Generalizing counterexamples: certification of temporal properties with parity games

Lehr- und Forschungseinheit für Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München

FSV 2 · Jan 30, 2018

Roadmap

- Certified decision procedures
- $\boldsymbol{\mu}\text{-calculus}$ and parity games
- + Certificates for model checking and $\mu\text{-calculus}$
- Computing certificates by fixpoint instrumentation
- Certificate checking
- Evaluation

What is certified model checking? (Namjoshi 2001)

[I]f it is determined that a property holds, model checkers produce only the answer "yes"! This does not inspire the same confidence as a counterexample; one is forced to assume that the model checker implementation is correct. — Kedar S. Namjoshi (2001)

- Not only check whether a temporal property holds...
- ...but also give an argument why.

Certified decision procedures

- Decide a property, and also compute a *certificate* of it.
 - Checking the certificate only succeeds if the result is correct
- Requirements for useful certificates:
 - Checkable by a standalone, "simpler" routine
 - Checkable efficiently (in a lower complexity class)
 - Low overhead to generate
 - Compact representation
- Examples from other areas:
 - Certified UNSAT
 - Primality tests
 - Polyhedral Array-Bound Analysis

Benefits of this approach

- More confidence that the result is right
- Separation between computation and correctness
 - Can optimize decision procedure independently
- Viable for formal verification
 - Only need to verify the certificate checker
 - Trade completeness for implementation efficiency
 - Possible to interpret certificate as proof object
 - Possible to use in a theorem prover

Making use of external decision procedures

- Don't want to do complex computations inside Coq
- Don't want to prove correctness of the whole solver
- Want to make use of existing solvers
- Boolean results of external solvers are not enough

Formally verified certified decision procedures

- Elegant approach: proof by reflection
- Given a temporal formula and a model in your proof logic
- Construct a concrete representation
- Use external decision procedure to compute certificate
- Interpret certificate as object of the proof logic
- Apply the correctness theorem of your certificate checker to gain a proof object of the original formula

Reflecting decision procedures with certificates

Consequences

- External program can do anything it wants: no completeness guaranteed. But errors will be noticed!
- Only certificate checker needs (weaker) correctness proof. $\forall s \in S, \phi \in \Phi : check(\phi, cert(\phi), s) = true \rightarrow s \in \llbracket \phi \rrbracket.$
- Only certificate checker runs as a Coq function.
 - Coq function evaluation is quite speedy, can make use of a virtual machine.
 - Standalone checker coqchk is not so fast.
- Small proof objects, essentially the certificate + call to the checker.

Certificates for model checking

- Familar case: counterexamples ("negative certificate")
 - + E.g. for LTL, a lasso where ϕ doesn't hold to refute a $G\phi$ formula
- For simple CTL formulas, positive certificates could be:
 - for a $EF\phi$ formula, a finite path where at the end ϕ holds
 - for a $EG\phi$ formula, a lasso where ϕ holds in the loop
 - for a $AG\phi$ formula, an argument that ϕ holds for all reachable states, and all moves stay in that area
- Not obvious how certificates for general CTL or CTL* formulas look like (Shankar and Sorea 2003; Sorea 2005)
 - How to certify $AG EF \phi$?

Certificates for µ-calculus

- μ-calculus is a powerful temporal logic with arbitrary nested greatest and least fixpoint operators
 - strictly more powerful than LTL, CTL and CTL* (which are embeddable using low quantifier alternation)
 - strictly more powerful with each quantifier alternation
- Well known relationship between μ-calculus and parity games (Emerson and Jutla 1991)
- Can leverage winning strategies for parity games as certificates for $\mu\text{-calculus}$
- Winning stategies for the dual formula ϕ^* are generalized counterexamples

µ-calculus

- highly expressive temporal logic, subsumes LTL, CTL, CTL*
- *model checking problem*: on which states of a given finite labelled transition system is a given formula true?

$$\phi ::= X$$

$$| p | \neg p \qquad (atomic p)$$

$$| [a]\phi \qquad (for all a-1)$$

$$| \langle a \rangle \phi \qquad (a-trans)$$

$$| \phi_1 \land \phi_2 | \phi_1 \lor \phi_2$$

$$| \mu X.\phi \qquad (let a)$$

$$| \nu X.\phi \qquad (great)$$

(variables) (atomic propositions) (for all a-transitions) (a-transition exists)

> (least fixpoint) (greatest fixpoint)

"for every path, q holds at every position"

 $\mu X.q \wedge [a]X$

"there are paths where q is true infinitely often"

 $\nu X.\mu Y.(q \wedge \langle a \rangle X) \vee \langle a \rangle Y$

"there are paths where q holds at every even position"

 $\nu X.q \wedge \langle a \rangle \langle a \rangle X$

(more powerful than CTL*)

µ-calculus: Set semantics

$$sem(X, \eta) = \eta(X)$$

$$sem(\phi_1 \land \phi_2, \eta) = sem(\phi_1, \eta) \cap sem(\phi_2, \eta)$$

$$sem(\phi_1 \lor \phi_2, \eta) = sem(\phi_1, \eta) \cup sem(\phi_2, \eta)$$

$$sem([a]\phi, \eta) = \widetilde{pre}(\xrightarrow{a})(sem(\phi, \eta))$$

$$sem(\langle a \rangle \phi, \eta) = pre(\xrightarrow{a})(sem(\phi, \eta))$$

$$sem(\mu X.\phi, \eta) = iter_X(\phi, \eta, \emptyset)$$

$$sem(\nu X.\phi, \eta) = iter_X(\phi, \eta, S)$$

$$s \in \widetilde{pre}(\xrightarrow{a})(U) \Leftrightarrow \forall t \in S.s \xrightarrow{a} t \implies t \in U \quad (weakest precondition)$$

$$s \in pre(\xrightarrow{a})(U) \Leftrightarrow \exists t \in S.s \xrightarrow{a} t \land t \in U \quad (preimage)$$

$$iter_X(\phi, \eta, U) = \operatorname{let} U' := sem(\phi, \eta[X := U]) \text{ in}$$

$$if U = U' \text{ then } U \text{ else } iter_X(\phi, \eta, U')$$

A parity game consists of a disjoint sum of positions $Pos = Pos_0 \cup Pos_1$, a total edge relation $\rightarrow \subseteq Pos \times Pos$ and a priority function $\Omega : Pos \rightarrow \mathbb{N}$.

Moves happen along the edge relation. The destination decides who moves next.

The game is *won* if the largest priority that occurs infinitely often is even, the opponent wins if it is odd.

A strategy ρ is a function that tells the player how to move next.

A *positional strategy* only takes the the current position into account.

A position is in a winning set W_i if there exists a strategy ρ such that player *i* wins, starting at a position in W_i .

Theorem. Every position p is either in W_0 or W_1 and player i wins positionally from every position in W_i .

µ-calculus and parity games

- Positions of the parity game: states \times subformulas
- Moves: according to the edges of the model resp. subformula relation
- Priorities: outer fixpoints have higher priority,
 μ odd, ν even, we win (= formula is true) when highest recurrent priority is even.
- Strategy: how to move at a given position
 - There are always memoryless winning strategies
 - Actual choices only on \lor and $\langle a
 angle$
 - Representable in $O(|S|^2 |\phi|)$

Computing winning strategies for µ-calculus

- For finite models, μ-calculus validity is computed by fixpoint iteration in a straight forward manner.
 - As usual, computation complexity raises with quantifier alternation.
- We show that such a fixpoint computation can be *instrumented* to compute a winning strategy as well.

Computing winning strategies by fixpoint iteration

- Instead of computing with sets, we use *partial winning strategies*, i.e. winning stategies defined on a subset of the states.
- Inductively defined by the structure of the formula, computed in a *compositional* manner.
- For fixpoints, we iteratively grow a partial winning strategy to its maximum domain.
 - Same time complexity as computing set semantics
 - Space complexity increases from $O(|S||\phi|)$ to $O(|S|^2|\phi|^2)$ to keep track of the strategy.

Strategies for µ-calculus

We can interpret a μ -calculus formula ϕ as a parity game. Moves can happen along the subformulae (example later). The priority of a position depends on the kind of formula and its nesting depth.

A partial winning strategy for $\mu\text{-calculus}$ is a partial function

$$\Sigma: \Phi \times S \rightharpoonup s$$
 (move to state $s \in S$)
 $\mid 1$ (take the left formula of disj.)
 $\mid 2$ (take the right formula of disj.)
 $\mid *$ (take the only possible move)

Strategy semantics

$$\begin{split} (\Sigma + \Sigma')(\phi, s) &= \text{ if } (\phi, s) \in dom(\Sigma) \text{ then } \Sigma(\phi, s) \text{ else } \Sigma'(\phi, s) \\ & \mathsf{SEM}(X)_{\eta} = \{(X, s) \mapsto * \mid s \in \eta(X)\} \\ & \mathsf{SEM}(p)_{\eta} = \{(p, s) \mapsto * \mid p \text{ holds at } s\} \\ & \mathsf{SEM}(\neg p)_{\eta} = \{(p, s) \mapsto * \mid p \text{ does not hold at } s\} \\ & \mathsf{SEM}(\phi \land \psi)_{\eta} = \mathsf{SEM}(\phi)_{\eta} + \mathsf{SEM}(\psi)_{\eta} \\ & \quad + \{(\phi \land \psi, s) \mapsto * \mid (\phi, s) \in dom(\mathsf{SEM}(\phi)_{\eta})\} \\ & \quad \wedge (\psi, s) \in dom(\mathsf{SEM}(\psi)_{\eta})\} \\ & \mathsf{SEM}(\phi \lor \psi)_{\eta} = \mathsf{SEM}(\phi)_{\eta} + \mathsf{SEM}(\psi)_{\eta} \\ & \quad + \{(\phi \lor \psi, s) \mapsto 1 \mid (\phi, s) \in dom(\mathsf{SEM}(\phi)_{\eta})\} \\ & \quad + \{(\phi \lor \psi, s) \mapsto 2 \mid (\psi, s) \in dom(\mathsf{SEM}(\psi)_{\eta})\} \end{split}$$

Strategy semantics, cont'd

$$\begin{split} \mathsf{SEM}([a]\phi)_{\eta} &= \mathsf{SEM}(\phi)_{\eta} \\ &+ \{([a]\phi,s) \mapsto * \mid (\phi,s) \in dom(\mathsf{SEM}(\phi))_{\eta}\} \\ \mathsf{SEM}(\langle a \rangle \phi)_{\eta} &= \mathsf{SEM}(\phi)_{\eta} \\ &+ \{(\langle a \rangle \phi, s) \mapsto s' \mid s \xrightarrow{a} s' \land (\phi,s') \in dom(\mathsf{SEM}(\phi))_{\eta}\} \\ \mathsf{SEM}(\nu X.\phi)_{\eta} &= \mathsf{SEM}(\phi)_{\eta[X:=sem(\phi,\eta)]} \\ \mathsf{SEM}(\mu X.\phi)_{\eta} &= \mathsf{ITER}_{X}(\phi,\eta, \{\}) \\ \end{split}$$
$$\end{split}$$
$$\begin{split} \mathsf{ITER}_{X}(\phi,\eta,\Sigma) &= \mathsf{let} \ \Sigma' := \mathsf{SEM}(\phi)_{\eta[X:=dom(\Sigma)]} \ \mathsf{in} \end{split}$$

if $\Sigma = \Sigma'$ then Σ else ITER_X (ϕ, η, Σ')

Checking certificates

- Naive approach: play according to the supposed winning strategy, and branch for all possible adversarial moves. (Easily runs into exponentially many cycles.)
- Better approach: We can reduce strategy checking to the problem of determining *emptiness of a Streett automaton*. Streett criterion in this case: for every recurrent odd priority there is a recurrent and higher even priority. Can reuse linear time algorithms for checking Streett automata (Duret-Lutz, Poitrenaud, and Couvreur 2009; Duret-Lutz 2007). Checking each SCC of the play is enough!

A small example

"there is a path along which *q* holds infinitely often"

$$\nu X.\mu Y.(q \land \langle a \rangle X) \lor \langle a \rangle Y$$
$$X \stackrel{\nu}{=} Y$$
$$Y \stackrel{\mu}{=} (q \land \langle a \rangle X) \lor \langle a \rangle Y$$

Checking the example strategy

Evaluation

- Experimental implementation micromu in OCaml.
- Hard to find good benchmarks for μ -calculus, created three rather synthethic problems:
 - A parity game translated into µ-calculus
 - A simple reachability property to measure overhead
 - A worst-case example for checking complexity

Flower benchmark

(Buhrke, Lescow, and Vöge 1999)

A parity game translated into $\mu\text{-calculus.}$

With increasing problem size, solving gets exponentially harder, but checking remains polynomial.

Problem	States	sem [s]	SEM [s]	Check [s]	Check SCC [s]
Flower 8	16	0.179	0.203	0.009	0.040
Flower 10	20	3.166	1.960	0.071	0.419
Flower 12	24	32.269	11.688	0.287	2.061
Flower 14	28	320.931	61.733	1.298	10.829
Flower 16	32	3196.043	326.666	6.131	58.871

Circle benchmark

A simple reachability property to measure overhead

Problem	States	sem [s]	SEM [s]	Check [s]	Check SCC [s]
Circle 100	100	0.003	0.001	0.001	0.001
Circle 1000	1000	0.109	0.018	0.005	0.006
Circle 10000	10000	15.763	3.398	0.054	0.057
Circle 100000	100000	2027.584	811.041	0.581	0.582

Braid benchmark

A worst-case example for checking complexity.

Naive checking blows up, but with SCC its still fine.

Problem	States	sem [s]	SEM [s]	Check [s]	Check SCC [s]
Braid 6	12	0.001	0.005	1.282	0.009
Braid 8	16	0.002	0.003	31.062	0.013
Braid 10	20	0.002	0.006	711.002	0.020
Braid 100	200	0.663	0.993	—	3.674

Perspectives

- Current implementation is pretty naive, does not use state of the art optimizations (BDDs, avoiding materialization...)
- Implementing certificate generation on existing model checkers
- Performance problems due to functional programming style
- Want to formalize certificate checking in Coq
 - ...yielding a formally verified certifying implementation of μ -calculus, usable inside a theorem prover

Summary

- Use certificates to *split complexity* of a problem into a hard certificate generation and an easy certificate checking problem.
 - Parts can be tweaked independently.
 - Only checking needs to be formally verified.
- Leverage unverified algorithms and existing implementations in a formally verified setting.
- Benefit from fast computation and compact proofs.

Questions?

Thank you.

References

- [1] Nils Buhrke, Helmut Lescow, and Jens Vöge. "Strategy construction in infinite games with Streett and Rabin chain winning conditions". In: Tools and Algorithms for Construction and Analysis of Systems, Second International Workshop, TACAS '96, Passau, Germany, March 27-29, 1996, Proceedings. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 1055. Lecture Notes in Computer Science. Springer, 1999, pp. 207–225. ISBN: 3-540-61042-1.
- [2] Alexandre Duret-Lutz. "Contributions à l'approche automate pour la vérification de propriétés de systèmes concurrents". PhD Thesis. Université Pierre et Marie Curie (Paris 6), July 2007.

References

- [3] Alexandre Duret-Lutz, Denis Poitrenaud, and Jean-Michel Couvreur. "On-the-fly Emptiness Check of Transition-based Streett Automata". In: ATVA'09. Ed. by Zhiming Liu and Anders P. Ravn. Vol. 5799. Lecture Notes in Computer Science. Springer, 2009, pp. 213–227.
- [4] EA Emerson and CS Jutla. "Tree automata, mu-calculus and determinacy". In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS'91). IEEE. 1991, pp. 368–377.
- [5] K. Namjoshi. "Certifying model checkers". In: Computer Aided Verification. Springer, 2001, pp. 2–13.
- [6] N. Shankar and M. Sorea. Counterexample-Driven Model Checking (revisited version). Tech. rep. SRI-CSL-03-04. SRI International, 2003.

 [7] M. Sorea. "Dubious Witnesses and Spurious Counterexamples". UK Model Checking Days, York. 2005.