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   Autonomous Systems 

 Autonomous systems  

    have to adapt to 

 environmental conditions and 

 new requirements 

at runtime even if they are defined at design time 

 

  ASCENS project  

 2010-2015, EU-funded Integrated Project 

 15 partners from 7 countries 

 Developed systematic approach for 

engineering autonomous ensembles including 

 SW process, formal modeling, verification,  

 monitoring, adaptation, awareness 

 Case studies on  

     robotics, cloud computing, e-mobility 
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Decision Making under Uncertainty 

 Very large state spaces 𝑆 > 1010  

 Probabilistic effects 

 Partially uncontrolled environment 

 Incomplete design time knowledge 
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1. Online Planning 
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Online Planning 

Real Situation 

build State Model 

and plan 

observe 

execute 

Image sources: 

thegrid.soup.io/post/312159914 
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Online Planning (Informally, Sequential) 

while true do 

  observe state 

  plan 

  execute action w.r.t. plan 

end while 
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Online Planning (Informally, Concurrent) 

while true do 

  observe state 

  execute || plan 

end while 
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Online Planning: Parameters 

 State space 𝑆 

 Action space 𝐴 

 Attribute   𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝐵𝑜𝑜𝑙 

 Operation 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝑆 

 Operation execute  : RealAction → () 

 

 Planning 

 Reward function 𝑅 ∶ 𝑆 → ℝ   =>  getReward 

 Strategy 𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴  𝑆)   =>  sampleAction 
 Planning refines initial strategy according to 𝑅 

 Online planning 

 Iterated execution and planning 
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Online Planning (Refined) 

while true do 

  state ← observe() 

  planner.state ← state 

  when actionRequired do 

    actionRequired ← false 

    action ← planner.strategy.sampleAction(state) 

  end when 

  action.real.execute() 

end while 

while true do 

  plan() 

end while 

Agent 

Planner 

Agent || Planner     where 
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Plug Points 

while true do 

  state ← observe() 

  planner.state ← state 

  when actionRequired do 

    actionRequired ← false 

    action ← planner.strategy.sampleAction(state) 

  end when 

  action.real.execute() 

end while 

while true do 

  plan() 

end while 

Agent 

Planner 

Agent || Planner     where 
domain 

specific 
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Plug Points 

while true do 

  state ← observe() 

  planner.state ← state 

  when actionRequired do 

    actionRequired ← false 

    action ← planner.strategy.sampleAction(state) 

  end when 

  action.real.execute() 

end while 

while true do 

  plan() 

end while 

Agent 

Planner 

Agent || Planner     where 

design 

choice 

domain 

specific 
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A Framework for Online Planning 

Real Situation 
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A Framework for Online Planning 

Operates w.r.t. 

state and strategy 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

Real Situation 

15 



𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) Changes strategy 

w.r.t. reward function 

Real Situation 

A Framework for Online Planning 

16 



3. Simulation-Based Online Planning 
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Three Types of State 

Real Situation 

State Model 

Simulation 
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Approach 

 Refine strategy  𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑆  by Simulation-Based 

Planning 

 Provide agent with simulation of itself and domain 

 

 Generate simulations of future episodes 

 Evaluate simulation episodes wrt. reward function 

 Use estimates to refine simulations 

 Finally: Execute a real action that performed well in simulation 

 Repeat 
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3.1 The Framework for  

      Simulation-Based Planning 
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The Framework for  

Simulation-Based Planning 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 
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𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

The Framework for  

Simulation-Based Planning 

changes 

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 
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𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

The Framework for  

Simulation-Based Planning 

Simulate wrt. 

strategy and domain 

dynamics 
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The Framework for  

Simulation-Based Planning 

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

Simulation result 

refines strategy 

Weighted by 

episode reward 

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨) 
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SBP Parameters 

 Simulation 𝑃𝑆𝑖𝑚 𝑆  𝑆 𝑥 𝐴) 

 Agent‘s model/knowledge of domain dynamics 

 Can be changed at runtime 

 May differ from real domain dynamics 

 Can be learned/refined from observations 

 

 Maximum search depth ℎ𝑚𝑎𝑥 

 Impacts simulation effort 

 Less simulation steps: Fast but shallow planning 

 Can be dynamically adapted 
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Simulation-Based Planning Algorithm 

op plan() 

  vars s, r, episode, a 

  s ← state 

  r ← rewardFct.getReward(s) 

  episode ← nil 

  for 0 .. ℎ𝑚𝑎𝑥 do 

    a ← strategy.sampleAction(s) 

    s ← simulation.sampleSuccessor(s, a) 

    episode ← episode::(s, a) 

    r ← r + rewardFct.getReward(s) 

  end for 

  strategy ← updateStrategy(episode, r) 

end op 
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Simulation-Based Planning: Plug Points 

op plan() 

  vars s, r, episode, a 

  s ← state 

  r ← rewardFct.getReward(s) 

  episode ← nil 

  for 0 .. ℎ𝑚𝑎𝑥 do 

    a ← strategy.sampleAction(s) 

    s ← simulation.sampleSuccessor(s, a) 

    episode ← episode::(s, a) 

    r ← r + rewardFct.getReward(s) 

  end for 

  strategy ← updateStrategy(episode, r) 

end op 

27 



Simulation-Based Planning: Variants 

 

 Variants define updateStrategy(Episode, Real) 

 Vanilla Monte Carlo 

 Genetic Algorithms 

 Monte Carlo Tree Search  

 for discrete domains  

 Cross Entropy Planning 

 for continuous domains 
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3.2 Monte Carlo Tree Search  

      for Discrete Domains 

 Strategy as tree 

 Nodes represent states and action choices 

 Add a node per simulation 

 Aggregate simulation data in nodes 

 Reward and frequency 

 Sample actions w.r.t. aggregated data 

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp 

Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of 

monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on, 

4(1):1 - 43, 2012. 29 



Strategy Inside the Tree 

 E.g.  Upper Confidence Bounds for Trees  

 Treat action selection as multiarmed bandit 

 Select actions that maximize 

 

          𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗
 

 

 

 

 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo 

planning. Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006. 282-293. 

 

Cumulated reward Nr. of episodes 
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Strategy Inside the Tree 

 E.g. Upper Confidence Bounds for Trees  

 Treat action selection as multiarmed bandit 

 Select actions that maximize 

 

          𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗
 

 

 

 

 

 𝑋𝑗:  Average reward of child node j 

 𝑛:   Nr. of episodes from current node 

 𝑛𝑗 :  Nr. of episodes from child node j 

 𝐶:   UCT exploration constant 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo 

planning. Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006. 282-293. 

Exploit 

observations 

Explore 

solution space 
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Expand the Tree 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo 

planning. Machine Learning: ECML 2006. Springer Berlin 

Heidelberg, 2006. 282-293. 

 

0 / 0 

 Add a new node 

 When an episode leaves the tree 
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Strategy Outside the Tree 

Initial 𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) 

 Simulate episode to depth ℎ𝑚𝑎𝑥 

 Observe result 

 E.g. reward observed 

 Here: 0 or 1 

Reward: 1 

4 / 8 0 / 3 7 / 10 

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3 

2 / 3 3 / 3 

11 / 21 

0 / 0 
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 Update the statistics 

 This changes the strategy inside the tree 

Update Strategy 

4 / 8 0 / 3 8 / 11 

2 / 4 6 / 7 1 / 2 1 / 3 2 / 3 

2 / 3 4 / 4 

12 / 22 

1 / 1 
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Trees Represent Strategies 

 

 

 

 

 

 

 

 

 

 

 

 MCTS builds a skewed tree 

 Tree can be interpreted as 𝑃𝐴𝑐𝑡𝑖𝑜𝑛(𝐴|𝑆) 

 Promising parts of the strategy space are prefered 
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Example Domain 

 Search and Rescue 
 Victims, fires and ambulances 

 Unknown topology 

 Unknown initial situation 
 

 Agent actions 
 Noop, Move 

 Load or drop a victim 

 Extinguish fire if adjacent 
 

 Noise 
 Actions may fail 

 Fires ignite and cease 
 

 Experiment 
 Monte Carlo Tree Search 

 Large state space (> 1012) 

 Large branching factor (218) 

 0.2 seconds/decision 

 𝑃𝑆𝑖𝑚 𝑆  𝑆 𝑥 𝐴) models domain perfectly 
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 Measured (in %) 

 Victims at ambulance (blue) 

 Victims in a fire (red) 

 Positions on fire (green) 

 Provided reward 

 Victim at ambulance:  +100 

 System synthesized sensible behavior 

 Results in 0.95 confidence interval 

 Checked with MultiVeStA 

 

Experimental Results (I) 

Autonomy 

Stefano Sebastio and Andrea Vandin. MultiVeStA: statistical 

model checking for discrete event simulators. ValueTools '13. 

2013. 310-315.  
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 Measured (in %) 

 Victims at ambulance (blue) 

 Victims in a fire (red) 

 Positions on fire (green) 

 Expose system to unexpected events 

 At steps 20, 40, 60, 80 

 All carried victims are dropped 

 New fires break out 

 Events NOT simulated by planner 

 New situation incorporated by planner 

 System showed sensible reactions 

 Results in 0.95 confidence interval 

Experimental Results (II) 

Robustness 
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 Measured (in %) 

 Victims at ambulance (blue) 

 Victims in a fire (red) 

 Positions on fire (green) 

 Change system goals while operating 

 Change of reward function 

 Steps 0-40: Reward for victims not in a fire 

 Steps 40-80: Reward for victims at ambulance 

 Change NOT simulated by planner 

 But planner incorporates new situation 

 System adapted behavior wrt. goals 

 Results in 0.95 confidence interval 

Experimental Results (III) 

Flexibility 
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From Discrete to Continuous Domains 

 Actions 

 State and action space = ℝn 

 E.g. (speed,  rotation,  duration) for actions 

 

 Cross Entropy Planning 

 Approximate (unknown) target distribution 

 Multivariate Gaussian distribution  

 Sample state space (locally) and choose „elite“ samples 

for updating the strategy (‚sharpen‘ the Gaussian) 

 

 Here: Gaussians over sequences of actions 

 Sequence length = planning depth 

Ari Weinstein and Michael L. Littman. Open-loop planning in large-scale stochastic domains. 

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013. 40 



Cross Entropy Planning 

 White circle represents agent 

 Red boxes represent moving victims 

 Black lines are simulation episodes 

 Action parameters are speed, rotation and duration 

 Images show iterations 1, 5 and 10 

 Simulation depth is adaptive here (reduced simulation cost) 

 Note the iterative “shaping” of a promising strategy  
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Video: Cross Entropy Planning 
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Video: Cross Entropy Planning 

 

 

 The video showed interleaving planning and execution 

 

 Illustrates iterative shaping of a probabilistic strategy 

 

 When parallelizing planning and execution, this looks a little 

different… 
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Video: Continuous CE Planning 
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Cross Entropy Planning Experiments 

Interleaving 

Parallel 

 

 CE: Cross Entropy Planning 

 TACE: Time Adaptive CE 

 C3: Continuous CE Control 

 

 h: Planning depth 

 d:  Action duration 

Victims left 

T
im

e
 [

s]
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Concluding Remarks 
 Motivation 

 Complex dynamic domains 

 High degrees of non-determinism 

 Approach 
 Model a space of solutions, instead of a single one 

 Online planning: Refine the solution space at runtime wrt. observations 
and knowledge to determine a currently viable action 

 This Talk 
 Component framework for Online Planning 

 Parallelization of execution and planning 

 Instantiation: Simulation Based Planning 
 Two examples: MCTS, Cross Entropy Planning 

 Outlook 
 Model learning of domain dynamics 

 Soft temporal logic for formal (statistical) verification 

 Learning and planning for ensembles 
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