
Generalizing counterexamples:
certification of temporal properties

with parity games

Lehr- und Forschungseinheit für Theoretische Informatik
Institut für Informatik

Ludwig-Maximilians-Universität München

FSV 2 · Jan 30, 2018

Roadmap

• Certified decision procedures
• µ-calculus and parity games
• Certificates for model checking and µ-calculus
• Computing certificates by fixpoint instrumentation
• Certificate checking
• Evaluation

2/32

What is certified model checking?
(Namjoshi 2001)

[I]f it is determined that a property holds, model checkers
produce only the answer “yes”! This does not inspire the
same confidence as a counterexample; one is forced to as-
sume that the model checker implementation is correct.

— Kedar S. Namjoshi (2001)

• Not only check whether a temporal property holds…
• …but also give an argument why.

3/32

Certified decision procedures

• Decide a property, and also compute a certificate of it.
• Checking the certificate only succeeds if the result is
correct

• Requirements for useful certificates:
• Checkable by a standalone, “simpler” routine
• Checkable efficiently (in a lower complexity class)
• Low overhead to generate
• Compact representation

• Examples from other areas:
• Certified UNSAT
• Primality tests
• Polyhedral Array-Bound Analysis

4/32

Benefits of this approach

• More confidence that the result is right
• Separation between computation and correctness

• Can optimize decision procedure independently
• Viable for formal verification

• Only need to verify the certificate checker
• Trade completeness for implementation efficiency
• Possible to interpret certificate as proof object

• Possible to use in a theorem prover

5/32

Making use of external decision
procedures

• Don’t want to do complex computations inside Coq
• Don’t want to prove correctness of the whole solver
• Want to make use of existing solvers
• Boolean results of external solvers are not enough

6/32

Formally verified certified decision
procedures

• Elegant approach: proof by reflection
• Given a temporal formula and a model in your proof logic
• Construct a concrete representation
• Use external decision procedure to compute certificate
• Interpret certificate as object of the proof logic
• Apply the correctness theorem of your certificate checker
to gain a proof object of the original formula

7/32

Reflecting decision procedures with
certificates

µ-calculus proposition µ-calculus expression
(concrete data structure)

Certificate

Proof Boolean result

External solver

Certificate checker

Correctness

8/32

Consequences

• External program can do anything it wants:
no completeness guaranteed. But errors will be noticed!

• Only certificate checker needs (weaker) correctness proof.
∀s ∈ S, φ ∈ Φ : check(φ, cert(φ), s) = true→ s ∈ JφK.

• Only certificate checker runs as a Coq function.
• Coq function evaluation is quite speedy, can make use
of a virtual machine.

• Standalone checker coqchk is not so fast.
• Small proof objects, essentially the certificate + call to the
checker.

9/32

Certificates for model checking

• Familar case: counterexamples (“negative certificate”)
• E.g. for LTL, a lasso where φ doesn’t hold to refute a Gφ

formula
• For simple CTL formulas, positive certificates could be:

• for a EFφ formula, a finite path where at the end φ

holds
• for a EGφ formula, a lasso where φ holds in the loop
• for a AGφ formula, an argument that φ holds for all
reachable states, and all moves stay in that area

• Not obvious how certificates for general CTL or CTL*
formulas look like (Shankar and Sorea 2003; Sorea 2005)
• How to certify AG EF φ?

10/32

Certificates for µ-calculus

• µ-calculus is a powerful temporal logic with arbitrary
nested greatest and least fixpoint operators
• strictly more powerful than LTL, CTL and CTL* (which
are embeddable using low quantifier alternation)

• strictly more powerful with each quantifier alternation
• Well known relationship between µ-calculus and parity
games (Emerson and Jutla 1991)

• Can leverage winning strategies for parity games as
certificates for µ-calculus

• Winning stategies for the dual formula φ∗ are generalized
counterexamples

11/32

µ-calculus

• highly expressive temporal logic, subsumes LTL, CTL, CTL*
• model checking problem: on which states of a given finite
labelled transition system is a given formula true?

φ ::= X (variables)
| p | ¬p (atomic propositions)
| [a]φ (for all a-transitions)
| 〈a〉φ (a-transition exists)
| φ1 ∧ φ2 | φ1 ∨ φ2

| µX.φ (least fixpoint)
| νX.φ (greatest fixpoint)

12/32

µ-calculus φ ::= X | p | ¬p | [a]φ | 〈a〉φ
| φ1 ∧ φ2 | φ1 ∨ φ2 | µX.φ | νX.φ

“for every path, q holds at every position”

µX.q ∧ [a]X

“there are paths where q is true infinitely often”

νX.µY.(q ∧ 〈a〉X) ∨ 〈a〉Y

“there are paths where q holds at every even position”

νX.q ∧ 〈a〉〈a〉X

(more powerful than CTL*)
13/32

µ-calculus: Set semantics

sem(X, η) = η(X)

sem(φ1 ∧ φ2, η) = sem(φ1, η) ∩ sem(φ2, η)

sem(φ1 ∨ φ2, η) = sem(φ1, η) ∪ sem(φ2, η)

sem([a]φ, η) = p̃re(a−→)(sem(φ, η))

sem(〈a〉φ, η) = pre(a−→)(sem(φ, η))

sem(µX.φ, η) = iterX(φ, η, ∅)

sem(νX.φ, η) = iterX(φ, η, S)

s ∈ p̃re(a−→)(U) ⇔ ∀t ∈ S. s a−→ t =⇒ t ∈ U (weakest precondition)

s ∈ pre(a−→)(U) ⇔ ∃t ∈ S. s a−→ t ∧ t ∈ U (preimage)
iterX(φ, η, U) = let U′ := sem(φ, η[X := U]) in

if U = U′ then U else iterX(φ, η, U′)

14/32

Parity games

A parity game consists of a disjoint sum of positions
Pos = Pos0 ∪ Pos1, a total edge relation→⊆ Pos× Pos and
a priority function Ω : Pos→ N.

Moves happen along the edge relation. The destination
decides who moves next.

The game is won if the largest priority that occurs infinitely
often is even, the opponent wins if it is odd.

15/32

Strategies for parity games

A strategy ρ is a function that tells the player how to move
next.

A positional strategy only takes the the current position
into account.

A position is in a winning set Wi if there exists a strategy ρ

such that player i wins, starting at a position in Wi.

Theorem. Every position p is either in W0 or W1 and player i
wins positionally from every position in Wi.

16/32

µ-calculus and parity games

• Positions of the parity game: states × subformulas
• Moves: according to the edges of the model resp.
subformula relation

• Priorities: outer fixpoints have higher priority,
µ odd, ν even, we win (= formula is true) when highest
recurrent priority is even.

• Strategy: how to move at a given position
• There are always memoryless winning strategies
• Actual choices only on ∨ and 〈a〉
• Representable in O(|S|2|φ|)

17/32

Computing winning strategies
for µ-calculus

• For finite models, µ-calculus validity is computed by
fixpoint iteration in a straight forward manner.
• As usual, computation complexity raises with
quantifier alternation.

• We show that such a fixpoint computation can be
instrumented to compute a winning strategy as well.

18/32

Computing winning strategies
by fixpoint iteration

• Instead of computing with sets, we use partial winning
strategies, i.e. winning stategies defined on a subset of the
states.

• Inductively defined by the structure of the formula,
computed in a compositional manner.

• For fixpoints, we iteratively grow a partial winning strategy
to its maximum domain.
• Same time complexity as computing set semantics
• Space complexity increases from O(|S||φ|) to

O(|S|2|φ|2) to keep track of the strategy.

19/32

Strategies for µ-calculus

We can interpret a µ-calculus formula φ as a parity game.
Moves can happen along the subformulae (example later).
The priority of a position depends on the kind of formula
and its nesting depth.

A partial winning strategy for µ-calculus is a partial
function

Σ : Φ × S ⇀ s (move to state s ∈ S)
| 1 (take the left formula of disj.)
| 2 (take the right formula of disj.)
| ∗ (take the only possible move)

20/32

Strategy semantics

(Σ + Σ′)(φ, s) = if (φ, s) ∈ dom(Σ) then Σ(φ, s) else Σ′(φ, s)

SEM(X)η = {(X, s) 7→ ∗ | s ∈ η(X)}
SEM(p)η = {(p, s) 7→ ∗ | p holds at s}

SEM(¬p)η = {(p, s) 7→ ∗ | p does not hold at s}
SEM(φ ∧ ψ)η = SEM(φ)η + SEM(ψ)η

+ {(φ ∧ ψ, s) 7→ ∗ | (φ, s) ∈ dom(SEM(φ)η)

∧ (ψ, s) ∈ dom(SEM(ψ)η)}
SEM(φ ∨ ψ)η = SEM(φ)η + SEM(ψ)η

+ {(φ ∨ ψ, s) 7→ 1 | (φ, s) ∈ dom(SEM(φ)η)}
+ {(φ ∨ ψ, s) 7→ 2 | (ψ, s) ∈ dom(SEM(ψ)η)}

21/32

Strategy semantics, cont’d

SEM([a]φ)η = SEM(φ)η

+ {([a]φ, s) 7→ ∗ | (φ, s) ∈ dom(SEM(φ))η}
SEM(〈a〉φ)η = SEM(φ)η

+ {(〈a〉φ, s) 7→ s′ | s a−→ s′ ∧ (φ, s′) ∈ dom(SEM(φ))η}

SEM(νX.φ)η = SEM(φ)η[X:=sem(φ,η)]

SEM(µX.φ)η = ITERX(φ, η, {})

ITERX(φ, η, Σ) = let Σ′ := SEM(φ)η[X:=dom(Σ)] in

if Σ = Σ′ then Σ else ITERX(φ, η, Σ′)

22/32

Checking certificates

• Naive approach: play according to the supposed winning
strategy, and branch for all possible adversarial moves.
(Easily runs into exponentially many cycles.)

• Better approach: We can reduce strategy checking to the
problem of determining emptiness of a Streett automaton.
Streett criterion in this case: for every recurrent odd
priority there is a recurrent and higher even priority.
Can reuse linear time algorithms for checking Streett
automata (Duret-Lutz, Poitrenaud, and Couvreur 2009;
Duret-Lutz 2007). Checking each SCC of the play is enough!

23/32

A small example

0 1:q 2

“there is a path along which q holds
infinitely often”

νX.µY.(q ∧ 〈a〉X) ∨ 〈a〉Y

X ν
= Y

Y
µ
= (q ∧ 〈a〉X) ∨ 〈a〉Y

X, 0 = 4

Y, 0 = 3

q /\ (<a>X) \/ (<a>Y), 0 = 0

(<a>Y), 0 = 0

Y, 1 = 3

q /\ (<a>X) \/ (<a>Y), 1 = 0

q /\ (<a>X), 1 = 0

q, 1 = 0 (<a>X), 1 = 0

X, 1 = 4

24/32

Checking the example strategy

X 0 -> * |
X 1 -> * |
Y 0 -> * |
Y 1 -> * |
q 1 -> * |
(<a>X) 0 -> X 1 |
(<a>X) 1 -> X 1 |
(<a>Y) 0 -> Y 1 |
(<a>Y) 1 -> Y 1 |
q /\ (<a>X) 1 -> * |
(q /\ (<a>X)) \/ (<a>Y) 0 -> #2 |
(q /\ (<a>X)) \/ (<a>Y) 1 -> #1

X, 0 = 4

Y, 0 = 3

q /\ (<a>X) \/ (<a>Y), 0 = 0

(<a>Y), 0 = 0

Y, 1 = 3

q /\ (<a>X) \/ (<a>Y), 1 = 0

q /\ (<a>X), 1 = 0

q, 1 = 0 (<a>X), 1 = 0

X, 1 = 4

25/32

Evaluation

• Experimental implementation micromu in OCaml.
• Hard to find good benchmarks for µ-calculus, created three
rather synthethic problems:
• A parity game translated into µ-calculus
• A simple reachability property to measure overhead
• A worst-case example for checking complexity

26/32

Flower benchmark
(Buhrke, Lescow, and Vöge 1999)

A parity game translated into µ-calculus.

With increasing problem size, solving gets exponentially
harder, but checking remains polynomial.

Problem States sem [s] SEM [s] Check [s] Check SCC [s]

Flower 8 16 0.179 0.203 0.009 0.040
Flower 10 20 3.166 1.960 0.071 0.419
Flower 12 24 32.269 11.688 0.287 2.061
Flower 14 28 320.931 61.733 1.298 10.829
Flower 16 32 3196.043 326.666 6.131 58.871

27/32

Circle benchmark

0

1

2

3

4

5

6

7

8

9 : q

A simple reachability property
to measure overhead

Problem States sem [s] SEM [s] Check [s] Check SCC [s]

Circle 100 100 0.003 0.001 0.001 0.001
Circle 1000 1000 0.109 0.018 0.005 0.006
Circle 10000 10000 15.763 3.398 0.054 0.057
Circle 100000 100000 2027.584 811.041 0.581 0.582

28/32

Braid benchmark 0

2 3

4 5

6 7

1

A worst-case example for checking complexity.

Naive checking blows up, but with SCC its still fine.

Problem States sem [s] SEM [s] Check [s] Check SCC [s]

Braid 6 12 0.001 0.005 1.282 0.009
Braid 8 16 0.002 0.003 31.062 0.013
Braid 10 20 0.002 0.006 711.002 0.020
Braid 100 200 0.663 0.993 — 3.674

29/32

Perspectives

• Current implementation is pretty naive, does not use state
of the art optimizations (BDDs, avoiding materialization…)

• Implementing certificate generation on existing model
checkers

• Performance problems due to functional programming
style

• Want to formalize certificate checking in Coq
• …yielding a formally verified certifying implementation
of µ-calculus, usable inside a theorem prover

30/32

Summary

• Use certificates to split complexity of a problem into a hard
certificate generation and an easy certificate checking
problem.
• Parts can be tweaked independently.
• Only checking needs to be formally verified.

• Leverage unverified algorithms and existing
implementations in a formally verified setting.

• Benefit from fast computation and compact proofs.

31/32

Questions?

Thank you.

32/32

References

[1] Nils Buhrke, Helmut Lescow, and Jens Vöge. “Strategy
construction in infinite games with Streett and Rabin
chain winning conditions”. In: Tools and Algorithms for
Construction and Analysis of Systems, Second
International Workshop, TACAS ’96, Passau, Germany,
March 27-29, 1996, Proceedings. Ed. by Tiziana Margaria
and Bernhard Steffen. Vol. 1055. Lecture Notes in
Computer Science. Springer, 1999, pp. 207–225. isbn:
3-540-61042-1.

[2] Alexandre Duret-Lutz. “Contributions à l’approche
automate pour la vérification de propriétés de
systèmes concurrents”. PhD Thesis. Université Pierre et
Marie Curie (Paris 6), July 2007.

32/32

References

[3] Alexandre Duret-Lutz, Denis Poitrenaud, and
Jean-Michel Couvreur. “On-the-fly Emptiness Check of
Transition-based Streett Automata”. In: ATVA’09. Ed. by
Zhiming Liu and Anders P. Ravn. Vol. 5799. Lecture
Notes in Computer Science. Springer, 2009, pp. 213–227.

[4] EA Emerson and CS Jutla. “Tree automata, mu-calculus
and determinacy”. In: Proceedings of the 32nd Annual
Symposium on Foundations of Computer Science
(FOCS’91). IEEE. 1991, pp. 368–377.

[5] K. Namjoshi. “Certifying model checkers”. In: Computer
Aided Verification. Springer, 2001, pp. 2–13.

[6] N. Shankar and M. Sorea. Counterexample-Driven
Model Checking (revisited version). Tech. rep.
SRI-CSL-03-04. SRI International, 2003.

32/32

[7] M. Sorea. “Dubious Witnesses and Spurious
Counterexamples”. UK Model Checking Days, York.
2005.

32/32

