
A Framework for

Simulation-Based Online Planning

Martin Wirsing

In Kooperation mit Lenz Belzner und Rolf Hennicker,

FACS 2015, LNCS 9539, 2015, 1-30

Modellierung Dynamischer und Adaptiver Systeme

WS 2018/19

 1

 Autonomous Systems

 Autonomous systems

 have to adapt to

 environmental conditions and

 new requirements

at runtime even if they are defined at design time

 ASCENS project

 2010-2015, EU-funded Integrated Project

 15 partners from 7 countries

 Developed systematic approach for

engineering autonomous ensembles including

 SW process, formal modeling, verification,

 monitoring, adaptation, awareness

 Case studies on

 robotics, cloud computing, e-mobility

2

Decision Making under Uncertainty

 Very large state spaces 𝑆 > 1010

 Probabilistic effects

 Partially uncontrolled environment

 Incomplete design time knowledge

3

Contents

1. Online planning

2. A generic framework for online planning

3. Simulation-based online planning

1. The framework

2. Monte Carlo Tree Search for discrete domains

3. Cross Entropy for continuous domains:

4. Concluding remarks

4

1. Online Planning

5

Online Planning

Real Situation

build State Model

and plan

observe

execute

Image sources:

thegrid.soup.io/post/312159914

mobots.epfl.ch/marxbot.html

6

Online Planning

Real Situation

build State Model

and plan

observe

execute

Image sources:

thegrid.soup.io/post/312159914

mobots.epfl.ch/marxbot.html

7

Online Planning (Informally, Sequential)

while true do

 observe state

 plan

 execute action w.r.t. plan

end while

8

Online Planning (Informally, Concurrent)

while true do

 observe state

 execute || plan

end while

9

Online Planning: Parameters

 State space 𝑆

 Action space 𝐴

 Attribute 𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝐵𝑜𝑜𝑙

 Operation 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 ∶ 𝐴𝑔𝑒𝑛𝑡 → 𝑆

 Operation execute : RealAction → ()

 Planning

 Reward function 𝑅 ∶ 𝑆 → ℝ => getReward

 Strategy 𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑆) => sampleAction
 Planning refines initial strategy according to 𝑅

 Online planning

 Iterated execution and planning

10

Online Planning (Refined)

while true do

 state ← observe()

 planner.state ← state

 when actionRequired do

 actionRequired ← false

 action ← planner.strategy.sampleAction(state)

 end when

 action.real.execute()

end while

while true do

 plan()

end while

Agent

Planner

Agent || Planner where

11

Plug Points

while true do

 state ← observe()

 planner.state ← state

 when actionRequired do

 actionRequired ← false

 action ← planner.strategy.sampleAction(state)

 end when

 action.real.execute()

end while

while true do

 plan()

end while

Agent

Planner

Agent || Planner where
domain

specific

12

Plug Points

while true do

 state ← observe()

 planner.state ← state

 when actionRequired do

 actionRequired ← false

 action ← planner.strategy.sampleAction(state)

 end when

 action.real.execute()

end while

while true do

 plan()

end while

Agent

Planner

Agent || Planner where

design

choice

domain

specific

13

A Framework for Online Planning

Real Situation

14

A Framework for Online Planning

Operates w.r.t.

state and strategy

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

Real Situation

15

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺) Changes strategy

w.r.t. reward function

Real Situation

A Framework for Online Planning

16

3. Simulation-Based Online Planning

17

Three Types of State

Real Situation

State Model

Simulation

18

Approach

 Refine strategy 𝑃𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑆 by Simulation-Based

Planning

 Provide agent with simulation of itself and domain

 Generate simulations of future episodes

 Evaluate simulation episodes wrt. reward function

 Use estimates to refine simulations

 Finally: Execute a real action that performed well in simulation

 Repeat

19

3.1 The Framework for

 Simulation-Based Planning

20

The Framework for

Simulation-Based Planning

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)
21

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

The Framework for

Simulation-Based Planning

changes

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)
22

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

The Framework for

Simulation-Based Planning

Simulate wrt.

strategy and domain

dynamics

23

The Framework for

Simulation-Based Planning

𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

Simulation result

refines strategy

Weighted by

episode reward

𝑷𝑺𝒊𝒎(𝑺|𝑺 𝒙 𝑨)
24

SBP Parameters

 Simulation 𝑃𝑆𝑖𝑚 𝑆 𝑆 𝑥 𝐴)

 Agent‘s model/knowledge of domain dynamics

 Can be changed at runtime

 May differ from real domain dynamics

 Can be learned/refined from observations

 Maximum search depth ℎ𝑚𝑎𝑥

 Impacts simulation effort

 Less simulation steps: Fast but shallow planning

 Can be dynamically adapted

25

Simulation-Based Planning Algorithm

op plan()

 vars s, r, episode, a

 s ← state

 r ← rewardFct.getReward(s)

 episode ← nil

 for 0 .. ℎ𝑚𝑎𝑥 do

 a ← strategy.sampleAction(s)

 s ← simulation.sampleSuccessor(s, a)

 episode ← episode::(s, a)

 r ← r + rewardFct.getReward(s)

 end for

 strategy ← updateStrategy(episode, r)

end op

26

Simulation-Based Planning: Plug Points

op plan()

 vars s, r, episode, a

 s ← state

 r ← rewardFct.getReward(s)

 episode ← nil

 for 0 .. ℎ𝑚𝑎𝑥 do

 a ← strategy.sampleAction(s)

 s ← simulation.sampleSuccessor(s, a)

 episode ← episode::(s, a)

 r ← r + rewardFct.getReward(s)

 end for

 strategy ← updateStrategy(episode, r)

end op

27

Simulation-Based Planning: Variants

 Variants define updateStrategy(Episode, Real)

 Vanilla Monte Carlo

 Genetic Algorithms

 Monte Carlo Tree Search

 for discrete domains

 Cross Entropy Planning

 for continuous domains

28

3.2 Monte Carlo Tree Search

 for Discrete Domains

 Strategy as tree

 Nodes represent states and action choices

 Add a node per simulation

 Aggregate simulation data in nodes

 Reward and frequency

 Sample actions w.r.t. aggregated data

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp

Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of

monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on,

4(1):1 - 43, 2012. 29

Strategy Inside the Tree

 E.g. Upper Confidence Bounds for Trees

 Treat action selection as multiarmed bandit

 Select actions that maximize

 𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo

planning. Machine Learning: ECML 2006. Springer Berlin

Heidelberg, 2006. 282-293.

Cumulated reward Nr. of episodes

30

Strategy Inside the Tree

 E.g. Upper Confidence Bounds for Trees

 Treat action selection as multiarmed bandit

 Select actions that maximize

 𝑈𝐶𝑇𝑗 = 𝑋𝑗 + 2𝐶
2 ln 𝑛

𝑛𝑗

 𝑋𝑗: Average reward of child node j

 𝑛: Nr. of episodes from current node

 𝑛𝑗 : Nr. of episodes from child node j

 𝐶: UCT exploration constant

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo

planning. Machine Learning: ECML 2006. Springer Berlin

Heidelberg, 2006. 282-293.

Exploit

observations

Explore

solution space

31

Expand the Tree

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

Kocsis, Levente, and Csaba Szepesvári. Bandit based monte-carlo

planning. Machine Learning: ECML 2006. Springer Berlin

Heidelberg, 2006. 282-293.

0 / 0

 Add a new node

 When an episode leaves the tree

32

Strategy Outside the Tree

Initial 𝑷𝑨𝒄𝒕𝒊𝒐𝒏(𝑨|𝑺)

 Simulate episode to depth ℎ𝑚𝑎𝑥

 Observe result

 E.g. reward observed

 Here: 0 or 1

Reward: 1

4 / 8 0 / 3 7 / 10

2 / 4 5 / 6 1 / 2 1 / 3 2 / 3

2 / 3 3 / 3

11 / 21

0 / 0

33

 Update the statistics

 This changes the strategy inside the tree

Update Strategy

4 / 8 0 / 3 8 / 11

2 / 4 6 / 7 1 / 2 1 / 3 2 / 3

2 / 3 4 / 4

12 / 22

1 / 1

34

Trees Represent Strategies

 MCTS builds a skewed tree

 Tree can be interpreted as 𝑃𝐴𝑐𝑡𝑖𝑜𝑛(𝐴|𝑆)

 Promising parts of the strategy space are prefered

35

Example Domain

 Search and Rescue
 Victims, fires and ambulances

 Unknown topology

 Unknown initial situation

 Agent actions
 Noop, Move

 Load or drop a victim

 Extinguish fire if adjacent

 Noise
 Actions may fail

 Fires ignite and cease

 Experiment
 Monte Carlo Tree Search

 Large state space (> 1012)

 Large branching factor (218)

 0.2 seconds/decision

 𝑃𝑆𝑖𝑚 𝑆 𝑆 𝑥 𝐴) models domain perfectly

36

 Measured (in %)

 Victims at ambulance (blue)

 Victims in a fire (red)

 Positions on fire (green)

 Provided reward

 Victim at ambulance: +100

 System synthesized sensible behavior

 Results in 0.95 confidence interval

 Checked with MultiVeStA

Experimental Results (I)

Autonomy

Stefano Sebastio and Andrea Vandin. MultiVeStA: statistical

model checking for discrete event simulators. ValueTools '13.

2013. 310-315.

37

 Measured (in %)

 Victims at ambulance (blue)

 Victims in a fire (red)

 Positions on fire (green)

 Expose system to unexpected events

 At steps 20, 40, 60, 80

 All carried victims are dropped

 New fires break out

 Events NOT simulated by planner

 New situation incorporated by planner

 System showed sensible reactions

 Results in 0.95 confidence interval

Experimental Results (II)

Robustness

38

 Measured (in %)

 Victims at ambulance (blue)

 Victims in a fire (red)

 Positions on fire (green)

 Change system goals while operating

 Change of reward function

 Steps 0-40: Reward for victims not in a fire

 Steps 40-80: Reward for victims at ambulance

 Change NOT simulated by planner

 But planner incorporates new situation

 System adapted behavior wrt. goals

 Results in 0.95 confidence interval

Experimental Results (III)

Flexibility

39

From Discrete to Continuous Domains

 Actions

 State and action space = ℝn

 E.g. (speed, rotation, duration) for actions

 Cross Entropy Planning

 Approximate (unknown) target distribution

 Multivariate Gaussian distribution

 Sample state space (locally) and choose „elite“ samples

for updating the strategy (‚sharpen‘ the Gaussian)

 Here: Gaussians over sequences of actions

 Sequence length = planning depth

Ari Weinstein and Michael L. Littman. Open-loop planning in large-scale stochastic domains.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013. 40

Cross Entropy Planning

 White circle represents agent

 Red boxes represent moving victims

 Black lines are simulation episodes

 Action parameters are speed, rotation and duration

 Images show iterations 1, 5 and 10

 Simulation depth is adaptive here (reduced simulation cost)

 Note the iterative “shaping” of a promising strategy

42

Video: Cross Entropy Planning

43

Video: Cross Entropy Planning

 The video showed interleaving planning and execution

 Illustrates iterative shaping of a probabilistic strategy

 When parallelizing planning and execution, this looks a little

different…

44

Video: Continuous CE Planning

45

Cross Entropy Planning Experiments

Interleaving

Parallel

 CE: Cross Entropy Planning

 TACE: Time Adaptive CE

 C3: Continuous CE Control

 h: Planning depth

 d: Action duration

Victims left

T
im

e
 [

s]

46

Concluding Remarks
 Motivation

 Complex dynamic domains

 High degrees of non-determinism

 Approach
 Model a space of solutions, instead of a single one

 Online planning: Refine the solution space at runtime wrt. observations
and knowledge to determine a currently viable action

 This Talk
 Component framework for Online Planning

 Parallelization of execution and planning

 Instantiation: Simulation Based Planning
 Two examples: MCTS, Cross Entropy Planning

 Outlook
 Model learning of domain dynamics

 Soft temporal logic for formal (statistical) verification

 Learning and planning for ensembles

47

References
1. Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,

Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.

A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence

and AI in Games, 4(1), 2012, 1-43.

2. Kocsis, Levente, and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine

Learning: ECML'06. Lecture Notes in Computer Science 4212, 2006, 282-293.

3. Bubeck, Sébastien, and Rémi Munos. Open Loop Optimistic Planning. In: 23rd Conference on

Learning Theory, COLT 2010. Omnipress 2010, 477-489.

4. Ari Weinstein and Michael L. Littman. Open-loop planning in large-scale stochastic domains. In:

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

5. Stefano Sebastio and Andrea Vandin. MultiVeStA: statistical model checking for discrete event

simulators. In Proceedings of the 7th International Conference on Performance Evaluation

Methodologies and Tools (ValueTools '13). 2013, 310-315.

6. Lenz Belzner, Rolf Hennicker, Martin Wirsing: OnPlan: A Framework for Simulation-Based Online

Planning. In Christiano Braga, Peter Csaba Ölveczky (eds.): Formal Aspects of Component

Software - 12th International Conference, FACS 2015, Revised Selected Papers. Lecture Notes

in Computer Science 9539, 2016, 1-30.

48

