Einführung in die Informatik: Programmierung und Softwareentwicklung Wintersemester 2018/19

Kapitel 11: Rekursion

Prof. Dr. David Sabel

Lehr- und Forschungseinheit für Theoretische Informatik
Institut für Informatik, LMU München

WS 2018/19

Stand der Folien: 9. Januar 2019

Die Inhalte dieser Folien basieren – mit freundlicher Genehmigung – tlw. auf Folien von Prof. Dr. Rolf Hennicker aus dem WS 2017/18 und auf Folien von PD Dr. Ulrich Schöpp aus dem WS 2010/11

Rekursive Algorithmen und Methoden

• Begriffsherkunft: lateinisch recurrere "zurücklaufen"

Definition (rekursiver Algorithmus)

Ein Algorithmus ist **rekursiv**, wenn in seiner (endlichen) Beschreibung derselbe Algorithmus wieder aufgerufen wird.

- Ein rekursiver Algorithmus ist daher selbstbezüglich definiert
- In Java können rekursiver Algorithmen durch rekursive Methoden implementiert werden.

Definition (rekursive Methode)

Eine Methode ist rekursiv, wenn in ihrem Rumpf (Anweisungsteil) die Methode selbst wieder aufgerufen wird.

Überblick und Ziele

- Das Prinzip der Rekursion und rekursiver Berechnungen verstehen.
- Implementierung rekursiver Methoden in Java
- Verschiedene Formen der Rekursion
- Quicksort als rekursive Methode zum Sortieren eines Arrays

D. Sabel | 11 Rekursion | WS 2018/19

2/42

Rekursion Rek + Iteration Hanoi Rek - Formen Quickso

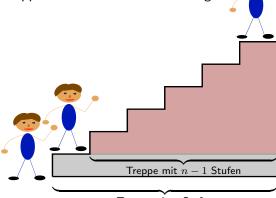
Beispiel für einen rekursiven Algorithmus

Treppe mit n Stufen hochsteigen:

• Wenn n = 0, dann fertig, ansonsten:

• Steige die erste Stufe hoch

ullet Treppe mit n-1 Stufen hochsteigen.



Treppe mit n Stufen

Allgemeines Prinzip der Rekursion

- Basisfall: Das ist der einfache Fall, für den man das Ergebnis sofort weiß (z.B. 0 Stufen)
- Rekursiver Aufruf:
 - Mache das Problem etwas kleiner, indem ein kleiner Teil gelöst wird.
- Für das etwas kleinere Restproblem mache den rekursiven Aufruf (die Rekursion "kümmert" sich um die Lösung)

(z.B. eine Stufe hochsteigen, den Rest der Treppe rekursiv hochsteigen)

Wichtig dabei: Das Problem muss echt kleiner werden und der Basisfall muss irgendwann erreicht werden, anderenfalls terminiert das Programm nicht.

D. Sabel | 11 Rekursion | WS 2018/19

Rekursion Rek.+Iteration Hanoi Rek.-Formen Quickson

Rekursive Berechnung der Fakultät in Java

```
public static int fac(int n) {
  if (n == 0) {return 1;} // Basisfall
  else {return n *
                            // selbst gel"oster Teil
              fac(n-1);
                            // rekursiver Aufruf
}
```

Einfache Beispiele

Die Fakultät einer Zahl $n \in \mathbb{N}$ ist definiert durch

- 0! = 1 und
- $n! = n \cdot (n-1) \cdots 2 \cdot 1$ für alle $n \in \mathbb{N}$ mit n > 0

Z.B. ist 5! = 120, denn $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

Rekursive Definition der Fakultät:

$$\begin{array}{lll} 0! &=& 1 \\ n! &=& n \cdot ((n-1)!) \text{ für alle } n \in \mathbb{N} \text{ mit } n > 0 \end{array}$$

Z.B.
$$5! = 5 \cdot 4! = 5 \cdot 4 \cdot 3! = 5 \cdot 4 \cdot 3 \cdot 2! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = \dots = 120$$

D. Sabel | 11 Rekursion | WS 2018/19

6/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quickson

Auswertung rekursiver Methodenaufrufe

Wir betrachten als Beispiel:

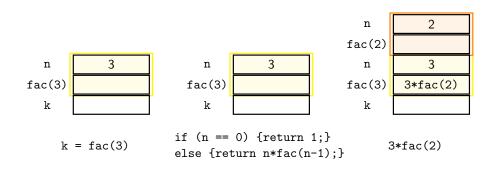
$$int k = fac(3);$$

Im ersten Schritt wird auf dem Stack ein Speicherplatz für die Variable k angelegt:

k

Beim Methodenaufruf wird neben Variablen für die aktuellen Parameter auch eine Variable für das Ergebnis angelegt.

> n fac(3)



n			1	n	1	
_		fac(1)		fac(1)		
n	2	n	2	n	2	
fac(2)		fac(2)	2*fac(1)	fac(2)	2*fac(1)	
n	3	n	3	n	3	
fac(3)	3*fac(2)	fac(3)	3*fac(2)	fac(3)	3*fac(2)	
k		k		k		
<pre>if (n == 0) {} else {return n*fac(n-1)}</pre>						

D. Sabel | 11 Rekursion | WS 2018/19

9/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

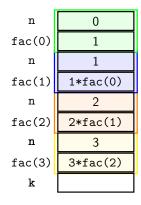
D. Sabel | 11 Rekursion | WS 2018/19

10/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

Illustration des Stackaufbaus

_						
n	0	n	0	n	0	
fac(0)		fac(0)		fac(0)	1	
n	1	n	1	n	1	
fac(1)	1*fac(0)	fac(1)	1*fac(0)	fac(1)	1*fac(0)	
n	2	n	2	n	2	
fac(2)	2*fac(1)	fac(2)	2*fac(1)	fac(2)	2*fac(1)	
n	3	n	3	n	3	
fac(3)	3*fac(2)	fac(3)	3*fac(2)	fac(3)	3*fac(2)	
k		k		k		
<pre>if (n == 0) {return 1;} else {return n*fac(n-1);} return 1</pre>						

Illustration des Stackabbaus



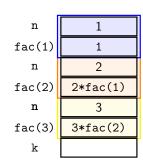


Illustration des Stackabbaus

n	2	
fac(2)	2	
n	3	
fac(3)	3*fac(2)	
k		

n	3
fac(3)	6
k	

D. Sabel | 11 Rekursion | WS 2018/19

13/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quickson

Beispiele

```
public static int nonterm2(int n) {
  if (n == 0) {return 0;}
  else {return nonterm2(n-2);}
}
```

terminiert für gerade positive Zahlen, aber nicht für ungerade oder negative Zahlen.

```
public static int collatz(int n) {
  if (n==1) {return 1;}
  else if (n\%2 == 0)
            {return collatz (n/2);}
       else
            {return collatz(3*n+1);}
```

Bis heute ist nicht bewiesen, ob diese Funktion für jede positive natürliche Zahl terminiert (siehe Collatz-Vermutung)

Terminierung

Der Aufruf einer rekursiven Methode **terminiert**, wenn nach endlich vielen rekursiven Aufrufen ein Abbruchfall erreicht wird. Beispiele:

```
public static int nonterm1(int n) {
return n*nonterm1(n-1);
```

Aufruf von nonterm(10) terminiert nicht, da kein Abbruchfall erreicht wird (in Java erhalten wir einen StackOverflowError)

```
public static int fac(int n) {
 if (n == 0) {return 1;} // Basisfall
 fac(n-1): // rekursiver Aufruf
    }
}
```

fac(x) terminiert für $x \ge 0$, aber nicht für x < 0!

D. Sabel | 11 Rekursion | WS 2018/19

14/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quickson

Rekursion und Iteration (1)

Zu jedem rekursiven Algorithmus gibt es einen semantisch äquivalenten iterativen Algorithmus, d.h. einen Algorithmus mit Wiederholungsanweisungen, der dasselbe Problem löst.

Beispiel: Fakultät iterativ:

```
static int facIterativ(int n) {
 int result = 1;
  while (n != 0) {
    result = result * n;
 return result;
```

Vorteil des iterativen Algorithmus: Der Stack wächst nicht linear, sondern benötigt nur zwei Speicherplätze (für result und n).

- Rekursive Algorithmen sind häufig eleganter und übersichtlicher als iterative Lösungen.
- Gute Compiler können aus rekursiven Programmen auch effizienten Code erzeugen; trotzdem sind iterative Programme meist schneller als rekursive.
- Für manche Problemstellungen kann es wesentlich einfacher sein, einen rekursiven Algorithmus anzugeben als einen iterativen.

Startsituation

D. Sabel | 11 Rekursion | WS 2018/19 17/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksor

Rekursion: Tiirme von Hanoi

Beispiel n=3

D. Sabel | 11 Rekursion | WS 2018/19

1
2
3
Startstapel Zielstapel Hilfsstapel

Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksor

Startstapel Zielstapel Hilfsstapel

n=1: Verschiebe Scheibe von Startstapel auf Zielstapel

Startstapel Zielstapel Hilfsstapel

n=1: Verschiebe Scheibe von Startstapel auf Zielstapel

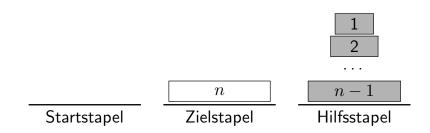
D. Sabel | 11 Rekursion | WS 2018/19 20/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

Lösen durch Rekursion: Rekursionsschritt

 $\begin{array}{c|c} \hline n \\ \hline Startstapel \end{array} \quad \begin{array}{c|c} \hline 1 \\ \hline 2 \\ \hline \dots \\ \hline \hline \\ Hilfsstapel \end{array}$

1. Verschiebe den Turm der Höhe n-1 **rekursiv** auf den Hilfsstapel

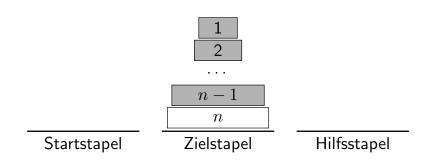
Lösen durch Rekursion: Rekursionsschritt.



2. Verschiebe Scheibe n auf den Zielstapel

D. Sabel | 11 Rekursion | WS 2018/19

Rekursion Rek.+Iteration Hanoi Rek.-Formen Quickson



3. Verschiebe den Turm der Höhe n-1 rekursiv auf den Zielstapel

D. Sabel | 11 Rekursion | WS 2018/19 21/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksor

Fibonacci-Zahlen: Rekursiv

• Rekursive Definition der Fibonacci-Zahlen:

$$\begin{array}{lll} fib(0) & = & 1 \\ fib(1) & = & 1 \\ fib(n) & = & fib(n-2) + fib(n-1) \text{ für alle } n \in \mathbb{N} \text{ mit } n \geq 2 \end{array}$$

• Java-Implementierung als rekursive Methode:

```
public static int fib(int n) {
  if (n <= 1) {return 1;}
  else return fib(n-2) + fib (n-1);</pre>
```

verschiebe(n,start,ziel,hilf)

- 1. Wenn n > 1, dann verschiebe(n-1,start,hilf,ziel)
- 2. Schiebe Scheibe n von start auf ziel
- 3. Wenn n > 1, dann verschiebe(n-1,hilf,ziel,start)
- ullet Rekursionanfang ist bei n=1: keine rekursiven Aufrufe
- Beachte: Zwei rekursive Aufrufe pro Rekursionsschritt
- Java-Programme: In der Übung

D. Sabel | 11 Rekursion | WS 2018/19

42 Rekursid

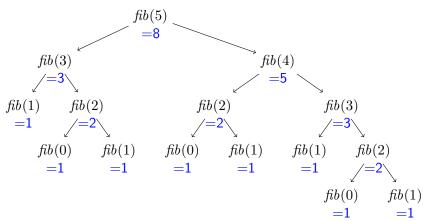
Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksor

Beispiel: Kaninchen

- Im Jahr 0 wird 1 Kaninchenpaar geboren.
- Im Jahr 1 hat dieses Paar ein neues Paar geboren.
- In jedem Jahr $n \geq 2$ haben die ein- und zweijährigen Paare jeweils ein neues Paar geboren.

Anzahl der im Jahr n neu geborenen Kaninchenpaare: ?

Kaskade rekursiver Aufrufe



Die Zeitkomplexität der rekursiven Fibonacci-Funktion ist exponentiell, d.h. in $\mathcal{O}(2^n)$.

Grund: n-Schritte in die Tiefe, in jedem Schritt wird die Anzahl der rekursiven Aufrufe ungefähr verdoppelt.

D. Sabel | 11 Rekursion | WS 2018/19

Pekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

Rekursionsformen

- Lineare Rekursion: In jedem Zweig der Fallunterscheidung kommt höchstens ein rekursiver Aufruf vor, z.B.
 Fakultätsfunktion fac.
- Baumrekursion (Kaskadenartige Rekursion): Meherere rekursive Aufrufe stehen nebeneinandern und sind durch Operationen verknüpft, z.B. Fibonacci-Zahlen fib
- Verschachtelte Rekursion: Rekursive Aufrufe kommen in den Parametern von rekursiven Aufrufen vor, z.B.
 Ackermann-Funktion.

Fibonacci-Zahlen iterativ berechnen

Idee: Berechne von fib(0) und fib(1) beginnend aufsteigend:

Die Zeitkomplexität ist linear, d.h. in $\mathcal{O}(n)$ (da die for-Schleife n-1 mal durchlaufen wird und jeder Schleifendurchlauf konstante Zeit benötigt. Die Speicherplatzkomplexität ist konstant, d.h. in $\mathcal{O}(1)$, da nur konstant viele Variablen verwendet werden.

```
D. Sabel | 11 Rekursion | WS 2018/19
```

26/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quickso

Die Ackermann-Funktion

- Die Ackermann-Funktion wächst extrem schnell
- Sie ist das klassische Beispiel für eine berechenbare, terminierende Funktion, die nicht primitiv-rekursiv ist (erfunden 1926 von Ackermann)

```
\bullet Beispiele: ack(4,0)=13 ack(4,1)=65533 ack(4,2)=2^{65536}-3 ack(4,4)> \  \, {\rm Anzahl\ der\ Atome\ im\ Universum}
```

Quicksort

Quicksort ist ein schneller (vergleichsbasierter) Sortieralgorithmus (entwickelt von Tony Hoare, 1962).

Ideen:

- Falls das zu sortierende Array mindestens 2 Elemente hat:
 - 1. Wähle irgendein Element aus dem Array als **Pivot** ("Dreh- und Angelpunkt"), z.B. das erste Element.
 - 2. **Partitioniere** das Array in einen linken und einen rechten Teil, so dass
 - alle Elemente im linken Teil kleiner-gleich als das Pivot sind,
 - alle Elemente im rechten Teil größer als das Pivot sind.
 - 3. Wende Quicksort (rekursiv) auf beide Teilarrays an.
- Der Quicksort folgt einen ähnlichen Lösungsansatz wie die binäre Suche. Diesen Ansatz nennt man "Divide-and-Conquer" ("Teile und beherrsche")

D. Sabel | 11 Rekursion | WS 2018/19

/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

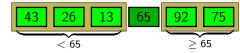
Implementierung in Java

Es fehlt noch die Methode: partition

Quicksort: Beispiel

Wähle Pivot, z.B. 65

Partitioniere anhand des Pivots



Sortiere beide Teilarrays rekursiv mit Quicksort

D. Sabel | 11 Rekursion | WS 2018/19

/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksor

Einfache Variante von partition

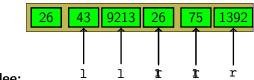
Idee:

- partition(int[] arr,left,right,pivot) partitioniert das Array arr im Bereich left bis right anhand des Pivots pivot und liefert den Index des Pivotelements.
- Benutze Kopie copy des Teilbereichs
- Durchlaufe copy dreimal um die Werte in arr[left..right] zu überschreiben:
 - 1. Schreibe die Werte kleiner als das Pivot
 - 2. Schreibe die Werte gleich zum Pivot
 - 3. Schreibe die Werte größer als das Pivot
- Dabei muss der Rückgabewert für den Index auf das Pivotelement entsprechend verwaltet werden.

Einfache Variante von partition

```
public static int partition(int[] arr, int left, int right, int pivot) {
    int[] copy = new int[right-left+1];
    // erstelle Kopie des zu sortierenden Teils
    for (int i=0; i < copy.length; i++) {copy[i] = arr[left+i];}</pre>
    int pivotIndex = left-1;
    int writePos = left:
    // Schreibe linken Teil
    for (int i=0; i < copy.length; i++) {if (copy[i] < pivot) {</pre>
                                            arr[writePos] = copy[i];
                                            pivotIndex++; writePos++;}
   }
    // Schreibe alle Elemente gleich zum Pivot
    for (int i=0; i < copy.length; i++) {if (copy[i] == pivot) {</pre>
                                            arr[writePos] = copy[i];
                                            pivotIndex++; writePos++;}
   }
    // Schreibe rechten Teil
    for (int i=0; i < copy.length; i++) {if (copy[i] > pivot) {
                                            arr[writePos] = copv[i];
                                            writePos++:}
   }
   return pivotIndex;
D. Sabel | 11 Rekursion | WS 2018/19
                                                Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort
```

Partitonieren ohne zusätzlichen Platzbedarf (1)



Idee:

- wenn 1 und r sich noch nicht gekreuzt haben:
 - Schiebe 1 solange nach rechts, bis eine Zahl größer als das Pivot gefunden wird.
 - Schiebe r solange nach links, bis eine Zahl kleiner als das Pivot gefunden wird.
 - 3 Wenn sich dabei 1 und r nicht gekreuzt haben, vertausche die Einträge und mache weiter mit 1.

Vertausche das Pivot mir r

Speicherplatzkomplexität

Da partition eine Kopie des Arrays im Speicher hält, benötigt dieser Quicksort für ein Array der Länge n, $\mathcal{O}(n)$ (zusätzlichen) Speicherplatz.

Wir betrachten daher eine optimierte Variante.

D. Sabel | 11 Rekursion | WS 2018/19

Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

Partitionieren ohne zusätzlichen Platzbedarf (2)

```
public static void swap(int[] arr, int 1, int r) {
    int tmp = arr[1];
    arr[1] = arr[r];
    arr[r] = tmp:
  public static int partition(int[] arr, int left, int right, int pivot) {
   // in-place partition, geht davon aus, dass pivot sich an arr[left] befindet
    int 1 = left+1; // fange links neben dem Pivot an
    int r = right; // fange rechts ganz rechts an
    boolean proceed = true; // vertausche weiter?
    while (proceed) {
    while (1 <= right && arr[1] < pivot) {1++;} // schiebe 1 nach links bis ein
         zu gro"sses Element gefunden
    while (r >= left && arr[r] > pivot) {r--;} // schiebe r nach rechts bis ein
         zu kleines Element gefunden
    if (1 < r) { swap(arr,1,r); // vertausche arr[1] und arr[r]</pre>
                1++; r--; // schiebe l nach links und r nach rechts
     else {proceed = false;} //stoppe
    // setze Pivot an die richtige Position
    swap(arr,left,r); // r ist das erste zu kleine Element von rechts
    return r;
D. Sabel | 11 Rekursion | WS 2018/19
```

Platzbedarf der optimierten Variante

- Es werden neben der Eingabe nur konstant viele lokale Variablen verwendet.
- Aber: Die rekursiven Aufrufe werden auf dem Stack abgelegt.
- Daher: Platzbedarf ist abhängig von der maximalen Rekursionstiefe!

D. Sabel | 11 Rekursion | WS 2018/19

42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

Komplexität von Quicksort (2)

- Im besten Fall halbiert das Partitionieren jedesmal, d.h. die Elemente werden gleichmäßig in den linken und rechten Teil verteilt. Dann müssen wir nicht öfter als $(\log_2 n) + 1$ mal partitionieren. Daher ist die **best-case** Laufzeitkomplexität von Quicksort in $O(n \log n)$. Entsprechend ist die Platzkomplexität im **best-case** $\mathcal{O}(\log n)$ für die rekursiven Aufrufe auf dem Stack.
- Im schlechtesten Fall ist eine Partition stets leer, und die andere enthält alle Elementen außer dem Pivot. Dann müssen wir n-1-mal partitionieren. Daher ist die **worst-case** Laufzeitkomplexität von Quicksort in $\mathcal{O}(n^2)$ und die **worst-case** Platzkomplexität in $\mathcal{O}(n)$.
- Man kann zeigen, dass im Durchschnitt immer noch $\mathcal{O}(\log n)$ rekursive Aufrufe ausreichen, daher ist die **average-case** Laufzeitkomplexität von Quicksort in $\mathcal{O}(n \log n)$ und die Platzkomplexität im Mittel in $\mathcal{O}(\log n)$.

Komplexität von Quicksort (1)

Sei n die Länge des Eingabearrays.

- Der Zeitbedarf zum Partitionieren eines Teilarrays mit m Einträgen ist in allen Fällen in $\mathcal{O}(m)$, da 1 und \mathbf{r} stets um mindestens 1 erhöht bzw. um 1 erniedrigt werden, und insgesamt weniger als $\mathbf{r}-\mathbf{1} < \mathbf{m}$ solche Veränderungen möglich sind.
- Alle Partitionierungen in gleicher Rekursionstiefe (d.h. nach k-maligem Aufruf von qsort) benötigen in der Summe daher Zeit in $\mathcal{O}(n)$.
- Zur Laufzeitabschätzung müssen wir daher wissen, wie oft partitioniert werden muss.

D. Sabel | 11 Rekursion | WS 2018/19

38/42 Rekursion Rek.+Iteration Hanoi Rek.-Formen Quicksort

Verbesserungen des Quicksort-Algorithmus

Praktische Verbesserungen

- Wenn Arrays kurz werden (z.B. 10 Elemente), verwende einfachen Sortieralgorithmus (z.B. Selection Sort)
- Bestimme Pivotelement durch Ziehen von 3 Elementen:
 - erstes Element
 - mittleres Element
 - letztes Element

Wähle Pivot als Median der 3 Elemente.

Teile das Array in 3 Teile: < als Pivot, = Pivot, > Pivot.
 Der mittlere Teil wird nicht mehr im rekursiven Aufruf berücksichtigt.

Starke Beschleunigung bei vielen gleichen Elementen.

Bemerkungen: Sortieren

- Man kann nachweisen, dass jeder vergleichsbasierte Sortieralgorithmus im worst-case log-linear ist.
- Es gibt Sortierverfahren, die auch im worst-case dies erreichen (z.B. Merge-Sort)
- Für nicht-vergleichsbasierte Sortierverfahren (z.B. von Ganzzahlen fester Länge) sind auch lineare Verfahren bekannt.

Zusammenfassung

- Prinzip der Rekursion: Basisfall, Rekursiver Aufruf
- Auf Terminierung achten!
- Rekursionsformen: lineare Rekursion, Baumrekursion, Verschachtelte Rekursion
- Iterativ vs. Rekursion
- Beispiele (Türme von Hanoi, fac, fib, ackermann)
- Quicksort als rekursives und schnelles Sortierverfahren

