
A Framework for

Simulation-Based Online Planning

Martin Wirsing

In Kooperation mit Lenz Belzner und Rolf Hennicker,

FACS 2015, LNCS 9539, 2015, 1-30

Modellierung Dynamischer und Adaptiver Systeme

WS 2017/18

 1

 Autonomous Systems

 Autonomous systems

 have to adapt to

 environmental conditions and

 new requirements

at runtime even if they are defined at design time

 ASCENS project

 2010-2015, EU-funded Integrated Project

 15 partners from 7 countries

 Developed systematic approach for

engineering autonomous ensembles including

 SW process, formal modeling, verification,

 monitoring, adaptation, awareness

 Case studies on

 robotics, cloud computing, e-mobility

2

Decision Making under Uncertainty

 Very large state spaces 𝑆 > 1010

 Probabilistic effects

 Partially uncontrolled environment

 Incomplete design time knowledge

3

Contents

1. Online planning

2. A generic framework for online planning

3. Simulation-based online planning

1. The framework

2. Monte Carlo Tree Search for discrete domains

3. Cross Entropy for continuous domains:

4. Concluding remarks

4

1. Online Planning

5

Online Planning

Real Situation

build State Model

and plan

observe

execute

Image sources:

thegrid.soup.io/post/312159914

mobots.epfl.ch/marxbot.html

6

Online Planning

Real Situation

build State Model

and plan

observe

execute

Image sources:

thegrid.soup.io/post/312159914

mobots.epfl.ch/marxbot.html

7

Online Planning (Informally, Sequential)

while true do

 observe state

 plan

 execute action w.r.t. plan

end while

8

Online Planning (Informally, Concurrent)

while true do

 observe state

 execute || plan

end while

9

Online Planning: Parameters

 State space 𝑆

 Action space 𝐴

 Attribute 𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝐵𝑜𝑜𝑙

 Operation 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝑆

 Operation execute : RealAction → ()

 Planning

 Reward function 𝑅 ∶ 𝑆 → ℝ => getReward

 Strategy 𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑆) => sampleAction
 Planning refines initial strategy according to 𝑅

 Online planning

 Iterated execution and planning

10

Online Planning (Refined)

while true do

 state ← observe()

 planner.state ← state

 when actionRequired do

 actionRequired ← false

 action ← planner.strategy.sampleAction(state)

 end when

 action.real.execute()

end while

while true do

 plan()

end while

Agent

Planner

Agent || Planner where

11

Plug Points

while true do

 state ← observe()

 planner.state ← state

 when actionRequired do

 actionRequired ← false

 action ← planner.strategy.sampleAction(state)

 end when

 action.real.execute()

end while

while true do

 plan()

end while

Agent

Planner

Agent || Planner where
domain

specific

12

Plug Points

while true do

 state ← observe()

 planner.state ← state

 when actionRequired do

 actionRequired ← false

 action ← planner.strategy.sampleAction(state)

 end when

 action.real.execute()

end while

while true do

 plan()

end while

Agent

Planner

Agent || Planner where

design

choice

domain

specific

13

A Framework for Online Planning

Real Situation

14

A Framework for Online Planning

Operates w.r.t.

state and strategy

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

Real Situation

15

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) Changes strategy

w.r.t. reward function

Real Situation

A Framework for Online Planning

16

3. Simulation-Based Online Planning

17

Three Types of State

Real Situation

State Model

Simulation

18

Approach

 Refine strategy 𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑆 by Simulation-Based

Planning

 Provide agent with simulation of itself and domain

 Generate simulations of future episodes

 Evaluate simulation episodes wrt. reward function

 Use estimates to refine simulations

 Finally: Execute a real action that performed well in simulation

 Repeat

19

3.1 The Framework for

 Simulation-Based Planning

20

The Framework for

Simulation-Based Planning

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)
21

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

The Framework for

Simulation-Based Planning

changes

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)
22

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

The Framework for

Simulation-Based Planning

Simulate wrt.

strategy and domain

dynamics

23

The Framework for

Simulation-Based Planning

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

Simulation result

refines strategy

Weighted by

episode reward

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)
24

SBP Parameters

 Simulation 𝑃𝑆𝑖𝑚 𝑆 𝑆 𝑥 𝐴)

 Agent‘s model/knowledge of domain dynamics

 Can be changed at runtime

 May differ from real domain dynamics

 Can be learned/refined from observations

 Maximum search depth ℎ𝑚𝑎𝑥

 Impacts simulation effort

 Less simulation steps: Fast but shallow planning

 Can be dynamically adapted

25

Simulation-Based Planning Algorithm

op plan()

 vars s, r, episode, a

 s ← state

 r ← rewardFct.getReward(s)

 episode ← nil

 for 0 .. ℎ𝑚𝑎𝑥 do

 a ← strategy.sampleAction(s)

 s ← simulation.sampleSuccessor(s, a)

 episode ← episode::(s, a)

 r ← r + rewardFct.getReward(s)

 end for

 strategy ← updateStrategy(episode, r)

end op

26

Simulation-Based Planning: Plug Points

op plan()

 vars s, r, episode, a

 s ← state

 r ← rewardFct.getReward(s)

 episode ← nil

 for 0 .. ℎ𝑚𝑎𝑥 do

 a ← strategy.sampleAction(s)

 s ← simulation.sampleSuccessor(s, a)

 episode ← episode::(s, a)

 r ← r + rewardFct.getReward(s)

 end for

 strategy ← updateStrategy(episode, r)

end op

27

Simulation-Based Planning: Variants

 Variants define updateStrategy(Episode, Real)

 Vanilla Monte Carlo

 Genetic Algorithms

 Monte Carlo Tree Search

 for discrete domains

 Cross Entropy Planning

 for continuous domains

28

3.2 Monte Carlo Tree Search

 for Discrete Domains

 Strategy as tree

 Nodes represent states and action choices

 Add a node per simulation

 Aggregate simulation data in nodes

 Reward and frequency

 Sample actions w.r.t. aggregated data

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp

Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of

monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on,

4(1):1 - 43, 2012. 29

Strategy Inside the Tree

 E.g. Upper Confidence Bounds for Trees

 Treat action selection as multiarmed bandit

 Select actions that maximize

 𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo

planning. Machine Learning: ECML 2006. Springer Berlin

Heidelberg, 2006. 282-293.

Cumulated reward Nr. of episodes

30

Strategy Inside the Tree

 E.g. Upper Confidence Bounds for Trees

 Treat action selection as multiarmed bandit

 Select actions that maximize

 𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗

 𝑋𝑗: Average reward of child node j

 𝑛: Nr. of episodes from current node

 𝑛𝑗 : Nr. of episodes from child node j

 𝐶: UCT exploration constant

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo

planning. Machine Learning: ECML 2006. Springer Berlin

Heidelberg, 2006. 282-293.

Exploit

observations

Explore

solution space

31

Expand the Tree

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo

planning. Machine Learning: ECML 2006. Springer Berlin

Heidelberg, 2006. 282-293.

0 / 0

 Add a new node

 When an episode leaves the tree

32

Strategy Outside the Tree

Initial 𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

 Simulate episode to depth ℎ𝑚𝑎𝑥

 Observe result

 E.g. reward observed

 Here: 0 or 1

Reward: 1

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

0 / 0

33

 Update the statistics

 This changes the strategy inside the tree

Update Strategy

4 / 8 0 / 3 8 / 11

2 / 4 6 / 7 1 / 2 1 / 3 2 / 3

2 / 3 4 / 4

12 / 22

1 / 1

34

Trees Represent Strategies

 MCTS builds a skewed tree

 Tree can be interpreted as 𝑃𝐴𝑐𝑡𝑖𝑜𝑛(𝐴|𝑆)

 Promising parts of the strategy space are prefered

35

Example Domain

 Search and Rescue
 Victims, fires and ambulances

 Unknown topology

 Unknown initial situation

 Agent actions
 Noop, Move

 Load or drop a victim

 Extinguish fire if adjacent

 Noise
 Actions may fail

 Fires ignite and cease

 Experiment
 Monte Carlo Tree Search

 Large state space (> 1012)

 Large branching factor (218)

 0.2 seconds/decision

 𝑃𝑆𝑖𝑚 𝑆 𝑆 𝑥 𝐴) models domain perfectly

36

 Measured (in %)

 Victims at ambulance (blue)

 Victims in a fire (red)

 Positions on fire (green)

 Provided reward

 Victim at ambulance: +100

 System synthesized sensible behavior

 Results in 0.95 confidence interval

 Checked with MultiVeStA

Experimental Results (I)

Autonomy

Stefano Sebastio and Andrea Vandin. MultiVeStA: statistical

model checking for discrete event simulators. ValueTools '13.

2013. 310-315.

37

 Measured (in %)

 Victims at ambulance (blue)

 Victims in a fire (red)

 Positions on fire (green)

 Expose system to unexpected events

 At steps 20, 40, 60, 80

 All carried victims are dropped

 New fires break out

 Events NOT simulated by planner

 New situation incorporated by planner

 System showed sensible reactions

 Results in 0.95 confidence interval

Experimental Results (II)

Robustness

38

 Measured (in %)

 Victims at ambulance (blue)

 Victims in a fire (red)

 Positions on fire (green)

 Change system goals while operating

 Change of reward function

 Steps 0-40: Reward for victims not in a fire

 Steps 40-80: Reward for victims at ambulance

 Change NOT simulated by planner

 But planner incorporates new situation

 System adapted behavior wrt. goals

 Results in 0.95 confidence interval

Experimental Results (III)

Flexibility

39

From Discrete to Continuous Domains

 Actions

 State and action space = ℝn

 E.g. (speed, rotation, duration) for actions

 Cross Entropy Planning

 Approximate (unknown) target distribution

 Multivariate Gaussian distribution

 Sample state space (locally) and choose „elite“ samples

for updating the strategy (‚sharpen‘ the Gaussian)

 Here: Gaussians over sequences of actions

 Sequence length = planning depth

Ari Weinstein and Michael L. Littman. Open-loop planning in large-scale stochastic domains.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013. 40

Cross Entropy Planning

 White circle represents agent

 Red boxes represent moving victims

 Black lines are simulation episodes

 Action parameters are speed, rotation and duration

 Images show iterations 1, 5 and 10

 Simulation depth is adaptive here (reduced simulation cost)

 Note the iterative “shaping” of a promising strategy

42

Video: Cross Entropy Planning

43

Video: Cross Entropy Planning

 The video showed interleaving planning and execution

 Illustrates iterative shaping of a probabilistic strategy

 When parallelizing planning and execution, this looks a little

different…

44

Video: Continuous CE Planning

45

Cross Entropy Planning Experiments

Interleaving

Parallel

 CE: Cross Entropy Planning

 TACE: Time Adaptive CE

 C3: Continuous CE Control

 h: Planning depth

 d: Action duration

Victims left

T
im

e
 [

s]

46

Concluding Remarks
 Motivation

 Complex dynamic domains

 High degrees of non-determinism

 Approach
 Model a space of solutions, instead of a single one

 Online planning: Refine the solution space at runtime wrt. observations
and knowledge to determine a currently viable action

 This Talk
 Component framework for Online Planning

 Parallelization of execution and planning

 Instantiation: Simulation Based Planning
 Two examples: MCTS, Cross Entropy Planning

 Outlook
 Model learning of domain dynamics

 Soft temporal logic for formal (statistical) verification

 Learning and planning for ensembles

47

References
1. Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,

Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.

A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence

and AI in Games, 4(1), 2012, 1-43.

2. Kocsis, Levente, and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine

Learning: ECML'06. Lecture Notes in Computer Science 4212, 2006, 282-293.

3. Bubeck, Sébastien, and Rémi Munos. Open Loop Optimistic Planning. In: 23rd Conference on

Learning Theory, COLT 2010. Omnipress 2010, 477-489.

4. Ari Weinstein and Michael L. Littman. Open-loop planning in large-scale stochastic domains. In:

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

5. Stefano Sebastio and Andrea Vandin. MultiVeStA: statistical model checking for discrete event

simulators. In Proceedings of the 7th International Conference on Performance Evaluation

Methodologies and Tools (ValueTools '13). 2013, 310-315.

6. Lenz Belzner, Rolf Hennicker, Martin Wirsing: OnPlan: A Framework for Simulation-Based Online

Planning. In Christiano Braga, Peter Csaba Ölveczky (eds.): Formal Aspects of Component

Software - 12th International Conference, FACS 2015, Revised Selected Papers. Lecture Notes

in Computer Science 9539, 2016, 1-30.

48

