

 Install full Git distribution (www.git-scm.com) and
(optionally) GUI like TortoiseGit, etc.

 Have a look at the git command line

15.05.2017 Matthias Dangl 33

33

Some words on collaboration…

Merging a user story into master means integration
 Conflicts must be carefully resolved
 The whole codebase must compile
 All tests must pass:

unit tests, integration tests, system tests

Integrate early and opportunistically,
It will not get easier if you wait!

15.05.2017 Matthias Dangl 34

GitLab: Project Overview

Matthias Dangl15.05.2017

GitLab: List of Milestones

Matthias Dangl15.05.2017

GitLab: Milestone

Matthias Dangl15.05.2017

GitLab: Issues

Matthias Dangl15.05.2017

GitLab: Issue

Matthias Dangl15.05.2017

GitLab: Issue

Matthias Dangl15.05.2017

GitLab: Issue

Matthias Dangl15.05.2017

GitLab: Third-Party Scrum
Support

Matthias Dangl15.05.2017

GitLab: Branches

Matthias Dangl15.05.2017

GitLab: Branches

Matthias Dangl15.05.2017

GitLab: Merge Requests

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

GitLab: Merge Request

Matthias Dangl15.05.2017

Summary

15.05.2017 Matthias Dangl

Summary: Development
Environment

 Eclipse
 The IDE for our project

 Git
 Distributed version control system
 Built-in branching facilities

15.05.2017 Matthias Dangl 61

	Slide 1
	Outline
	Slide 3
	Part I: Goals
	Eclipse
	Eclipse
	Setting up Eclipse
	Slide 8
	Git
	Fundamentals of version control
	Fundamentals of version control
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	eGit Staging View
	Synchronize Workspace View
	eGit from the start
	eGit: cloning
	Slide 20
	eGit: Import Projects
	Creating a new branch
	The art of branching
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Tracking remote branches
	Deleting remote branches
	Switching between branches
	Resolving conflicts
	Slide 32
	Other (e)Git hints
	Some words on collaboration…
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 60
	Summary: Development Environment
	Slide 1
	Outline
	Slide 3
	Part I: Goals
	Eclipse
	Eclipse
	Setting up Eclipse
	Slide 8
	Git
	Fundamentals of version control
	Fundamentals of version control
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	eGit Staging View
	Synchronize Workspace View
	eGit from the start
	eGit: cloning
	Slide 20
	eGit: Import Projects
	Creating a new branch
	The art of branching
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Tracking remote branches
	Deleting remote branches
	Switching between branches
	Resolving conflicts
	Slide 32
	Other (e)Git hints
	Some words on collaboration…
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 60
	Summary: Development Environment

