
Technology Background
Development environment, Skeleton and Libraries

Slides by Prof. Dr. Matthias Hölzl
(based on material by Dr. Andreas Schroeder and Christian Kroiß)

Outline

Lecture 1
I. Eclipse
II. Git

Lecture 2
III. Java Web Applications
IV. Wicket (and AJAX)
V. TBIAL Skeleton Overview
VI. Testing

Part III. Java Web Applications

Java Servlets: CGI for Java

Deployment Descriptors

WEB-INF/web.xml

Java Server Pages (JSP):
using Java like PHP

Deployment: Web Modules

.WAR

Servlet Container

Web Archive

ZIP

D
E

P
LO

Y

WEB-INF

lib classes

Assembly Root

JSP pages, HTML pages,
Resources, etc.

web.xml

Part IV. Wicket

State handling

§ Wicket aims to solve the impedance mismatch
between the stateless HTTP protocol and OO
Java programming.
§ State important, e.g. for tab-panels, etc.
§ Why not encoding state in request URLs?

§ security issues, hard to handle
§ Why not put state in session?

§ Back Button problem, etc.
è Wicket handles state transparently

Plain Java + Plain HTML

§ Plain Java
§ Regular Java OOP that feels like Swing/SWT
§ Reusable widgets by inheritance and composition
§ Full IDE support
§ Refactoring

§ Plain HTML
§ "Wicket doesn’t just reduce the likelihood of logic

creeping into the presentation templates—it
eliminates the possibility altogether."

§ Create layout with only HTML + CSS

The Wicket component triad

from Wicket in Action

A first Wicket example (1)

WicketLabApplication.java

Source code in browser

A glimpse behind the Wicket
scenes (1)

from Wicket in Action, not related to the example above

A glimpse behind the Wicket
scenes (2)

AJAX

Asynchronous JavaScript and XML
§ Originally meant to Incorporate

§ standards-based presentation using XHTML and
CSS;

§ dynamic display and interaction using the Document
Object Model;

§ data interchange and manipulation using XML and
XSLT;

§ asynchronous data retrieval using XMLHttpRequest;
§ and JavaScript binding everything together.

§ Now often used with JSON instead of XML

Pure AJAX

http://www.w3schools.com/ajax/tryit.asp?filename=tryajax_suggest

http://www.w3schools.com/ajax/tryit.asp?filename=tryajax_suggest
http://www.w3schools.com/ajax/tryit.asp?filename=tryajax_suggest

AJAX with Wicket

Register.java (in TBIAL Skeleton)

Summary

§ Wicket…
§ offers a light-weight object-oriented programming

model for web applications
§ enforces clear separation of Java and HTML
§ has pretty neat AJAX support

§ For further information, see http://wicket.apache.org/

Part V. Skeleton Overview

Part V: Learning Targets

Learning Targets
§ Understand the structure of the skeleton
• Know what is done where
• Have a starting point for inspecting the source and

complete the programming task

Project structure

main source folder

test source folders

compiler output folder

config files etc.

web root folder

deployment descriptor

application libraries
(deployed)

development libraries
(e.g. testing)

Ant buildfile

Project structure (2)

main application class

web page classes

I18N messages

database access facade

web page markup files

Main classes in the skeleton

Web Pages with inheritance

BasePage.html
…
<div class="content">
 <wicket:child />
</div>
…

[^BasePage].html
…
<wicket:extend>
…Main Content…
</wicket:extend>
…

Authentication & Authorization

§ Authentication is done in the authenticate()
method of TBIALSession, which is called from the
Login and Register page.
1. simple lookup of User from the database
2. check if password matches
3. if successful, store user object in session,

otherwise redirect
§ Authorization can be handled very comfortably with

an annotation:
§. If a class is annotated with @AuthenticationRequired

then it is only rendered if a user is signed in.

Authorization mechanism

Lobby.java

Application.java

Database Access

§ At the moment, only user names and plain
passwords are stored in the database

§ An in-memory database stub is used for unit
tests

§ Apache Derby is used for development.
§ PostgreSQL is used for staging.

… but first

Have no fear to experiment!

§ Everything is safely stored in Git
§ Eclipse has a local history, get familiar with it
§ Not breaking things (locally) at least one time

is (almost) a bad sign J

You need to know the code base!

Part VI. Testing:
JUnit, Mockito, WicketTester

JUnit

Goals of unit testing
§ Increase confidence
§ Show that the code works
§ Facilitate change and feature integration

§ Five steps make a unit test
1. Set up fixture
2. Create input
3. Execute
4. Check output
5. Tear down

Fixtures

§ Code worth testing has dependencies
§ Database, Config files, Environment variables

§ A test fixture is the baseline for running the test
§ Goal: create a known and controlled environment
§ Data and environment is tailored to the test

§ Setup and tear down
§ JUnit offers @Before and @After annotations for

setup and tear down
§ Setup: setup code that is re-used among tests
§ Tear down: clean-up performed regardless of test

result

Mockito

Writing fixtures can be a lot of work, but
§ Over time, a set of re-usable fixtures will emerge
§ Mockito allows to quickly create one-shot fixture mocks

§ Mockito lifecycle
§ Create mock object

§ Record behavior

§ Use

§ Verify

Unit Test Best Practices

Testing best practices
§ Test behavior, not methods;

Behaviors are paths through code!
§ Do not test code that cannot break
§ Use OO principles for your tests (stay SOLID and DRY)
§ Keep tests orthogonal

§ Check only one behavior in one test
§ Do not check the same behavior in several tests

§ Keep the architecture testable
§ Test one code unit at a time

§ Use fixtures and mocks

Testing Wicket Pages with
WicketTester

§ Use WicketTester (integrated in Wicket) for
automated web page tests without starting a server

Summary

Summary

III. Java Web Applications
§ The very basics

IV. Wicket introduction
§ Basic architecture, AJAX support

V. Skeleton Overview
§ Project structure
§ Authentication

VI. Testing
§ Junit, Mockito
§ WicketTester

Rules and Task

Task to work on

User Counter Prio:

20
As a player, I want to know how many

other players are currently online so

that I can see how large the current

player base is.

The counter should be displayed in the

footer, and should be updated every

time a player logs in or out.

§ Select a peer for code review
§ Create your ticket for working on the task

(use version “Programming Exercise”)
§ Create your solution in your own code branch
§ Review the code of your peer until May 15th

Technology Background
Development environment, Skeleton and Libraries

Slides by Prof. Dr. Matthias Hölzl
(based on material by Dr. Andreas Schroeder and Christian Kroiß)

Outline

Lecture 1
I. Eclipse
II. Git

Lecture 2
III. Java Web Applications
IV. Wicket (and AJAX)
V. TBIAL Skeleton Overview
VI. Testing

Part III. Java Web Applications

Java Servlets: CGI for Java

Deployment Descriptors

WEB-INF/web.xml

Java Server Pages (JSP):
using Java like PHP

Deployment: Web Modules

.WAR

Servlet Container

Web Archive

ZIP

D
E

P
LO

Y

WEB-INF

lib classes

Assembly Root

JSP pages, HTML pages,
Resources, etc.

web.xml

Part IV. Wicket

State handling

§ Wicket aims to solve the impedance mismatch
between the stateless HTTP protocol and OO
Java programming.
§ State important, e.g. for tab-panels, etc.
§ Why not encoding state in request URLs?

§ security issues, hard to handle
§ Why not put state in session?

§ Back Button problem, etc.
è Wicket handles state transparently

Plain Java + Plain HTML

§ Plain Java
§ Regular Java OOP that feels like Swing/SWT
§ Reusable widgets by inheritance and composition
§ Full IDE support
§ Refactoring

§ Plain HTML
§ "Wicket doesn’t just reduce the likelihood of logic

creeping into the presentation templates—it
eliminates the possibility altogether."

§ Create layout with only HTML + CSS

The Wicket component triad

from Wicket in Action

A first Wicket example (1)

WicketLabApplication.java

Source code in browser

A glimpse behind the Wicket
scenes (1)

from Wicket in Action, not related to the example above

A glimpse behind the Wicket
scenes (2)

AJAX

Asynchronous JavaScript and XML
§ Originally meant to Incorporate

§ standards-based presentation using XHTML and
CSS;

§ dynamic display and interaction using the Document
Object Model;

§ data interchange and manipulation using XML and
XSLT;

§ asynchronous data retrieval using XMLHttpRequest;
§ and JavaScript binding everything together.

§ Now often used with JSON instead of XML

Pure AJAX

http://www.w3schools.com/ajax/tryit.asp?filename=tryajax_suggest

AJAX with Wicket

Register.java (in TBIAL Skeleton)

Summary

§ Wicket…
§ offers a light-weight object-oriented programming

model for web applications
§ enforces clear separation of Java and HTML
§ has pretty neat AJAX support

§ For further information, see http://wicket.apache.org/

Part V. Skeleton Overview

Part V: Learning Targets

Learning Targets
§ Understand the structure of the skeleton
• Know what is done where
• Have a starting point for inspecting the source and

complete the programming task

Project structure

main source folder

test source folders

compiler output folder

config files etc.

web root folder

deployment descriptor

application libraries
(deployed)

development libraries
(e.g. testing)

Ant buildfile

Project structure (2)

main application class

web page classes

I18N messages

database access facade

web page markup files

Main classes in the skeleton

Web Pages with inheritance

BasePage.html
…
<div class="content">
 <wicket:child />
</div>
…

[^BasePage].html
…
<wicket:extend>
…Main Content…
</wicket:extend>
…

Authentication & Authorization

§ Authentication is done in the authenticate()
method of TBIALSession, which is called from the
Login and Register page.
1. simple lookup of User from the database
2. check if password matches
3. if successful, store user object in session,

otherwise redirect
§ Authorization can be handled very comfortably with

an annotation:
§. If a class is annotated with @AuthenticationRequired

then it is only rendered if a user is signed in.

Authorization mechanism

Lobby.java

Application.java

Database Access

§ At the moment, only user names and plain
passwords are stored in the database

§ An in-memory database stub is used for unit
tests

§ Apache Derby is used for development.
§ PostgreSQL is used for staging.

… but first

Have no fear to experiment!

§ Everything is safely stored in Git
§ Eclipse has a local history, get familiar with it
§ Not breaking things (locally) at least one time

is (almost) a bad sign J

You need to know the code base!

Part VI. Testing:
JUnit, Mockito, WicketTester

JUnit

Goals of unit testing
§ Increase confidence
§ Show that the code works
§ Facilitate change and feature integration

§ Five steps make a unit test
1. Set up fixture
2. Create input
3. Execute
4. Check output
5. Tear down

→ Soweit so einfach, aber warum denn set up
und tear down?

30

Fixtures

§ Code worth testing has dependencies
§ Database, Config files, Environment variables

§ A test fixture is the baseline for running the test
§ Goal: create a known and controlled environment
§ Data and environment is tailored to the test

§ Setup and tear down
§ JUnit offers @Before and @After annotations for

setup and tear down
§ Setup: setup code that is re-used among tests
§ Tear down: clean-up performed regardless of test

result

→ Fixture-code kann ziemlich umfangreich
werden. Um zu vermeiden dass er überbordet
gibt es Mockito.

31

Mockito

Writing fixtures can be a lot of work, but
§ Over time, a set of re-usable fixtures will emerge
§ Mockito allows to quickly create one-shot fixture mocks

§ Mockito lifecycle
§ Create mock object

§ Record behavior

§ Use

§ Verify

→ Test-Struktur ist jetzt klar, fixture-support
haben wir jetzt auch. Welche Richtlinien gibt
es für das Testen?

32

Unit Test Best Practices

Testing best practices
§ Test behavior, not methods;

Behaviors are paths through code!
§ Do not test code that cannot break
§ Use OO principles for your tests (stay SOLID and DRY)
§ Keep tests orthogonal

§ Check only one behavior in one test
§ Do not check the same behavior in several tests

§ Keep the architecture testable
§ Test one code unit at a time

§ Use fixtures and mocks

→ Das war’s zum Thema testen, jetzt zum
nächsten großen Thema: UI.

33

Testing Wicket Pages with
WicketTester

§ Use WicketTester (integrated in Wicket) for
automated web page tests without starting a server

Summary

Summary

III. Java Web Applications
§ The very basics

IV. Wicket introduction
§ Basic architecture, AJAX support

V. Skeleton Overview
§ Project structure
§ Authentication

VI. Testing
§ Junit, Mockito
§ WicketTester

Rules and Task

Task to work on

User Counter Prio:

20
As a player, I want to know how many

other players are currently online so

that I can see how large the current

player base is.

The counter should be displayed in the

footer, and should be updated every

time a player logs in or out.

§ Select a peer for code review
§ Create your ticket for working on the task

(use version “Programming Exercise”)
§ Create your solution in your own code branch
§ Review the code of your peer until May 15th

	Slide 1
	Outline
	Slide 3
	Java Servlets: CGI for Java
	Deployment Descriptors
	Java Server Pages (JSP): using Java like PHP
	Deployment: Web Modules
	Slide 8
	State handling
	Plain Java + Plain HTML
	The Wicket component triad
	A first Wicket example (1)
	A glimpse behind the Wicket scenes (1)
	A glimpse behind the Wicket scenes (2)
	AJAX
	Pure AJAX
	AJAX with Wicket
	Summary
	Slide 19
	Part V: Learning Targets
	Project structure
	Project structure (2)
	Main classes in the skeleton
	Web Pages with inheritance
	Authentication & Authorization
	Authorization mechanism
	Database Access
	… but first
	Slide 29
	JUnit
	Fixtures
	Mockito
	Unit Test Best Practices
	Testing Wicket Pages with WicketTester
	Slide 35
	Summary
	Slide 37
	Task to work on
	Slide 1
	Outline
	Slide 3
	Java Servlets: CGI for Java
	Deployment Descriptors
	Java Server Pages (JSP): using Java like PHP
	Deployment: Web Modules
	Slide 8
	State handling
	Plain Java + Plain HTML
	The Wicket component triad
	A first Wicket example (1)
	A glimpse behind the Wicket scenes (1)
	A glimpse behind the Wicket scenes (2)
	AJAX
	Pure AJAX
	AJAX with Wicket
	Summary
	Slide 19
	Part V: Learning Targets
	Project structure
	Project structure (2)
	Main classes in the skeleton
	Web Pages with inheritance
	Authentication & Authorization
	Authorization mechanism
	Database Access
	… but first
	Slide 29
	JUnit
	Fixtures
	Mockito
	Unit Test Best Practices
	Testing Wicket Pages with WicketTester
	Slide 35
	Summary
	Slide 37
	Task to work on

