Grunddatentypen, Ausdrücke und Variablen Typkonversion, Überprüfen und Auswerten von Ausdrücken

Philipp Wendler

Zentralübung zur Vorlesung "Einführung in die Informatik: Programmierung und Softwareentwicklung"

https://www.sosy-lab.org/Teaching/2017-WS-InfoEinf/

Action required now

- Smartphone: installiere die App "socrative student" oder Laptop: öffne im Browser <u>b.socrative.com/login/student</u>
- Betrete den Raum InfoEinf1718.
- 3. Beantworte die erste Frage sofort!

Grunddatentypen in Java

Ganze Zahlen: byte, short, int, long mit +,-,*,/,

Gleitpunktzahlen: float, double

Zeichen: char

Zeichenketten: String

Wahrheitswerte : boolean

z.B. true und false

Grunddatentypen: Typkonversion (I)

- = Werte eines Datentyps in einen anderen Datentyp umwandeln
- 1. Implizite oder automatische Typkonversion zum größeren Typ

byte < short < int < long < float < double</pre>

z.B. 165 - 1.5 ist automatisch vom Typ double

Grunddatentypen: Typkonversion (II)

- = Werte eines Datentyps in einen anderen Datentyp umwandeln
- Explizite Typkonversion oder Type Casting: Erzwingen der Typkonversion durch Voranstellen von (type)
 - z.B. (int) 1.65 erhält explizit den Typ int

Nachkommaanteil passt nicht in den Wertebereich des Datentyps int

=> Nachkommastellen werden abgeschnitten: Informationsverlust

Aufgabe 1: Typkonversion (I)

Ein netter Bankangestellter verspricht Ihnen für Ihr Sparkonto einen Zinssatz von 25%. Er berechnet dabei folgendermaßen den Zins, den Sie bekommen werden:

```
double haben = 2000;
double zins = haben * (1/4);
```


Was ist der Wert des Java-Ausdrucks 2000 * (1/4)?

Sie wollen natürlich sofort zuschlagen. Warum sollten Sie sich das **nochmal genauer überlegen** und dem Bankangestellten einen Gegenvorschlag machen?

Aufgabe 1: Typkonversion (II)

Ein netter Bankangestellter verspricht Ihnen für Ihr Sparkonto einen Zinssatz von 25%. Er berechnet dabei folgendermaßen den Zins, den Sie bekommen werden:

```
double haben = 2000;
double zins = haben * (1/4);
```

```
Vom Typ int,
d.h. Nachkommastellen werden abgeschnitten: 1/4 (=0.25) =0
```

Sie wollen natürlich sofort zuschlagen. Warum sollten Sie sich das **nochmal genauer überlegen** und dem Bankangestellten einen Gegenvorschlag machen?

Aufgabe 1: Typkonversion (III)

Ein netter Bankangestellter verspricht Ihnen für Ihr Sparkonto einen Zinssatz von 25%. Er berechnet dabei folgendermaßen den Zins, den Sie bekommen werden:

```
double haben = 2000;
double zins = haben * (1.0/4.0);

Vom Typ double,
d.h.: 1.0/4.0 =0.25
```

Sie wollen natürlich sofort zuschlagen. Warum sollten Sie sich das nochmal genauer überlegen und dem Bankangestellten einen Gegenvorschlag machen?

Ausdrücke: Präzedenzen (I)

Woher wissen wir, wie man 2 * 5 + 10 berechnet?

- Gilt 2*5+10 = 2 * (5+10) oder
- Gilt 2*5+10 = (2*5) + 10?

Die mathematischen Operatoren haben eine feste Reihenfolge, in der sie ausgewertet werden:

- Potenzrechnung vor Punktrechnung
- Punktrechnung vor Strichrechnung ("Punkt vor Strich")...

Auch in Programmiersprachen gibt es eine solche Reihenfolge, besser bekannt als **Präzedenz** (=Bindungsstärke) **eines Operators**.

Ausdrücke: Präzedenzen (II)

Der Operator mit der höchsten Präzedenz wird zuerst ausgewertet.

Operation	Präzedenz
!, unäres +-	14
(type)	13
*, /, %	12
binäres +-	11
>, >=, <, <=	9
==, !=	8
&	7
I	6
& &	4
11	3

$$5-4 < 3 == false ist$$

((5-4) < 3) == false

Was ist der Wert von

!false && false?

Ausdrücke: Präzedenzen (II)

Der Operator mit der höchsten Präzedenz wird zuerst ausgewertet.

Operation	Präzedenz
!, unäres +-	14
(type)	13
*, /, %	12
binäres +-	11
>, >=, <, <=	9
==, !=	8
&	7
I	6
& &	4
11	3

$$5-4 < 3 == false ist$$

((5-4) < 3) == false

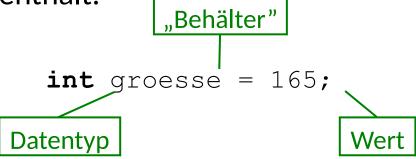
- !false && false
 - ist(!false) && false = false
 - ist nicht ! (false && false) = true

Ausdrücke: Überprüfen von Korrektheit

Vorgehensweise:

- Den Ausdruck von links nach rechts durchgehen und vollständig klammern unter Berücksichtigung von Präzedenzen.
- Den Ausdruck nochmals von links nach rechts durchgehen und unter Berücksichtigung der Klammern überprüfen, ob
 - a. der Ausdruck **gemäß der Regel für Expression** gebildet ist (syntaktische Korrektheit).
 - b. die Argumenttypen von **Operationen** zu den Typen der Ausdrücke, auf die die Operationen angewendet werden, passen (*Typkorrektheit*).

Aufgabe 2: Überprüfen von Korrektheit


Ausdruck	Vollständig geklammert	Syn. K.	Typk.
false == 5-4-3 < 3	false == $(((5-4)-3) < 3)$	ja	ja
7 < false	7 < false	ja	nein, wg <
3 <> 6		nein	-

Socrative
Raum: InfoEinf1718

Überprüfe den Ausdruck (!3) == 6 auf Korrektheit!

Variablen in Java

Eine Variable ist ein "Behälter", der zu jedem Zeitpunkt (während eines Programmlaufs) einen Wert eines bestimmten Datentyps enthält.

Zustand 6 nach obiger Deklaration textuell grafisch

$$\mathbf{\delta} = [(groesse, 165)]$$

groesse 165

Ausdrücke&Variablen: Auswertung

Vorgehensweise gegeben ein Ausdruck und ein Zustand б:

- Den Ausdruck von links nach rechts durchgehen und vollständig klammern unter Berücksichtigung von Präzedenzen.
- 2. Den Ausdruck nochmals von links nach rechts durchgehen und unter Berücksichtigung der Klammern **auswerten**. Der Wert der Variablen ist dabei durch den **Zustand 6** bestimmt.

Aufgabe 3a: Auswertung

Gegeben seien folgende Variablendeklarationen:

```
double fahrenheit = 40;
double celsius = 4.44;
```

Welcher Zustand б wird durch diese Deklarationen beschrieben?

Aufgabe 3a: Auswertung

Gegeben seien folgende Variablendeklarationen:

```
double fahrenheit = 40; //automatische Typkonversion double celsius = 4.44;
```

Welcher Zustand б wird durch diese Deklarationen beschrieben?

textuell grafisch

$$\mathbf{6} = [(fahrenheit, 40.0), (celsius, 4.44)]$$

$$\begin{array}{c} celsius \\ fahrenheit \end{array} \begin{array}{c} 4.44 \\ 40.0 \end{array}$$

Stack 6 wächst von unten nach oben

Aufgabe 3b: Auswertung

Werten Sie den Ausdruck fahrenheit - 32 * 5/9 bezüglich des Zustands σ=[(fahrenheit, 40.0), (celsius, 4.44)] aus:

Was ist der Wert von

(fahrenheit - 32 * 5/9)?

Aufgabe 3b: Auswertung

Werten Sie den Ausdruck fahrenheit - 32 * 5/9 bezüglich des Zustands σ=[(fahrenheit, 40.0), (celsius, 4.44)] aus:

1. Vollständig klammern:

```
fahrenheit - ((32 * 5)/9)
```

2. Von links nach rechts auswerten:

fahrenheit -
$$((32 * 5)/9) = 6$$

 $40.0 - ((32 * 5)/9) = 6$
 $40.0 - (160/9) = 6$
 $40.0 - 17 = 6$
 23.0
Automatische Typkonversion zu double,
 $d.h.: 40.0-17 = 40.0-17.0 = 23.0$

Aufgabe 3c: Auswertung

Werten Sie den Ausdruck (fahrenheit – 32) * 5/9 bezüglich des Zustands σ=[(fahrenheit, 40.0), (celsius, 4.44)] aus:

Was ist der Wert von

(fahrenheit - 32) * 5/9?

Aufgabe 3c: Auswertung

Werten Sie den Ausdruck (fahrenheit – 32) * 5/9 bezüglich des Zustands σ=[(fahrenheit, 40.0), (celsius, 4.44)] aus:

1. Vollständig klammern:

$$((fahrenheit - 32) * 5)/9$$

2. Von links nach rechts auswerten:

((fahrenheit - 32) * 5)/9 =
$$\mathbf{6}$$

((40.0 - 32) * 5)/9 = $\mathbf{6}$
(8.0 * 5)/9 = $\mathbf{6}$
Automatische Typkonversion zu double,