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   Autonomous Systems 

 Autonomous systems  

    have to adapt to 

 environmental conditions and 

 new requirements 

at runtime even if they are defined at design time 

 

  ASCENS project  

 2010-2015, EU-funded Integrated Project 

 15 partners from 7 countries 

 Developed systematic approach for 

engineering autonomous ensembles including 

 SW process, formal modeling, verification,  

 monitoring, adaptation, awareness 

 Case studies on  

     robotics, cloud computing, e-mobility 
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Decision Making under Uncertainty 

 Very large state spaces 𝑆 > 1010  

 Probabilistic effects 

 Partially uncontrolled environment 

 Incomplete design time knowledge 
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1. Online Planning 
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Online Planning 

Real Situation 

build State Model 

and plan 

observe 

execute 

Image sources: 

thegrid.soup.io/post/312159914 

mobots.epfl.ch/marxbot.html 
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Online Planning (Informally, Sequential) 

while true do 

  observe state 

  plan 

  execute action w.r.t. plan 

end while 
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Online Planning (Informally, Concurrent) 

while true do 

  observe state 

  execute || plan 

end while 
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Online Planning: Parameters 

 State space 𝑆 

 Action space 𝐴 

 Attribute   𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝐵𝑜𝑜𝑙 

 Operation 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝑆 

 Operation execute  : RealAction → () 

 

 Planning 

 Reward function 𝑅 ∶ 𝑆 → ℝ   =>  getReward 

 Strategy 𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴  𝑆)   =>  sampleAction 
 Planning refines initial strategy according to 𝑅 

 Online planning 

 Iterated execution and planning 
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Online Planning (Refined) 

while true do 

  state ← observe() 

  planner.state ← state 

  when actionRequired do 

    actionRequired ← false 

    action ← planner.strategy.sampleAction(state) 

  end when 

  action.real.execute() 

end while 

while true do 

  plan() 

end while 

Agent 

Planner 

Agent || Planner     where 
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Plug Points 

while true do 

  state ← observe() 

  planner.state ← state 

  when actionRequired do 

    actionRequired ← false 

    action ← planner.strategy.sampleAction(state) 

  end when 

  action.real.execute() 

end while 

while true do 

  plan() 

end while 

Agent 

Planner 

Agent || Planner     where 
domain 

specific 
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Plug Points 

while true do 

  state ← observe() 

  planner.state ← state 

  when actionRequired do 

    actionRequired ← false 

    action ← planner.strategy.sampleAction(state) 

  end when 

  action.real.execute() 

end while 

while true do 

  plan() 

end while 

Agent 

Planner 

Agent || Planner     where 

design 

choice 

domain 

specific 
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A Framework for Online Planning 

Real Situation 
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A Framework for Online Planning 

Operates w.r.t. 

state and strategy 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

Real Situation 
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𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) Changes strategy 

w.r.t. reward function 

Real Situation 

A Framework for Online Planning 
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3. Simulation-Based Online Planning 
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Three Types of State 

Real Situation 

State Model 

Simulation 

18 



Approach 

 Refine strategy  𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑆  by Simulation-Based 

Planning 

 Provide agent with simulation of itself and domain 

 

 Generate simulations of future episodes 

 Evaluate simulation episodes wrt. reward function 

 Use estimates to refine simulations 

 Finally: Execute a real action that performed well in simulation 

 Repeat 
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3.1 The Framework for  

      Simulation-Based Planning 
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The Framework for  

Simulation-Based Planning 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 
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𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

The Framework for  

Simulation-Based Planning 

changes 

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 
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𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

The Framework for  

Simulation-Based Planning 

Simulate wrt. 

strategy and domain 

dynamics 
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The Framework for  

Simulation-Based Planning 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

Simulation result 

refines strategy 

Weighted by 

episode reward 

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 
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SBP Parameters 

 Simulation 𝑃𝑆𝑖𝑚 𝑆  𝑆 𝑥 𝐴) 

 Agent‘s model/knowledge of domain dynamics 

 Can be changed at runtime 

 May differ from real domain dynamics 

 Can be learned/refined from observations 

 

 Maximum search depth ℎ𝑚𝑎𝑥 

 Impacts simulation effort 

 Less simulation steps: Fast but shallow planning 

 Can be dynamically adapted 
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Simulation-Based Planning Algorithm 

op plan() 

  vars s, r, episode, a 

  s ← state 

  r ← rewardFct.getReward(s) 

  episode ← nil 

  for 0 .. ℎ𝑚𝑎𝑥 do 

    a ← strategy.sampleAction(s) 

    s ← simulation.sampleSuccessor(s, a) 

    episode ← episode::(s, a) 

    r ← r + rewardFct.getReward(s) 

  end for 

  strategy ← updateStrategy(episode, r) 

end op 
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Simulation-Based Planning: Plug Points 

op plan() 

  vars s, r, episode, a 

  s ← state 

  r ← rewardFct.getReward(s) 

  episode ← nil 

  for 0 .. ℎ𝑚𝑎𝑥 do 

    a ← strategy.sampleAction(s) 

    s ← simulation.sampleSuccessor(s, a) 

    episode ← episode::(s, a) 

    r ← r + rewardFct.getReward(s) 

  end for 

  strategy ← updateStrategy(episode, r) 

end op 
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Simulation-Based Planning: Variants 

 

 Variants define updateStrategy(Episode, Real) 

 Vanilla Monte Carlo 

 Genetic Algorithms 

 Monte Carlo Tree Search  

 for discrete domains  

 Cross Entropy Planning 

 for continuous domains 
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3.2 Monte Carlo Tree Search  

      for Discrete Domains 

 Strategy as tree 

 Nodes represent states and action choices 

 Add a node per simulation 

 Aggregate simulation data in nodes 

 Reward and frequency 

 Sample actions w.r.t. aggregated data 

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp 

Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of 

monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on, 

4(1):1 - 43, 2012. 29 



Strategy Inside the Tree 

 E.g.  Upper Confidence Bounds for Trees  

 Treat action selection as multiarmed bandit 

 Select actions that maximize 

 

          𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗
 

 

 

 

 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo 

planning. Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006. 282-293. 

 

Cumulated reward Nr. of episodes 
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Strategy Inside the Tree 

 E.g. Upper Confidence Bounds for Trees  

 Treat action selection as multiarmed bandit 

 Select actions that maximize 

 

          𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗
 

 

 

 

 

 𝑋𝑗:  Average reward of child node j 

 𝑛:   Nr. of episodes from current node 

 𝑛𝑗 :  Nr. of episodes from child node j 

 𝐶:   UCT exploration constant 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo 

planning. Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006. 282-293. 

Exploit 

observations 

Explore 

solution space 

31 



Expand the Tree 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo 

planning. Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006. 282-293. 

 

0 / 0 

 Add a new node 

 When an episode leaves the tree 
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Strategy Outside the Tree 

Initial 𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

 Simulate episode to depth ℎ𝑚𝑎𝑥 

 Observe result 

 E.g. reward observed 

 Here: 0 or 1 

Reward: 1 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

0 / 0 
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 Update the statistics 

 This changes the strategy inside the tree 

Update Strategy 

4 / 8 0 / 3 8 / 11 

2 / 4 6 / 7 1 / 2 1 / 3 2 / 3 

2 / 3 4 / 4 

12 / 22 

1 / 1 
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Trees Represent Strategies 

 

 

 

 

 

 

 

 

 

 

 

 MCTS builds a skewed tree 

 Tree can be interpreted as 𝑃𝐴𝑐𝑡𝑖𝑜𝑛(𝐴|𝑆) 

 Promising parts of the strategy space are prefered 
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Example Domain 

 Search and Rescue 
 Victims, fires and ambulances 

 Unknown topology 

 Unknown initial situation 
 

 Agent actions 
 Noop, Move 

 Load or drop a victim 

 Extinguish fire if adjacent 
 

 Noise 
 Actions may fail 

 Fires ignite and cease 
 

 Experiment 
 Monte Carlo Tree Search 

 Large state space (> 1012) 

 Large branching factor (218) 

 0.2 seconds/decision 

 𝑃𝑆𝑖𝑚 𝑆  𝑆 𝑥 𝐴) models domain perfectly 
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 Measured (in %) 

 Victims at ambulance (blue) 

 Victims in a fire (red) 

 Positions on fire (green) 

 Provided reward 

 Victim at ambulance:  +100 

 System synthesized sensible behavior 

 Results in 0.95 confidence interval 

 Checked with MultiVeStA 

 

Experimental Results (I) 

Autonomy 

Stefano Sebastio and Andrea Vandin. MultiVeStA: statistical 

model checking for discrete event simulators. ValueTools '13. 

2013. 310-315.  
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 Measured (in %) 

 Victims at ambulance (blue) 

 Victims in a fire (red) 

 Positions on fire (green) 

 Expose system to unexpected events 

 At steps 20, 40, 60, 80 

 All carried victims are dropped 

 New fires break out 

 Events NOT simulated by planner 

 New situation incorporated by planner 

 System showed sensible reactions 

 Results in 0.95 confidence interval 

Experimental Results (II) 

Robustness 
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 Measured (in %) 

 Victims at ambulance (blue) 

 Victims in a fire (red) 

 Positions on fire (green) 

 Change system goals while operating 

 Change of reward function 

 Steps 0-40: Reward for victims not in a fire 

 Steps 40-80: Reward for victims at ambulance 

 Change NOT simulated by planner 

 But planner incorporates new situation 

 System adapted behavior wrt. goals 

 Results in 0.95 confidence interval 

Experimental Results (III) 

Flexibility 
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From Discrete to Continuous Domains 

 Actions 

 State and action space = ℝn 

 E.g. (speed,  rotation,  duration) for actions 

 

 Cross Entropy Planning 

 Approximate (unknown) target distribution 

 Multivariate Gaussian distribution  

 Sample state space (locally) and choose „elite“ samples 

for updating the strategy (‚sharpen‘ the Gaussian) 

 

 Here: Gaussians over sequences of actions 

 Sequence length = planning depth 

Ari Weinstein and Michael L. Littman. Open-loop planning in large-scale stochastic domains. 

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013. 40 



Cross Entropy Planning 

 White circle represents agent 

 Red boxes represent moving victims 

 Black lines are simulation episodes 

 Action parameters are speed, rotation and duration 

 Images show iterations 1, 5 and 10 

 Simulation depth is adaptive here (reduced simulation cost) 

 Note the iterative “shaping” of a promising strategy  
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Video: Cross Entropy Planning 
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Video: Cross Entropy Planning 

 

 

 The video showed interleaving planning and execution 

 

 Illustrates iterative shaping of a probabilistic strategy 

 

 When parallelizing planning and execution, this looks a little 

different… 
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Video: Continuous CE Planning 
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Cross Entropy Planning Experiments 

Interleaving 

Parallel 

 

 CE: Cross Entropy Planning 

 TACE: Time Adaptive CE 

 C3: Continuous CE Control 

 

 h: Planning depth 

 d:  Action duration 

Victims left 

T
im

e
 [

s]
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Concluding Remarks 
 Motivation 

 Complex dynamic domains 

 High degrees of non-determinism 

 Approach 
 Model a space of solutions, instead of a single one 

 Online planning: Refine the solution space at runtime wrt. observations 
and knowledge to determine a currently viable action 

 This Talk 
 Component framework for Online Planning 

 Parallelization of execution and planning 

 Instantiation: Simulation Based Planning 
 Two examples: MCTS, Cross Entropy Planning 

 Outlook 
 Model learning of domain dynamics 

 Soft temporal logic for formal (statistical) verification 

 Learning and planning for ensembles 
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