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Part I: Goals

Learning Target
 Recognize the power of Eclipse
 Identify what you did not know yet
 Know where to find tutorials and help
 Being able to set up the Eclipse IDE for the lab
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Eclipse

Eclipse is far more than a Java editor
 Code navigation and exploration
 Refactoring
 Background compilation 
 Customizable build system
 Extensibile: Git, JUnit, Code Coverage, Web development tools, …
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Eclipse

 Recommended reads
 Workbench user guide > Tips and tricks
 Java development user guide > Tips and tricks

 Recommended shortcuts
 Quick Fix (Ctrl+1), Quick Access (Ctrl+3)
 Open Type / resource (Ctrl+Shift+T / 

Ctrl+Shift+R)
 Open declaration / Javadoc (F3 / F2)
 Quick type hierarchy (Ctrl+T)
 Quick outline (Ctrl+O)
 Refactor / Rename (Alt+Shift+T / Alt+Shift+R)
 … Key bindings overview (Ctrl+Shift+L) J
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Setting up Eclipse

To setup your Eclipse, you need to:
1. Download and install eclipse
2. Setup basics: code styles, save actions, file encoding, 

…
3. Setup Tomcat
4. Setup Git
5. Setup DB
6. Setup Launch configurations
7. Install other plugins/extensions as needed (e.g., 

EclEmma)
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Part II. Git
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Git

 Git is a modern distributed version control system 
(VCS)

 Initial release 2005 by Linus Torwalds
 Widely adopted in open source communities: 

Linux Kernel, Ruby on Rails, Android, Debian, …

 Can best be learned if you forget everything you 
know about how (centralized) version control works!
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Fundamentals of version control

 Repository – a database containing files under version control 
and the history of these files.

 Working Copy – a local copy of files from the repository. May be 
modified, and may not represent the most recent repository revision.

 Revision – the state of a file (CVS), of a branch (Git), or of the 
whole repository (SVN) as committed to the version control system.

 Change Set – a set of modifications to files under version control.

 Commit – the act of writing a change set from the working copy to 
the repository.

 Update – the act of fetching changes that have been performed on 
the repository since the last update and applying them to the 
working copy.
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Fundamentals of version control

 Branch –  a set of files under version control that evolve 
independently of other file sets. Often defines an own line of 
development of a product.

 Tag – a human-readable link to a specific revision. Is often used to 
mark the source code of released versions (e.g. tag v_2_0_3).

 Trunk/Master – the branch denoting the main line of development 
of a product.

 Merge – the act of reconciling change sets from parallel branches.

 Switch – the act of changing the working copy from a branch to 
another.

 Conflict – occurs when a file was changed concurrently, and the 
VCS cannot reconcile the changes automatically. Conflicts must be 
resolved manually.
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Centralized VCS

dev machine server

working

Latest from VCS

update

commit

merge

branch

§ Cannot work without connectivity
§ Needs server to branch and merge
§ Cannot save experimental features locally
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Decentralized VCS

§ Works without connectivity
§ Can branch and merge against local VCS
§ Needs synchronization among multiple VCS

server

working

synchronize

synchronize

dev machine

switch

commit

merge

branch
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Git Staging

• Git allows to select changes for commit
• “Staging area” lies between working area and 

local branches

Working
area

Local 
branches

Staging
area

commitstage
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Git

serverdev machine

fetch

Local branches
(on server)Local 

branches
Remote

branches

merge

clone

push

pull = fetch & merge

commit

switch

merge
working
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eGit Staging View

 Helpful tool for creating commits
 Faster than Menu > Team > Add
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Synchronize Workspace View

 Menu à Teamà Synchronize Workspace (or change to 
Team Synchronizing perspective)
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eGit from the start
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eGit: cloning
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eGit: clone results
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eGit: Import Projects
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Creating a new branch
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The art of branching

 When working on a user story 
 Create a branch for your story 

(= feature branch)
 Work on the branch
 Merge the branch into master

 Don’t disconnect from the repository 
(= team): fetch & merge master
changes to your branch regularly!

 Read the Git tutorials
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GitLab Flow: Feature Branches



GitLab Flow: Release Branches



Commit messages

 What does the following history tell you?
ea42b79 There were some bugs in the code!!!! Didn't know
2db0f12 fixed two build-breaking issues: the ant task co
147709f Tweaks to some files
22b25e0 
7f96f57 polishing
59a2ed6 update

 And the following?
5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
e142fd1 Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage
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The art of writing commit 
messages

 Good commit messages are important 
 Separate subject from body with a blank line
 Limit the subject line to 50 characters
 Capitalize the subject line
 Do not end the subject line with a period
 Use the imperative mood in the subject line
 Wrap the body at 72 characters
 Use the body to explain what and why vs. How

 See http://chris.beams.io/posts/git-commit/ for more
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Tracking remote branches

 Instead of checking out a 
remote branch directly, it's 
better to create a local branch 
that tracks the remote branch.

 After that, you can pull and 
push directly to/from the original 
remote branch.

 If you push a branch that you 
created locally, the local branch 
starts tracking the remote copy.
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Deleting remote branches

 Deleting the remote reference 
doesn't do anything on the 
server.

 To remove a remote branch you 
have to push "nothing" to the 
branch:
git push origin --delete branch

or with the push dialog in eGit 
(see picture).

 Deleting remote branches is 
most fun when others are 
tracking it J
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Switching between branches

 Git allows to switch between branches at any time
 eGit: Menuà Teamà Switch To

 If you have uncommitted changes, you have to 
either commit them first or stash your changes
 eGit: Menu in Git Repository View à  Stash Changes
 Those changes get “stored" and you can switch 

branches
 You can restore stashed changes in the Git 

Repository View
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Resolving conflicts

 Merging branches may lead to conflicts. When this 
happens you end up in a "merging-state" where you 
have to resolve the conflicts.

 Resolve conflicts: 
 Menuà Teamà

Merge Tool
 Or/and edit 

manually
 Then: 

 Add to index
 Commit
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Other (e)Git hints

 Undoing changes: 
 Use Menuà Replaceà (HEAD|Commit|…) to replace 

files/folders with previous versions from the repository
 If you're used to SVN: don't forget to push

 Commit only writes to your local repository. Use 
"commit and push" in Commit dialog or push 
explicitly. 

 Resolving conflicts without editing (e.g. for binary 
files)
 git checkout --ours <path>
 git checkout --theirs <path>
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Other (e)Git hints

 Use own repository (e.g. GitHub/GitLab) to 
experiment!

 Install full Git distribution (www.git-scm.com) and 
(optionally) GUI like TortoiseGit, etc.

 Have a look at the git command line
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Some words on collaboration…

Merging a user story into master means integration
 Conflicts must be carefully resolved
 The whole codebase must compile
 All tests must pass:

unit tests, integration tests, system tests

Integrate early and opportunistically, 
It will not get easier if you wait!
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GitLab: Project Overview
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GitLab: List of Milestones

Matthias Dangl15.05.2017



GitLab: Milestone
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GitLab: Issues
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GitLab: Issue
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GitLab: Issue

Matthias Dangl15.05.2017



GitLab: Issue
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GitLab: Third-Party Scrum 
Support
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GitLab: Branches

Matthias Dangl15.05.2017



GitLab: Branches
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GitLab: Merge Requests
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GitLab: Merge Request
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GitLab: Merge Request
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GitLab: Merge Request
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GitLab: Merge Request
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GitLab: Merge Request
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Summary
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Summary: Development 
Environment

 Eclipse
 The IDE for our project

 Git
 Distributed version control system
 Built-in branching facilities
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Part I. Eclipse
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Part I: Goals

Learning Target
 Recognize the power of Eclipse
 Identify what you did not know yet
 Know where to find tutorials and help
 Being able to set up the Eclipse IDE for the lab
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Eclipse

Eclipse is far more than a Java editor
 Code navigation and exploration
 Refactoring
 Background compilation 
 Customizable build system
 Extensibile: Git, JUnit, Code Coverage, Web development tools, …
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Eclipse

 Recommended reads
 Workbench user guide > Tips and tricks
 Java development user guide > Tips and tricks

 Recommended shortcuts
 Quick Fix (Ctrl+1), Quick Access (Ctrl+3)
 Open Type / resource (Ctrl+Shift+T / 

Ctrl+Shift+R)
 Open declaration / Javadoc (F3 / F2)
 Quick type hierarchy (Ctrl+T)
 Quick outline (Ctrl+O)
 Refactor / Rename (Alt+Shift+T / Alt+Shift+R)
 … Key bindings overview (Ctrl+Shift+L) J
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Setting up Eclipse

To setup your Eclipse, you need to:
1. Download and install eclipse
2. Setup basics: code styles, save actions, file encoding, 

…
3. Setup Tomcat
4. Setup Git
5. Setup DB
6. Setup Launch configurations
7. Install other plugins/extensions as needed (e.g., 

EclEmma)
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Part II. Git
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Git

 Git is a modern distributed version control system 
(VCS)

 Initial release 2005 by Linus Torwalds
 Widely adopted in open source communities: 

Linux Kernel, Ruby on Rails, Android, Debian, …

 Can best be learned if you forget everything you 
know about how (centralized) version control works!
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Fundamentals of version control

 Repository – a database containing files under version control 
and the history of these files.

 Working Copy – a local copy of files from the repository. May be 
modified, and may not represent the most recent repository revision.

 Revision – the state of a file (CVS), of a branch (Git), or of the 
whole repository (SVN) as committed to the version control system.

 Change Set – a set of modifications to files under version control.

 Commit – the act of writing a change set from the working copy to 
the repository.

 Update – the act of fetching changes that have been performed on 
the repository since the last update and applying them to the 
working copy.
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Fundamentals of version control

 Branch –  a set of files under version control that evolve 
independently of other file sets. Often defines an own line of 
development of a product.

 Tag – a human-readable link to a specific revision. Is often used to 
mark the source code of released versions (e.g. tag v_2_0_3).

 Trunk/Master – the branch denoting the main line of development 
of a product.

 Merge – the act of reconciling change sets from parallel branches.

 Switch – the act of changing the working copy from a branch to 
another.

 Conflict – occurs when a file was changed concurrently, and the 
VCS cannot reconcile the changes automatically. Conflicts must be 
resolved manually.
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Centralized VCS

dev machine server

working

Latest from VCS

update

commit

merge

branch

§ Cannot work without connectivity
§ Needs server to branch and merge
§ Cannot save experimental features locally
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Decentralized VCS

§ Works without connectivity
§ Can branch and merge against local VCS
§ Needs synchronization among multiple VCS

server

working

synchronize

synchronize

dev machine

switch

commit

merge

branch
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Git Staging

• Git allows to select changes for commit
• “Staging area” lies between working area and 

local branches

Working
area

Local 
branches

Staging
area

commitstage
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Git

serverdev machine

fetch

Local branches
(on server)Local 

branches
Remote

branches

merge

clone

push

pull = fetch & merge

commit

switch

merge
working
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eGit Staging View

 Helpful tool for creating commits
 Faster than Menu > Team > Add
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Synchronize Workspace View

 Menu à Teamà Synchronize Workspace (or change to 
Team Synchronizing perspective)
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eGit from the start
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eGit: cloning
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eGit: clone results
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eGit: Import Projects
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Creating a new branch
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The art of branching

 When working on a user story 
 Create a branch for your story 

(= feature branch)
 Work on the branch
 Merge the branch into master

 Don’t disconnect from the repository 
(= team): fetch & merge master
changes to your branch regularly!

 Read the Git tutorials

15.05.2017 Matthias Dangl 23

Viel Erfolg mit Git J
à Und jetzt zum nächsten Thema, MyLyn

23



GitLab Flow: Feature Branches



GitLab Flow: Release Branches



Commit messages

 What does the following history tell you?
ea42b79 There were some bugs in the code!!!! Didn't know
2db0f12 fixed two build-breaking issues: the ant task co
147709f Tweaks to some files
22b25e0 
7f96f57 polishing
59a2ed6 update

 And the following?
5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
e142fd1 Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage
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The art of writing commit 
messages

 Good commit messages are important 
 Separate subject from body with a blank line
 Limit the subject line to 50 characters
 Capitalize the subject line
 Do not end the subject line with a period
 Use the imperative mood in the subject line
 Wrap the body at 72 characters
 Use the body to explain what and why vs. How

 See http://chris.beams.io/posts/git-commit/ for more
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Tracking remote branches

 Instead of checking out a 
remote branch directly, it's 
better to create a local branch 
that tracks the remote branch.

 After that, you can pull and 
push directly to/from the original 
remote branch.

 If you push a branch that you 
created locally, the local branch 
starts tracking the remote copy.
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Deleting remote branches

 Deleting the remote reference 
doesn't do anything on the 
server.

 To remove a remote branch you 
have to push "nothing" to the 
branch:
git push origin --delete branch

or with the push dialog in eGit 
(see picture).

 Deleting remote branches is 
most fun when others are 
tracking it J
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Switching between branches

 Git allows to switch between branches at any time
 eGit: Menuà Teamà Switch To

 If you have uncommitted changes, you have to 
either commit them first or stash your changes
 eGit: Menu in Git Repository View à  Stash Changes
 Those changes get “stored" and you can switch 

branches
 You can restore stashed changes in the Git 

Repository View
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Resolving conflicts

 Merging branches may lead to conflicts. When this 
happens you end up in a "merging-state" where you 
have to resolve the conflicts.

 Resolve conflicts: 
 Menuà Teamà

Merge Tool
 Or/and edit 

manually
 Then: 

 Add to index
 Commit
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Other (e)Git hints

 Undoing changes: 
 Use Menuà Replaceà (HEAD|Commit|…) to replace 

files/folders with previous versions from the repository
 If you're used to SVN: don't forget to push

 Commit only writes to your local repository. Use 
"commit and push" in Commit dialog or push 
explicitly. 

 Resolving conflicts without editing (e.g. for binary 
files)
 git checkout --ours <path>
 git checkout --theirs <path>
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Other (e)Git hints

 Use own repository (e.g. GitHub/GitLab) to 
experiment!

 Install full Git distribution (www.git-scm.com) and 
(optionally) GUI like TortoiseGit, etc.

 Have a look at the git command line
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Some words on collaboration…

Merging a user story into master means integration
 Conflicts must be carefully resolved
 The whole codebase must compile
 All tests must pass:

unit tests, integration tests, system tests

Integrate early and opportunistically, 
It will not get easier if you wait!
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GitLab: Project Overview
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GitLab: List of Milestones
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GitLab: Milestone
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GitLab: Issues
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GitLab: Issue
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GitLab: Issue
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GitLab: Issue
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GitLab: Third-Party Scrum 
Support
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GitLab: Branches
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GitLab: Branches
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GitLab: Merge Requests
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GitLab: Merge Request
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GitLab: Merge Request
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GitLab: Merge Request
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GitLab: Merge Request
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GitLab: Merge Request
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Summary
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Summary: Development 
Environment

 Eclipse
 The IDE for our project

 Git
 Distributed version control system
 Built-in branching facilities
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